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Preface

Our goal in this book is to explain as many important theorearamples,
and techniques as possible, as quickly and directly aslgessihile at the
same time giving (nearly) full details and keeping the teédarly) self-
contained. This book contains some simplifications of kn@approaches
and proofs, the exposition of some results that are not Iseadailable,
and some new material as well. We have tried to incorporateyroéthe
“greatest hits” of the subject, as well as its small quirkd gams.

There are a number of other references that cover variolsedbpics we
cover here (and more). We would especially like to mentianliboks by
Abikoff [1], Birman [23], Casson-Bleiler [43], Fathi—-Laadbach—Poénaru
[59], and Hubbard [92], as well as the survey papers by Ha&} and
Ivanov [103]. The works of Bers [13, 14] on Teichmullerstrems and on
the Nielsen—Thurston classification theorem have had éplatly strong
influence on this book.

The first author learned much of what he knows about thesegdpm
his advisor Bill Thurston, his teacher Curt McMullen, and kbllabora-
tors Lee Mosher and Howard Masur. The second author’'s peigpeon
this subject was greatly influenced by his advisor Bensoh,Fas mentors
Mladen Bestvina and Joan Birman, and his collaborator Qteisinger.
This book in particular owes a debt to notes the first authok toom a
course given by McMullen at Berkeley in 1991.

Benson Farb and Dan Margalit
Chicago and Atlanta, January 2011
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Chapter

Overview

In this book we will consider two fundamental objects at&ttho a surface
S: agroup and a space. We will study these two objects and heywéhate
to each other.

The group. The group is themapping class groupf S, denoted by
Mod(S). Itis defined to be the group of isotopy classes of orientatio
preserving diffeomorphisms ¢f (that restrict to the identity oS if 0.5 #
0):

Mod(S) = Diff* (S, dS)/ Diffo(S, 99).

HereDiff((S, 05) is the subgroup obiff* (.S, 9S) consisting of elements
that are isotopic to the identity. We will study the algebratructure of
the groupMod(S), the detailed structure of its individual elements, and the
beautiful interplay between them.

The space. The space is th&eichnilller spaceof S. Whenx(S) < 0 this
is the space of hyperbolic metrics 6hup to isotopy:

Teich(S) = HypMet(S)/ Diff(S).

The spacéleich(S) is a metric space homeomorphic to an open ball. The
group Diff*(S) acts on HypMetS) by pullback. This action descends to
an action ofMod(S) on Teich(S). A fundamental result in the theory is
that this action is properly discontinuous. The quotiertcgp

M(S) = Teich(S)/ Mod(S)

is the moduli space of Riemann surfacesmeomorphic ta5. The space
M(S) is one of the fundamental objects of mathematics. Since éawill
prove) M(S) is finitely covered by a closed aspherical manifold, the grou
Mod(S) encodes most of the topological features\df.S). Conversely, in-
variants such as the conomology\td(S) are determined by the topology
of M(S).
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The appearance dflod(S), Teich(.S), and M (S) in mathematics is ubig-
uitous: from hyperbolic geometry to algebraic geometry émbinatorial
group theory to symplectic geometry 3emanifold theory to dynamics. In
this book we will relate the algebraic structureMbd(.S), the geometry of
Teich(.S), and the topology oM (.S). Underlying the connections between
these structures is the combinatorial topology of the serfa Indeed, one
leitmotif of this book is the interplay of the “local” study of the gednye
and topology of a single surfaceand the “global” properties of the spaces
Teich(S) and M(S). It is a beautiful thing to see how each informs the
other.

The classification. The third player in our story is the Nielsen—Thurston
classification theorem, which gives a particularly niceresentative for
each element dflod(.S). This is a nonlinear analogue of the Jordan canon-
ical form for matrices; as such it is a cornerstone of the mpedt is in
Bers’ proof of this theorem where the first two charactery m# of each
other: the key is to understand how elementdkfd(S) act onTeich(.S)

via isometries of the Teichmuller metric. Much of the udeéss of the
Nielsen—Thurston classification comes from the fact that tilpical ele-
mentMod(S) has a pseudo-Anosov representative. Pseudo-Anosov home-
omorphisms have very specific descriptions and exhibit nranyarkable
properties.

In light of the above discussion this book is divided intoetparts. We
now outline these, emphasizing what we consider to be sontigeaiore
important results, and focussing for simplicity on the ca$e¢he closed
surfaceS, of genusg.

Part | covers what might be called the core theory of mapplagscgroups.
The central theme is the relationship between the algelstaicture in
Mod(S) and the combinatorial topology ifi.

Chapter 1. Just as one understands a linear transformation by itsregtio
vectors, so one understands an elemetlodl(S,) by its action on simple
closed curves irt. Chapter 1 explains the basics of working with simple
closed curves. This is more difficult than it might sound, las typical
simple closed curve can be rather complicated (see Figure 1)

Wheng > 2, hyperbolic geometry enters as a useful tool since each ho-
motopy class of simple closed curves has a unique geodgsiesentative.
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Figure 1 Thurston’s “typical curve.”

Following the linear algebra analogy we introduce the gedmetersec-
tion number. This is the analogue of an inner product on aovesptace, and
is a basic tool for working with simple closed curvesSp. The chapter
ends with the “change of coordinates principle.” This pipte plays the
same role that change of basis plays for matrices, so it isurgtrising that
it is applied with great frequency.

Chapter 2. After defining the mapping class grolyiod(S) we compute
the examples that can be explicitly determined “by hand.” tiém intro-
duce what we call “the Alexander method,” which gives an atgm for
determining whether or not two elementshdbd(S) are equal. In particu-
lar this method is used for showing an elemendgid(S) is nontrivial, or
for verifying relations inMod(S). One of the computations we perform is
the following classical, fundamental theorem of Dehn.

Theorem 2.5 Mod(T?) ~ SL(2,7Z).

Chapter 3. Dehn twists are the simplest infinite order elementslofi(.S).
They play the role of elementary matrices in linear algebeeit is not sur-
prising that they appear in much of what follows. We preseninadepth
study of Dehn twists and their action on simple closed cuniasone appli-
cation of this study, we prove that if two simple closed cusrireS, have ge-
ometric intersection number greater than 1 then the adsoclaehn twists
generate a free group of rank 2 od(S). We also apply our knowledge
of Dehn twists in order to prove the following basic theorem.

Theorem 3.10 For g > 3 the center oMod(.Sy) is trivial.

Chapter 4. At this point we have developed the nuts and bolts of the
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theory and we start to expose some of the most basic algetiraiture of
Mod(S). The following fundamental theorem of Dehn, proved in 1982,
analogous to the fact thai.(n, Z) is generated by elementary matrices.

Theorem 4.1 Mod(S,) is generated by finitely many Dehn twists.

Theorem 4.1 is proved by induction on genus, and the Birmattese-
guence is introduced as the key step for the induction. Thedkéehe in-
ductive step is to prove that the complex of cur¢¢s, ) is connected when

g > 2. The simplicial complexC(S,) is a useful combinatorial object that
encodes intersection patterns of simple closed curves .irMiore detailed
structure ofC(S,) is then used to find various explicit generating sets for
Mod(Sy), including those due to Lickorish and to Humphries.

A natural problem now arises: given a finite product of Dehistsy is there
an algorithm to determine whether the resulting elemeiiod (S,) is triv-
ial or not? The next theorem says that the answer is “yes.”

Theorem 4.2 Mod(S,) has solvable word problem.

Chapter 5. After proving that a groug> is finitely generated the next
invariant one wants to compute is the abelianizatiorGofor what is the
same thing its first homology{; (G;Z). Chapter 5 begins with a simple
proof, due to Harer, of the following theorem of Mumford, Bian, and
Powell.

Theorem 5.2If g > 3, thenH(Mod(S,); Z) = 1.

The key ingredient in the proof of Theorem 5.2 is Theorem dgkther with
the so-called “lantern relation,” a beautiful relation Wween seven Dehn
twists that was discovered by Dehn in the 1920's. We thenyagphethod
from geometric group theory to prove the following theorem.

Theorem 5.7Mod(S,) is finitely presentable.

The geometric group theory technique converts the stateofidimeorem 5.
to a problem about the topology of a certain “arc complex” andassoci-
ated mapping class group action on it. The key in this casesiwakingly

simple and beautiful proof of Hatcher that the arc complezostractible.

We also give explicit presentationsod (S, ), including those of Birman—
Wajnryb and Gervais.

Hopf gave a formula for computingl»(G;Z) for any groupG from a fi-
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nite presentation foG. While this computation is usually too difficult
to perform in practice, Pitsch discovered that one can useBinman—
Wajnryb presentation okMod(S,) to give an upper bound on the rank of
H>(Mod(Sy;Z)). We use this method in proving the following deep theo-
rem, originally due to Harer.

Theorem 5.8 If g > 4, thenHy(Mod(Sy); Z) = Z.

The lower bound in Theorem 5.8 is given by explicitly consting non-
trivial classes. We give a detailed construction of the thkeEclass, the
most basic invariant for surface bundles, as a 2—cocycléh®mapping
class group of a punctured surface. At this point homoldgibgebra, in
the form of (a degenerate form of) the Hochschild—Serre tsglesequence,
is used to deduce Theorem 5.8. The Meyer signature cocyasdasex-
plained, as is the important connection of this circle obslavith the theory
of S,—bundles. Indeed, understandifig—bundles and their invariants is a
major motivation for computingZ(Mod(S,); Z). The strong connection
betweenMod(S,) and.S,—bundles comes from the following bijection:

Isomorphism classes Conjugacy classes
of orientedS,~bundles » «—— of representations
overB p:m(B) — Mod(Sy)

for each fixedy > 2 and each fixed basB.

Chapter 6. Algebraic intersection number givedvéod (.S, )—invariant sym-
plectic form onH,(Sy; Z), thus inducing a representation

U : Mod(S,) — Sp(2¢,7Z)

with target the integral symplectic group. This so-caltgainplectic repre-
sentationof Mod(S,) can be viewed as a kind of “linear approximation” to
Mod(S,). We present three different proofs of the surjectivitydof each
illustrating a different theme. The usefulness of the syuit represen-
tation is then illustrated by two applications to underding the algebraic
structure ofMod(.S). First, we explain how Serre used this representation
to prove the following.

Theorem 6.9 Mod(S,) has a torsion-free subgroup of finite index.

The actual statement of Theorem 6.9 given below provideBagxjorsion-
free subgroups dffod(S,) that come from congruence subgroup$pf2g, Z) ]
We then use the symplectic representation to prove, foligWvanov, the
following theorem of Grossman.
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Theorem 6.11 Mod(S,) is residually finite.

The symplectic representation has a kernel, calledTirelli group de-
notedZ(S,). This is an important but still poorly understood subgrotip o
Mod(S,). The Torelli group supports a rich and beautiful theory witi
portant connections to other parts of mathematics. We woatChapter 6
by explaining some of the pioneering work of Dennis Johnsof @,). In
particular we construct the so-called “Johnson homomemhi

T: I(S;) — N3H

wheresS; is S, minus an open disk anil = H,(S,; Z). We then explain a
few of the many applications of.

Chapter 7. What are the finite groups of topological symmetriesSof
that is, what are the finite subgroupsbd(S)? A deep theorem of Ker-
ckhoff states that each finite subgroupMtd(S) comes from a group of
orientation-preserving isometries for some hyperbolidrioeon S. Such
groups are highly constrained: using the Riemann—-Hurwitmtila and
basic facts abowr—-dimensional orbifolds, we prove Hurwitz’s4(g — 1)
theorem,” a nineteenth century classic.

Theorem 7.4 84(g — 1) theorem) If X be a hyperbolic surface homeo-
morphic toS,, whereg > 2, then

| Isom™ (X)| < 84(g — 1).

We also prove a correspondingg' + 2 theorem” for cyclic subgroups of
Mod(S,). Later in the book we prove Kerckhoff's theorem for cycliogps
(i.e. “cyclic Nielsen realization”) by using the actionXfod(S,) onTeich(Sy).J]

The basic orbifold theory that we develop to prove Theorefi3.then
applied to prove thablod(S) has only finitely many conjugacy classes of
finite subgroups. On the other hand, we prove that there isgntorsion in
Mod(SS) to generate it with finitely many torsion elements, and intiee
can take these elements to have or2ler

Chapter 8. This chapter is an exposition of one of the most beautiful
connections between topology and algebra in dimension twe:Dehn—
Nielsen—Baer theorem. Lé&but(m(S)) denote the group of outer auto-
morphisms ofr; (S), and letMod™(S) denote theextended mapping class
group, which is the group of isotopy classes of all homeomorphisinS
(including the orientation preserving ones).
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Theorem 8.1 (Dehn—Nielsen—Baer theorentjor g > 1 we have

Mod*(S,) = Out(m1(S,)).

Theorem 8.1 equates a topologically defined gradpg(.S,), with an alge-
braically defined groupDut(m(S,)). What is more, Dehn'’s original proof
uses hyperbolic geometry! Both the theorem and the idediproof fore-
shadow the Mostow rigidity theorem, nearly fifty years in axge.

Chapter 9. Part | ends with a brief introduction to braid groups. The
group B,, is isomorphic to the mapping class group of a disk wittnarked
points. Since disks are planar the braid groups lend themseb special
pictorial representations. This gives the theory of braiolgs its own spe-
cial flavor within the theory of mapping class groups.

After presenting some classical facts about the algebtaictare of the
braid group, we give a new proof of the Birman—Hilden thegrevhich
relates the braid groups to the mapping class groups of atles€faces.
Let SMod(S;) denote subgroup dffod(S;) consisting of elements with
representative homeomrphisms that commute with some fiyeeralliptic
involution.

Theorem 8.1 (Birman—Hilden theorem)Letg > 1. Then

SMOd(S;) ~ B29+1.

Part 1l of the book is a concise introduction to Teichmubegory and the
moduli space of Riemann surfaces. We concentrate on thpsetasof the
theory that are most directly applicable to understandifgl(S,). Part II
has a decidedly more analytic and geometric flavor than Part |

Chapter 10. We introduce Teichmiller spacBeich(S,) as the space of
hyperbolic structures of,. After putting a natural topology ofeich (S, )
and giving two heuristic counts of its dimension, we prove tallowing
classical result, due to Fricke and Klein in 1897.

Theorem 10.6 For g > 2 we haveTeich(S,) = R%~F.



8 CHAPTER 0

We prove Theorem 10.6 by giving explicit coordinatesTsich(.S,) com-

ing from certain length and twist parameters for curves iraatp decom-

position of S,; these are the “Fenchel-Nielsen coordinates™Teith (.S).

It is worth emphasizing how miraculous it is that the quati€eich(S,) =
HypMet(S,)/ Diffo(S,) of an infinite-dimensional space by an infinite-dimensijjnal
group action gives a finite-dimensional manifold. The kifdrigidity” be-

hind this is in some sense contained in hyperbolic trigortonas can be

seen in the proof of Theorem 10.6. The chapter ends with thewimg
fundamental theorem about hyperbolic metrics on surfaces.

Theorem 10.7Letg > 2. There are9g — 9 specific homotopy classes of
simple closed curves ofi; with the property that any hyperbolic metric
on S, is determined up to isotopy by the lengths of the geodesitsese
homotopy classes.

The key to the proof of Theorem 10.7 is a convexity result far function
“length of «” (where a is an isotopy class of simple closed curves) consid-
ered as a function ofieich(.S).

Chapter 11. After determining the topology dfeich(S,), we turn to its
metric geometry. In order to do this we first explain how one ttank of
Teich(S,) as the space of complex structuresn

Given a pair of pointsX,Y € Teich(S,) one associates a pair of Riemann
surfacesX,Y and a homeomorphisrfi : X — Y, well-defined up to ho-
motopy. While f is in general not conformalf can always be chosen to
be quasiconformal. This means thatdistorts angles by at most a fixed
bounded amounk'(f).

A natural extremal mapping problem then arises:

Given a homeomorphism of Riemann surfafesX — Y, is
there a quasiconformal maji — Y that minimizes quasicon-
formal dilatation among all maps homotopic f@

Teichmuller answered this question by finding a concretpliet mapping,
now called the Teichmiller map. Away from a finite number ofrpis a
Teichmuller mapping locally looks like the linear méap, y) — (K=, %y)
for someK. In 1939 Teichmiiller provedthat his maps solve the above

Actually, Ahlfors is usually credited with the first compéetunderstandable proof of this
fact.
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extremal problem. What is more, he proved that his maps @igeuhique
solution.

Theorems 11.8 and 11.9 (Teichiiller’s existence and uniqueness theo-
rems) Letg > 2 and letX,Y € Teich(S,). Letf : X — Y be the associ-
ated homeomorphism of Riemann surfaces. Then there existshaililler
mappingh : X — Y that is homotopic tgf. The maph uniquely minimizes
the quasiconformal dilatation among all homeomorphismsdimpic tof.

The proof of Theorem 11.8 illustrates how the “global” poaitview in-
forms the “local.” Namely, in the course of proving the emiste state-
ment for a singley) € Teich(S,) we actually are led to proving the exis-
tence statement for all possible targéts= Teich(S,) at the same time.
Specifically this is accomplished by proving the surjetyivif a certain
map QD(X) — Teich(S,), whereQD(X) is the space of holomorphic
quadratic differentials on a Riemann surfake To prove this surjectivity
we use the global topology dfeich(S,), via an application of the invari-
ance of domain theorem. This proof is an example of the dedtainethod
of continuity.”

The solution to the extremal problem can be used to define aaroat
Teich(S,), called the Teichmiller metric. Lét : X — Y be the Te-
ichmiller map associated 6,Y € Teich(S,), and letK (k) be its dilata-
tion. We prove that

1
dTeich(Sg) (:X:, y) -5 log(K(h‘))

2
defines a complete metric dreich(S,). This is called thdeichniiller met-
ric. In order to describe the geodesics in this metric we exptanfunda-
mental connection between Teichmiuller's theorems, holpmic quadratic
differentials, and measured foliations. This descripi®a crucial ingredi-
ent in the proof of the Nielsen—Thurston classification teaothat we give
later in the book.

Chapter 12. Let g > 2. The moduli space\(S,) of genusg Riemann
surfaces is defined to be

M(S,) = Teich(S,)/ Mod(S).

The spaceM (S,) parameterizes many different kinds of structuresSgn
It can be viewed as any one of the following sets:
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1. Isometry classes of constant curvature metric$ pn
2. Conformal classes of Riemannian metricsfn

3. Biholomorphism classes of complex structuresSgn
4.

Isomorphism classes of smooth, complex algebraic stregtonsS,

The natural bijective correspondences between these reetieaved from
deep theorems, namely the uniformization theorem and tluaikamembed-
ding theorem. As such, the bijections between the sets adreveery diffi-

cult to access explicitly. The interplay between theseedifit incarnations
is one reason the study @#((.S,) is rich and often difficult.

The groupMod(S,) and the spacé(S,) are tied together closely because
of the following theorem, due to Fricke.

Theorem 12.2 Mod(.S,) acts properly discontinuously ofkich(S,).

In order to prove Theorem 12.2 we consider the “raw lengttcispm ”
rls(X) of a hyperbolic surfaceX ~ S,. The setrls(X) is defined to be
the set of lengths of all closed geodesicsXin The crucial property is that
rls(X) is a discrete subset @&-,. The “Wolpert lemma” then tells us that
nearby points irfeich(S,) have nearly-equal length spectra. From these
two facts the Theorem 12.2 follows easily.

SinceMod(S,) acts properly discontinuously dfieich(S,), the quotient
spaceM (S,) is an orbifold. By Theorem 6.91(.S,)) is finitely covered by

a manifold. Sinceleich(S,) is contractible (Theorem 10.6), we have the
following.

Theorem 12.3For g > 1, the spaceM (S,) is an aspherical orbifold, and
is finitely covered by an aspherical manifold.

It is not hard to see that1(S,) is not compact. Understanding this non-
compactness is a central issue. The most basic theorensiditbiction is
the Mumford compactness criterion, which we think of as aegelization

of the Mahler compactness criterion for latticesif. For a hyperbolic sur-
face X we denote by (X) the length of the shortest essential closed curve
in X.

Theorem 12.6(Mumford’s compactness criterionl.etg > 1. For each
e > 0 the space
Me(Sg) = {X € M(S,) : £(X) > €}
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is compact.

Since the setd.(S,) exhaustM(S,), Theorem 12.6 tells us that the only
way to leave every compact set.M (S, ) is to decrease the length of some
closed geodesic. Mumford’s compactness criterion lead® wudy the
topology of M (S,) at infinity. Combining a number of ingredients, includ-
ing connectedness 6f(S,) for g > 2, we prove the following.

Corollaries 12.11 and 12.12 etg > 2. ThenM(S,) has one end, and ev-
ery loop inM(S,) can be homotoped outside every compact sgtlifs,, ).

We end the chapter by explaining one more of the (many) reagmrthe
importance ofM(.S,) in mathematics:M(.S,) is very close to being a clas-
sifying space forS,—bundles. By “very close” we mean that an analogous
statement holds for any finite manifold cover 8 (S,). In particular we
prove that the rational cohomology of the sp&ek.S,) is isomorphic to the
rational cohomology of the groujlod(.S,).

Chapter 13. The main goal of Part Ill is to understand what individual
elements ofMod(S,) look like, in the same way that the Jordan canonical
form of a matrix gives us a geometric picture of what a lineansformation
looks like. The precise statement is the following.

Theorem 13.2 (Nielsen—Thurston classification)etg > 2. Eachf €
Mod(S,) has a representativé € Homeo™ (S,) of one of the following

types.
1. Periodic: ¢™ = Id for somem > 0.

2. Reducible:¢ leaves invariant a finite collection of pairwise disjoint
simple closed curves ii,.

3. Pseudo-Anosov: there are transverse measured fol@iid, p)
and (F*, u,,) on Sy, and a real numbeA > 1 so that

¢ - (j:uv,uu) = (fu>)\,uu) and ¢ - (Fsvlus) = (fs7)\_1,us)‘

Case (3) is exclusive from cases (1) and (2). The numiessociated to a
pseudo-Anosov homeomorphisgis called the stretch factor af. Away
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from a finite number of points a pseudo-Anosov homeomorpharally
looks like the linear magz,y) — (VAz, \%}\y), just like a Teichmuller

mapping.

Type 1 mapping classes are relatively easy to understandiype 2 we
can cut along the invariant collection of curves and re-apipé theorem to
each component of the cut surface. By doing this we obtainraaduical
form” for mapping classes: any mapping class can be redutedfinite
order and pseudo-Anosov pieces. Thus the more we know alseutp-
Anosov homeomorphisms, the more we know about arbitrarydwmor-
phisms. Chapter 14 is completely devoted to studying pteseof pseudo-
Anosov homeomorphisms.

We present Bers’ proof of Theorem 13.2. The proof uses maitiyeoideas
and results proved earlier in the book, such as the propeouliguity of
the action ofMod(S,) on Teich(S,), the Mumford compactness criterion,
and the structure of Teichmiller geodesics. The main idda prove that
if a mapping clasy is not of type 1 or type 2, then there is @rinvariant
Teichmilller geodesic, which one then interprets, usinghrailller's theo-
rems, to show thaf is pseudo-Anosov.

Chapter 14. In this chapter we begin the study of pseudo-Anosov homeo-
morphisms in earnest. Although in some sense the “typicapping class

is pseudo-Anosov, it is actually rather nontrivial to counst explicit exam-
ples. We begin by presenting five constructions of pseudosén homeo-
morphisms.

The simplest invariant of a pseudo-Anosov mapping clags istietch fac-
tor A, which is analogous to the largest eigenvalue of a linear. nmEpe
next theorem tells us that the set of pseudo-Anosov stretciors is quite
constrained.

Theorem 14.8Letg > 2. Let\ be the stretch factor associated to a pseudo-
Anosov element dflod(S,). Then\ is an algebraic integer with degree
bounded above by — 6.

Each pseudo-Anosov mapping class has an invariant afisiih(S), and
thus gives a geodesic loop.ivt(S). The length of this loop is the logarithm
of the corresponding stretch factor. Thus the set of logar#t of stretch fac-
tors of pseudo-Anosov elementsibd(.S) can be thought of as the length
spectrum ofM(.S). The following theorem of Arnoux—Yoccoz and lvanov
can thus be interpreted as implying that the length specobim!(S) is a
discrete subset dk.
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Theorem 14.9. Letg > 2. For anyC > 1 there are only finitely many con-
jugacy classes itviod(S,) of pseudo-Anosov mapping classes with stretch
factor at mosC.

Pseudo-Anosov homeomorphism have a number of remarkablkendgal
properties. Among them, we prove:

e Every pseudo-Anosov homeomorphism has a dense orbit.
e The periodic points of a pseudo-Anosov homeomorphism ansale

e A pseudo-Anosov homeomorphism has the minimum number of pe-
riodic points, for each period, in its homotopy class.

In analogy with the behavior of the lengths of vectors untlenation of a
linear transformation with a dominant eigenvalue, we alsew@ the follow-

ing.

Theorem 14.23Letg > 2. Let f € Mod(S,) be pseudo-Anosov with
stretch factor). If p is any Riemannian metric oy, and ifa is any isotopy
class of simple closed curves $, then

lim {/4,(f"(a)) = A.

n—oo

Chapter 15. The final chapter begins with a description of Thurston’s
original path of discovery to the Nielsen—Thurston clasaifon theorem.
As Thurston wrote in his famous paper [202]:

The nicest aspects of this theory | have been trying to sketch
are not formal, but intuitive. If you draw pictures of a pseud
Anosov diffeomorphism, you can understand geometricaligjly

it does something which has puzzled me for several years. ... it
is pleasant to see something of this abstract origin made ver
concrete.

We begin by illustrating Thurston’s approach via a beatiifid fundamen-
tal example. Thurston’s first idea is that one can undersfagdMod(.S,)

by iteratingf on an isotopy class of essential simple closed curvésgen-
eral the sequencg”(c) gets very complicated very quickly. This is where
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the next idea comes in: one can encode a very complicatedesitigsed
curve in a surface with a small amount of data, called a “thaiok.” A train

track inS, is an embedded graph with some extra data attached, for exam-
ple each edge is labelled by a nonnegative integer. Und&iceonditions

f preserves a train track (up to a certain equivalence) arsllimetarly on

its labels. Whery is pseudo-Anosov the corresponding matrix is a Perron—
Frobenius matrix, and all of the information attachedftgstretch factor,
stable foliation, etc.) can be easily determined by lindgelara.

Thus in this example the combinatorial device of train teacknverts the
nonlinear problem of understanding a homeomorphism of faseirto a
simple linear algebra problem. Thurston’s remarkablealiscy is that this
linearization process works for all pseudo-Anosov homegrmiems, and
in fact it can be used to prove the Nielsen—Thurston classidic.

We give a sketch of how all of this works in general, and how r§tan
proves the Nielsen—Thurston classification in this way. itlea is that the
spacePMF(S,) of all projective classes of measured foliations$ncan
be used to give a compactification Bfich(.S,) that is homeomorphic to a
closed ball. Each element diod(S,) induces a homeomorphism on this
ball, and so the Brouwer fixed point theorem can be appliedalysing
the various possibilities for fixed points leads to the vasi@ases of the
classification theorem. As Thurston says [202]:

And there is a great deal of natural geometric structur@gn 7 Jj
relating to the structure ofi, beautiful to contemplate.
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Mapping class groups






Chapter One

Curves, surfaces, and hyperbolic geometry

A linear transformation of a vector space is determined hy ia best un-
derstood by, its action on vectors. In analogy with this, Wallssee that an
element of the mapping class group of a surfdds determined by, and is
best understood by, its action on homotopy classes of sioipéed curves
in S. We therefore begin our study of the mapping class group tgiing
a good understanding of simple closed curves on surfaces.

Simple closed curves can most easily be studied via theidego repre-
sentatives, and so we begin with the fact that every surfaeba endowed
with a constant curvature Riemannian metric, and we studydlation be-
tween curves, fundamental group, and geodesics. We thedude the
geometric intersection number, which we think of as an “mreduct” for

simple closed curves. A second fundamental tool is the ehahgoordi-

nates principle, which is analogous to understanding charidhasis in a
vector space. After explaining these tools, we concludg ¢hiapter with
a discussion of some foundational technical issues in theryhof surface
topology, such as “homeomorphism versus diffeomorphisand “homo-

topy versus isotopy.”

1.1 SURFACES AND HYPERBOLIC GEOMETRY

We begin by recalling some basic results about surfaces ypetolic ge-
ometry that we will use throughout the book. This is meanteaaatbrief
review; see [203] or [115] for a more thorough discussion.
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1.1.1 SURFACES

A surfaceis a 2—dimensional manifold. The following fundamentalutes
about surfaces, often attributed to Mdbius, was knownémtid-nineteenth
century in the case of surfaces that admit a triangulaticadRater proved,
however, that every compact surface admits a triangulatior proofs of
both theorems, see, e.g., [199].

THEOREM 1.1 (Classification of surfaces)Any closed, connected, orientajple
surface is homeomorphic to the connect sum of a 2—dimersiphare with

g > 0 tori. Any compact, connected, orientable surface is olgifitom a
closed surface by removirtg> 0 open disks with disjoint closures. The set
of homeomorphism types of compact surfaces is in bijectirespondence
with the set{(g,b) : g,b > 0}.

The g in Theorem 1.1 is thgenusof the surface; theé is the number of
boundary componentsOne way to obtain a honcompact surface from a
compact surfacé is to removen points from the interior ofS; in this case
we say that the resulting surface hapunctures

Unless otherwise specified, when we say “surface” in thiskbeae will
mean a compact, connected, oriented surface that is ppgsibttured (of
course, after we puncture a compact surface, it ceases torbpact). We
can therefore specify our surfaces by the trifyeb, n). We will denote by
S,.n asurface of genug with » punctures and empty boundary; such a sur-
face is homeomorphic to the interior of a compact surfacé wiboundary
components. Also, for a closed surface of gepuae will abbreviateS, o
asS,. We will denote byoS the (possibly disconnected) boundarySf

Recall that theEuler characteristicof a surfaceS is
xX(S)=2-2g—(b+n).

Itis a fact thaty (.5) is also equal to the alternating sum of the Betti numbers
of S. Sincex(S) is an invariant of the homeomorphism classSoft follows

that a surface is determined up to homeomorphism by any three of the four
numbersg, b, n, andx(.5).

Occasionally it will be convenient for us to think of punasrasmarked
points That is, instead of deleting the points, we can make thetineis
guished. Marked points and punctures carry the same tojgalagforma-
tion, so we can go back and forth between punctures and mariats as
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is convenient. On the other hand, all surfaces will be assiubmbe without
marked points, unless explicitly stated otherwise.

If x(S) < 0anddS = 0, then the universal cove§ is homeomorphic to
R? (see, e.g., [194§1.4]). We will see that, wher(S) < 0, we can take
advantage of a hyperbolic structure 8n

1.1.2 THE HYPERBOLIC PLANE

Let H? denote the hyperbolic plane. One model bt is the upper half-
plane modelnamely, the subset @ with positive imaginary party > 0),
endowed with the Riemannian metric

B dz? + dy?

y2o
wheredz? + dy? denotes the Euclidean metric @b In this model, the
geodesics are semicircles and half-lines perpendiculdretoeal axis.

ds®

It is a fact from Riemannian geometry that any complete, Bimapnnected
Riemannian manifold with constant sectional curvatdreis isometric to
H2.

For thePoinca disk modebf H?, we take the open unit disk i@ with the
Riemannian metric

dz? + dy?

(1—-r2)2°

In this model the geodesics are circles and lines perpeladito the unit
circle in C (intersected with the open unit disk).

ds®> =4

Any Maobius transformation from the upper half-plane to that disk is
an isometry between the upper half-plane modelH8rand the Poincaré
disk model ofH?2. The group of orientation-preserving isometriestf is
(in either model) the group of Mobius transformations takH? to itself.
This group, denotedkom™ (H?), is isomorphic taPSL(2, R). In the upper
half-plane model, this isomorphism is given by the follog/imap:

n a b ZHaz+b
= .
c d cz+d

The boundary of the hyperbolic plane. One of the central objects in the
study of hyperbolic geometry is tHundary at infinityof H?, denoted by
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OH?2. A point of 9H? is an equivalence class| of unit speed geodesic rays,
where two raysy;, y. : [0,00) — H? are equivalent if they stay a bounded
distance from each other; that is, there exiSts- 0 so that

dyz2(71(t),72(t)) < D forall ¢ > 0.

Actually, if v1 and~, are equivalent, then they can be given unit speed
parameterizations so that

Jim dg2(71(2),72(t)) = 0.

We denote the uniofil2 U H? by H2; The setH? is topologized via the
following basis. We take the usual open set§3f plus one open sédfp
for each open half-plan® in H?. A point of H? lies in Up if it lies in P,
and a point obH? lies in Up if every representative ray(t) eventually lies
in P, i.e., if there existd” > 0 so thaty(t) € Pforallt > T.

In this topologydH? is homeomorphic t(ﬁiand the uniorH? is homeo-
morphic to the closed unit disk. The spdde is a compactification ofl?,

calledthe compactification of?. In the Poincaré disk model @f2, the
boundarydH? corresponds to the unit circle ifi, andH? is identified with
the closed unit disk irt.

Any isometry f € Isom(H?) takes geodesic rays to geodesic rays, clearly
preserving equivalence classes. Algotakes half-planes to half-planes.
It follows that f extends uniquely to a map : H2 — H2. As any pair

of distinct points in0H? are the endpoints of a unique geodesidHif, it
follows thatf maps distinct points to distinct points. It is easy to chdwk t

in fact f is a homeomorphism.

Classification of isometries ofH2. We can use the above setup to clas-
sify nontrivial elements ofsom™ (H?). Suppose we are given an arbitrary
nontrivial elementf € Isom™ (H?). Sincef is a self-homeomorphism of a
closed disk, the Brouwer fixed point theorem gives tﬁdﬂis a fixed point

in H2. By considering the number of fixed points pfin H2, we obtain a
classification of isometries @2, as follows.

Elliptic. If f fixes a pointp € H? thenf is calledelliptic, and it is a rotation
aboutp. Elliptic isometries have no fixed points @fl2. They correspond
to elements oPSL(2,R) whose trace has absolute value less than 2.

Parabolic. If f has exactly one fixed point BiH?, thenf is calledparabolicl]
In the upper half-plane modelf,is conjugate insom™ (H?) to z + z =+ 1.
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Parabolic isometries correspond to those nonidentity efgsofPSL(2, R)
with trace+2.

Hyperbolic. If f has two fixed points i@H?, then f is calledhyperbolig

or loxodromic In this case there is aft-invariant geodesiaxis v; that is,

an f—invariant geodesic i[> on which f acts by translation. O8H?, the
fixed points act like a source and a sink, respectively. Hyplar isometries
correspond to elements BSL(2, R) whose trace has absolute value greater
than 2.

It follows from the above classification thatfifhas at least three fixed points
in H2 then f is the identity.

Also, since commuting elements Bbm ™ (H?) must preserve each other’s
fixed sets inH?, we see that two nontrivial elements Bbm ™ (H?) com-
mute if and only if they have the same fixed pointdiia

1.1.3 HYPERBOLIC SURFACES

The following theorem gives a link between the topology affates and
their geometry. It will be used throughout the book to cohvepological
problems to geometric ones, which have more structure aratesmften
easier to solve.

We say that a surfacg admits a hyperbolic metrid there exists a com-
plete, finite-area Riemannian metric 8hof constant curvature-1 where
the boundary ofS (if nonempty) is totally geodesic (this means that the
geodesics idS are geodesics if¥). Similarly, we say thats admits a Eu-
clidean metric or flat metricif there is a complete, finite-area Riemannian
metric onS with constant curvature 0 and totally geodesic boundary.

If S has empty boundary and has a hyperbolic metric, then itsetsav
cover S is a simply-connected Riemannian manifold of constant ature
—1. It follows that$ is isometric taH? and soS is isometric to the guotient
of H? by a free, properly discontinuous isometric actionm@fS). If S has
nonempty boundary and has a hyperbolic metric, theis isometric to a
totally geodesic subspace HP. Similarly, if S has a Euclidean metric,
thens is isometric to a totally geodesic subspace of the EucligiéameE?.

THEOREM 1.2 Let S be any surface (perhaps with punctures or bound-
ary). If x(S) < 0 thenS admits a hyperbolic metric. If(S) = 0 thenS
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admits a Euclidean metric.

A surface endowed with a fixed hyperbolic metric will be cdllehyper-
bolic surface A surface with a Euclidean metric will be calledcaiclidean
surfaceor flat surface

Note that Theorem 1.2 is consistent with the Gauss—Boneetd¢im which,
in the case of a compact surfadewith totally geodesic boundary, states
that the integral of the curvature ovéris equal t@27x(S).

One way to get a hyperbolic metric on a closed surféges to construct

a free, properly discontinuous isometric actionmgfS,) on H? (as above,
this requiresg > 2). By covering space theory and the classification of
surfaces, the quotient will be homeomorphicSip Since the action was by
isometries, this quotient comes equipped with a hyperlyobtric. Another
way to get a hyperbolic metric oy, for ¢ > 2, is to take a geodesity—
gon in H? with interior angle sun®z, and identify opposite sides (such a
4g—gon always exists; séd 0.4 below). The result is a surface of genus
with a hyperbolic metric and, according to Theorem 1.2, itversal cover

is HZ.

We remark that while the toru? admits a Euclidean metric, the once-
punctured torusS; ; admits a hyperbolic metric.

Loops in hyperbolic surfaces. Let .S be a hyperbolic surface. Aeigh-
borhood of a puncturés a closed subset & homeomorphic to a once-
punctured disk. Also, by iee homotopyf loops inS we simply mean an
unbased homotopy. If a nontrivial elementaf S) is represented by a loop
that can be freely homotoped into the neighborhood of a pwacthen it
follows that the loop can be made arbitrarily short; othesyiwe would find
an embedded annulus whose length is infinite (by complet@resd where
the length of each circular cross-section is bounded froloviyegiving in-
finite area. The deck transformation corresponding to sucklement of
71(S) is a parabolic isometry of the universal co¥f. This makes sense
because for any parabolic isometryI@f, there is no positive lower bound
to the distance between a pointhi¥ and its image. All other nontrivial ele-
ments ofr; (S) correspond to hyperbolic isometriesE#, and hence have
associated axes iH?.

We have the following fact, which will be used several tinte®tighout this
book:
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If S admits a hyperbolic metric then the centralizer of any non-
trivial element ofr, (.S) is cyclic. In particular,7; (.S) has triv-
ial center.

To prove this we identifyr; (S) with the deck transformation group of
for some covering mapl> — S. Whenever two nontrivial isometries of
H? commute, it follows from the classification of isometriedHf that they
have the same fixed points @H? as this central element. Sodf c m(S)

is centralized by, it follows that« and 8 have the same fixed points in
OH2. By the discreteness of the actionf(.S), we would then have that
the centralizer ofv in 1 (S) is infinite cyclic. If1(S) had nontrivial center,
it would then follow thatr; (S) ~ Z. But thenS would necessarily have
infinite volume, a contradiction.

1.2 SIMPLE CLOSED CURVES

Our study of simple closed curves in a surfétbegins with the study of all
closed curves it¥, and the usefulness of geometry in understanding them.

1.2.1 Q.OSED CURVES AND GEODESICS

By aclosed curven a surfaceS we will mean a continuous mag' — S.
We will usually identify a closed curve with its image #h A closed curve

is calledessentialf it is not homotopic to a point, a puncture, or a boundary
component.

Closed curves and fundamental groups. Given an oriented closed curve
a € S we can identifya with an element ofr; (S) by choosing a path from
the basepoint forr; (S) to some point orav. The resulting element of; (.5)

is only well-defined up to conjugacy. By a slight abuse of tiotawe will
denote this element of; (S) by « as well.

There is a bijective correspondence:

Nontrivial Nontrivial free
conjugacy classes; «—— < homotopy classes of oriente
in 1 (S) closed curves iy

An elementy of a groupG is primitive if there does not exist any € GG so
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thatg = h* where|k| > 1. The property of being primitive is a conjugacy
class invariant. In particular, it makes sense to say th&bsed curve in a
surface is primitive.

A closed curve inS is amultipleif it is a mapS' — S that factors through

the mapS? =% S for n > 1. In other words, a curve is a multiple if
it “runs around” another curve multiple times. If a closedwain S is a
multiple then no element of the corresponding conjugacgsclar (S) is
primitive.

Letp : S — S be any covering space. Bylift of a closed curvex to S
we will always mean the image of a liR — S of the mapa o 7, where
7 : R — S'is the usual covering map. For exampleSiis a surface with
x(S) <0, then alift of an essential simple closed curvéito the universal
cover is a copy oR. Note that a lift is different from a “path lift,” which is
typically a proper subset of a lift.

Now suppose that is the universal cover and is a simple closed curve in
S that is not a nontrivial multiple of another closed curve.this case the
lifts of o to S are in natural bijection with the cosets7(.S) of the infinite
cyclic subgroup{cr). (Any nontrivial multiple ofa has the same set of lifts
asa, but more cosets.) The group(S) acts on the set of lifts ok by deck
transformations, and this action agrees with the usuahtgion ofr (.S) on
the cosets ofa). The stabilizer of the lift corresponding to the coséty)

is the cyclic group(yay—1).

When S admits a hyperbolic metric and is a primitive element ofr (.5),
we have a bijective correspondence:

Elements of the conjugac Lifts to S of the
class ofa in 71 (S) closed curvex

More precisely, the lift of the curve given by the coset(«) corresponds
to the elementyay~—! of the conjugacy clask]. That this is a bijective
correspondence is a consequence of the fact that, for alhylpesurfaces,
the centralizer of any element of (.5) is cyclic.

If « is any multiple, then we still have a bijective correspormebetween
elements of the conjugacy class @fand the lifts ofa. However, ifa is
not primitive and not a multiple, then there are more liftexdhan there are
conjugates. Indeed, if = 3%, theng3(a) # (a) while fa3~! = a.

Note that the above correspondence does not hold for the T6tuThis is
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so because each closed curve has infinitely many lifts, veaith element
of m(T?) ~ 7Z? is its own conjugacy class. Of course(7?) is its own
center, and so the centralizer of each element is the wholgygr

Geodesic representatives. A priori the combinatorial topology of closed
curves on surfaces has nothing to do with geometry. It wasadir real-
ized in the nineteenth century, however, that the mereeaxist of constant
curvature Riemannian metrics on surfaces has strong iatpaits for the
topology of the surface and of simple closed curves in it. &ample, it
is easy to prove that any closed cumveon a flat torus is homotopic to a
geodesic: one simply lifta to R? and performs a straight-line homotopy.
Note that the corresponding geodesic is not unique.

For compact hyperbolic surfaces we have a similar pictund,ia fact the
free homotopy class of any closed curve contains a uniqudegém The
existence is indeed true for any compact Riemannian mahifélere we
give a more hands-on proof of existence and uniqueness yamgrerbolic
surface.

Proposition 1.3 Let S be a hyperbolic surface. i is a closed curve it
that is not homotopic into a neighborhood of a puncture, theis homo-
topic to a unigue geodesic closed curve

Proof. Choose a liftx of o to H?. As aboveg is stabilized by some element
of the conjugacy class af; (S) corresponding te; let ¢ be the correspond-
ing isometry ofH2. By the assumption on, we have thab is a hyperbolic
isometry, and so has an axis of translatiénsee Figure 1.1.

Consider the projection ofl to .S, and lety, be a geodesic closed curve
that travels around this projection once. Any equivariasbtopy froma

to A projects to a homotopy betweenand a multiple ofyy, which is the
desiredy. One way to get such a homotopy is to simply take the homotopy
that moves each point af along a geodesic segment to its closest-point
projection inA. This completes the proof of existence-f Note that we

do not need to worry that the resulting parameterizationy ¢é geodesic
since any two parameterizations of the same closed cunjecan@topic as
parameterized maps.

To prove uniqueness, suppose we are given a homatopy I — S from
« to a multipley” of some simple closed geodesif. By compactness of
S x I there exists a constadt > 0 such that no point ofr is moved a
distance greater tha@i by the homotopy. In the universal covEF, the
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Figure 1.1 A lifta of a closed curver and the axisA for the corresponding isometry.

homotopy lifts to a homotopy from the lif of « to a geodesic lifty;, of ~;,
and points ofv are moved a distance at ma@st It follows that the endpoints
of & in 9H? are the same as those¥f. Since a geodesic H? is uniquely
determined by its endpoints ifiH?, this proves that the geodesic closed
curve~y is the same as, up to sign. The closed curv¢ is then speci-
fied by which multiple ofyy it is. But different multiples ofy, correspond
to conjugacy classes ilvom™ (H?) that have different translation lengths
and/or translation directions. Conjugacy classes witfedifg translation
lengths are distinct, and so distinct multiples~gfdo not lie in the same
free homotopy class. |

It follows from Proposition 1.3 that for a compact hyperbadiurface we
have a bijective correspondence:

Conjugacy classe Oriented geodesic
inm1(S) closed curves iy

1.2.2 SMPLE CLOSED CURVES

A closed curve inS is simpleif it is embedded, that is, if the mag' — S'is
injective. Among the reasons for the particular importaotsimple closed
curves is that we can easily classify them up to homeomanplisS (see
§1.3), we can cut along them (sé#.3), and we can twist along them (see
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§3.1). As mentioned above, we will study homeomorphisms dhses via
their actions on simple closed curves.

Any closed curven can be approximated by a smooth closed curve, and a
close-enough approximatia of o is homotopic ton. What is more, ifo

is simple, theny’ be chosen to be simple. Smooth curves are advantageous
for many reasons. For instance, smoothness allows us tcogri@ notion

of transversality (general position). When convenient,wilkassume that

our curves are smooth, sometimes without mention.

Simple closed curves are also natural to study because ¢pegsent prim-
itive elements ofr (.5).

Proposition 1.4 If « is a non-nullhomotopic simple closed curve in a sur-
face S, then each element of the corresponding conjugacy class(ifi) is
primitive.

Proof. We give the proof for the case whehis hyperbolic. Fix a covering
mapH? — S and let¢ € Isom™ (H?) be the hyperbolic isometry corre-
sponding to some element of the conjugacy clasa.ofhe primitivity of
the elements of the conjugacy classxdk equivalent to the primitivity ot

in the deck transformation group.

Assume that = ", wherey is another element of the deck transformation
group andr € Z. In any group, powers of the same element commute, and
s0¢ commutes withp. Thus,¢ andy have the same set of fixed points in
OH?.

Let & be the lift of the closed curve that has the same endpointsdfl
as the axis forp. We claim that)(a) = a. We know that)(«) is some lift
of a.. Sincew is simple, all of its lifts are disjoint and no two lifts of have
the same endpoints #H?2. Thus,(a) anda are disjoint and have distinct
endpoints. Now, we know that"~!(¢y(a)) = ¢(a) = a. Since the fixed
points in 9H? of ¢y"~! are the same as the endpointsagfthe only way
Y™~ 1(yp(a)) can have the same endpoints at infinitycas if (&) does.
This is to say that)(a) = &, and the claim is proven.

Thus, the restriction of to « is a translation. Ag) = ¢"™, the closed curve
a travelsn times around the closed curve $hgiven bya/(y). Sincea is
simple, we haves = +1, which is what we wanted to show. O

Simple closed curves in the torus.We can classify the set of homotopy
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classes of simple closed curves in the tofifsas follows. LetR? — T2 be

the usual covering map, where the deck transformation gi®generated

by the translations by1,0) and(0, 1). We know thatr; (7?) ~ Z2, and, if

we baser; (T?) at the image of the origin, one way to get a representative
for (p,q) as a loop inT™? is to take the straight line fror(0, 0) to (p, ¢) in

R? and project it tal".

Let v be any oriented simple closed curveZii. Up to homotopy, we can
assume that passes through the image ¢ of (0,0) in R2. Any path
lifting of v to R? based at the origin terminates at some integral p@in).
There is then a homotopy fromto the standard straight-line representative
of (p,q) € m(T?); indeed, the straight-line homotopy from the lift pfto
the straight line througti0,0) and(p, ¢) is equivariant with respect to the
group of deck transformations and thus descends to theeddsamotopy.

Now, if a closed curve ifT? is simple then its straight-line representative is
simple. Thus, we have the following fact.

Proposition 1.5 The nontrivial homotopy classes of oriented simple closed
curves inT? are in bijective correspondence with the set of primitive- el
ments ofry (77?) ~ Z2.

An element(p, ¢) of Z2 is primitive if and only if (p, q) = (0,%1), (p,q) =
(£1,0), orged(p,q) = 1.

We can classify homotopy classes of essential simple clogegs in other
surfaces. For example, if?, So,1, So,2, and Sy 3 there are no essential
simple closed curves. The homotopy classes of simple close@s inS; ;
are in bijective correspondence with thoseTif. In Section 2.2 below we
will show that there is a natural bijection between the hapgtclasses of
essential simple closed curvesdn, and the homotopy classesr.

Closed geodesics. For hyperbolic surfaces, geodesics are the natural rep-
resentatives of each free homotopy class, in the followergss.

Proposition 1.6 Let S be a hyperbolic surface. Let be a closed curve in

S, not homotopic into a neighborhood of a puncture. die the unique

geodesic in the free homotopy classwiyuaranteed by Proposition 1.3. If
a is simple theny is simple.
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Proof. We begin by applying the following fact.

A closed curved in a hyperbolic surface' is simple if and only
if the following properties hold:

1. Each lift of 3 to H? is simple.
2. No two lifts of3 intersect.
3. [ is not a nontrivial multiple of another closed curve.

Thus if « is simple, then no two of its lifts t@él? intersect. It follows that
for any two such lifts, their endpoints are not linkeddHI?. But each lift
of ~ shares both endpoints with some lift®f Thus no two lifts ofy have
endpoints that are linked ilH?2. Since these lifts are geodesics, it follows
that they do not intersect. Further, by Proposition 1.4,eeynent ofr (.S)
corresponding te is primitive. The same is then true ferand soy cannot
be a multiple. Since geodesicsHit are always simple, we conclude that
is simple. O

1.2.3 INTERSECTION NUMBERS

There are two natural ways to count the number of interseqtmnts be-
tween two simple closed curves in a surface: signed and nedigThese
correspond to the algebraic intersection number and geamirgtersection
number, respectively.

Let « and 3 be a pair of transverse, oriented, simple closed curvesS.in
Recall that thealgebraic intersection numbet, 3) is defined as the sum

of the indices of the intersection points @fand 3, where an intersection
point is of index+1 when the orientation of the intersection agrees with
the orientation of5, and is—1 otherwise. Recall thata, 3) depends only

on the homology classes afand 3. In particular it makes sense to write
%(a, b) for a andb the free homotopy classes (or homology classes) of closed
curvesa andg.

The most naive way to count intersections between homottasses of
closed curves is to simply count the minimal number of unsigimtersec-
tions. This idea is encoded in the concept of geometricsetdion number.
Thegeometric intersection numbbeetween free homotopy classesndb
of simple closed curves in a surfadeis defined to be the minimal number
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of intersection points between a representative curve eéncthssae and a
representative curve in the class

i(a,b) =min{laNp|: a € a, § € b}.

We sometimes employ a slight abuse of notation by writifag ) for the
intersection number between the homotopy classes of siohpded curves
o andg.

We note that geometric intersection number is symmetridlendigebraic
intersection number is skew-symmetriifa, b) = i(b, a) while i(a,b) =
—%(b, a). While algebraic intersection number is well-defined on btogy
classes, geometric intersection number is only well-ddfime free homo-
topy classes. Geometric intersection number is a usefariamnt but, as
we will see, it is more difficult to compute than the algebriaitersection
number.

Observe that(a,a) = 0 for any homotopy class of simple closed curves
If o separates' into two components, then for amywe havei(a, 3) = 0
andi(a, 3) is even. In generaland: have the same parity.

Intersection numbers on the torus. As noted above, the nontrivial free
homotopy classes of oriented simple closed curvéiare in bijective cor-
respondence with primitive elements®t. For two such homotopy classes
(p,q) and(p’,¢'), we have

i(p.q), (0, d)) =pd —pq

and

i((p,q), (', q)) = Ipd = Pql.

To verify these formulas, one should first check the case avherg) =
(1,0) (exercise). For the general case, we note thdpif;) represents
an essential oriented simple closed curve, i.e., if it isngive, then there
is a matrix A € SL(2,Z) with A((p,q)) = (1,0). SinceA is a linear,
orientation-preserving homeomorphism®t preservingZ?, it induces an
orientation-preserving homeomorphism of the toiit’s = R?/Z? whose
action onm (T?) ~ Z? is given byA. Since orientation-preserving homeo-
morphisms preserve both algebraic and geometric inteosestimbers, the
general case of each formula follows.

Minimal position. In practice, one computes the geometric intersection
number between two homotopy clasaesndb by finding representatives
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andg that realize the minimal intersection in their homotopysskes, so that
i(a,b) = |anN B|. When this is the case we say tlhaandj are inminimal
position

Two basic questions now arise.

1. Given two simple closed curvesand 3, how can we tell if they are
in minimal position?

2. Given two simple closed curvesand3, how do we find homotopic
simple closed curves that are in minimal position?

While the first question ia priori a minimization problem over an infinite
dimensional space, we will see that the question can be eeldiaca finite
check—the bigon criterion given below. For the second domlstve will
see that geodesic representatives of simple closed curwedveays in min-
imal position.

1.2.4 THE BIGON CRITERION

We say that two transverse simple closed curvesid in a surfaceS form
abigonif there is an embedded disk # (the “bigon”) whose boundary is
the union of an arc oft and an arc of} intersecting in exactly two points;

see Figure 1.2.

Figure 1.2 A bigon.

The following proposition gives a simple, combinatoriahddion for de-
ciding whether or not two simple closed curves are in minipw@gition. It
therefore gives a method for determining the geometriaseigtion number
of two simple closed curves.

Proposition 1.7 (The bigon criterion) Two transverse simple closed curffes
in a surfaceS are in minimal position if and only if they do not form a bigon.

One immediate and useful consequence of the bigon critesithre follow-
ing:
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Any two transverse simple closed curves that intersecttigxance are in
minimal position.

Before proving the Proposition 1.7 we need a lemma.

Lemma 1.8 If transverse simple closed curvesand 3 in a surfaceS do
not form any bigons, then, in the universal coverSofany pair of liftsa
and g of a and 8 intersect in at most one point.

Proof. Assumey(S) < 0, so the universal gvove§ is homeomorphic t&R?
(the case of¢(S) > 0is an exercise). Let: S — S be the covering map.

Suppose the liftgy andB of o and 3 intersect in at least two points. It
follows that there is an embedded diBk in S bounded by one subarc af
and one subarc af.

By compactness and transversality, the intersedion (o) Up~1(3)) N Dy

is a finite graph, if we think of the intersection points astees. Thus
there is annnermost diskthat is, an embedded digR in S bounded by
one arc ofp~!(a) and one arc op—*(3), and with no arcs op—'(«) or
p~1(B) passing through the interior of the (see Figure 1.3). Denote the

two “vertices” of D by v, andw,, and the two “edges” ab by a4 and 51.

Figure 1.3 An innermost disk between two lifts.

We first claim that the restriction gf to 0D is an embedding. The points
v1 andwvs certainly map to distinct points if sincex andB intersect with
opposite orientations at these points. If a poinégfand a point of3; have
the same image i¥, then both points would be an intersectionpof! («)
with p~1(3), violating the assumption thd? is innermost. If two points of
a1 (or two points ofﬁl) map to the same point i, then there is a lift of
p(v1) between these two points, also contradicting the assumtitat D is
innermost.
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We can now argue thdD projects to an embedded disk $h Indeed, ifz
andy in D project to the same point if, thenz = ¢(y) for some deck
transformationp. SincedD embeds under the covering magoD) N 0D
is either empty or all 00D (in the case thap is the identity). By the Jordan
curve theorem, we then see that eiti¢D) or ¢~ (D) must be contained
in D. Now, by the Brouwer fixed point theorem,has a fixed point, which
is a contradiction, unless is the identity. O

We give two proofs of the bigon criterion. One proof uses hipic ge-
ometry and one proof uses only topology. We give both profseseach
of the techniques will be important later in this book.

First proof of Proposition 1.7 First suppose that two curvesand g form

a bigon. It should be intuitive that there is a homotopynothat reduces
its intersection with3 by two, but we provide here a formal proof. We can
choose a small closed neighborhood of this bigon that is leomoephic to

a disk, and so the intersection @fU 3 with this disk looks like Figure 1.2.
More precisely, the intersection ofJ 3 with this closed disk consists of one
subarca’ of « and one subar@’ of 3, intersecting in precisely two points.
Since the disk is simply connected, and since the endpoint$ e on the
same side of’, we may modifya by a homotopy in the closed disk so that,
inside this disk and g are disjoint. This implies that the original curves
were not in minimal position.

For the other direction, we treat only the cagey) < 0. The case(S) =0

is similar, and the caseg(.S) > 0 is easy. Assume that simple closed curves
o and 3 form no bigons. Le and3 be nondisjoint lifts ofa and 3. By
Lemma 1.8 intersect35 in exactly one point:.

It cannot be that the axes of the hyperbolic isometries spoeding tox
andﬁ share exactly one endpoint &H?, because this would violate dis-
creteness of the action af (S) on H?2; indeed, in this case the commutator
of these isometries is parabolic and the conjugates of trejolic isometry
by either of the original hyperbolic isometries have adiity small transla-
tion length. Further, these axes cannot share two endpaird8l?, for then
the corresponding hyperbolic isometries would have theesaxis, and so
they would have to have a common powefotherwise the action aofy (.S)

on this axis would be nondiscrete). But th¢/h(x) would be an intersection
point betweernx and B for eachn.

We conclude that any lift ofv intersects any lift of3 at most once, and any
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such lifts have distinct endpoints ¢H?. But we can now see that there
is no homotopy that reduces intersection. Indeed, ig a particular lift of
a, then each “fundamental domain” afintersects the set of lifts of in

|aen 3| points. Now, any homotopy gf changes this;—equivariant picture
in an equivariant way, so since the lifts @fand 5 are already intersecting
minimally in H?, there is no homotopy that reduces intersection. O

Second proof of Proposition 1.%e give a different proof that two curves
not in minimal position must form a bigon. Letandg be two simple closed
curves inS that are not in minimal position, and 1&f : S x [0,1] — S be a
homotopy ofa that reduces intersection with(that this is possible follows
from Proposition 1.11 below). We may assume without losseafegality
that« and 5 are transverse and that is transverse t@ (in particular, all
maps are assumed to be smooth). Thus, the preiiagé3) in the annulus
St x [0,1] is a 1~submanifold.

There are various possibilities for a connected componér o' (3): it
could be a closed curve, an arc connecting distinct boundamyponents,
or an arc connecting one boundary component to itself. Sthoeduces the
intersection oty with 3, there must be at least one compongnbnnecting
St x {0} to itself. Together with an ar§ in S x {0}, the arcs bounds a
disk A in S x [0, 1]. Now, H(5U¢') is a closed curve it that lies inaU 3.
This closed curve is nullhomotopic—indeéfiA) is the nullhomotopy. It
follows that H (5 U ¢') lifts to a closed curve in the universal covrwhat
is more, this lift has one arc in a lift af and one arc in a lift of3. Thus,
these lifts intersect twice, and so Lemma 1.8 implies thaind 5 form a
bigon. |

Geodesics are in minimal position. Note that if two geodesic segments
on a hyperbolic surfacé together bounded a bigon then, since the bigon is
simply connected, one could lift this bigon to the universaler H? of S.

But this would contradict the fact that the geodesic betwasgntwo points

of H? is unique. Hence by Proposition 1.7 we have the following.

Corollary 1.9 Distinct simple closed geodesics in a hyperbolic surfaee ar
in minimal position.

The bigon criterion gives an algorithmic answer to the goesof how to
find representatives in minimal position: given any pairrafsverse simple
closed curves, we can remove bigons one by one, until nonainerand
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the resulting curves are in minimal position. Corollary ,lt®ether with
Proposition 1.3, gives a qualitative answer to the question

Multicurves. A multicurvein S is the union of a finite collection of dis-
joint simple closed curves ifi. The notion of intersection number extends
directly to multicurves. A slight variation of the proof dig¢ bigon criterion
(Proposition 1.7) gives a version of the bigon criterionfaulticurves: two
multicurves are in minimal position if and only if no two commeent curves
form a bigon.

Proposition 1.3 and Corollary 1.9 together have the cormsepithat, given
any number of distinct homotopy classes of essential sicipged curves in
S, we can choose a single representative from each classi{e.geodesic)
so that each pair of curves is in minimal position.

1.2.5 HOMOTOPY VERSUS ISOTOPY FOR SIMPLE CLOSED CURVES

Two simple closed curves andg areisotopicif there is a homotopy
H:S'x[0,1 — S

from o to 3, with the property that the closed curi&(S! x {t}) is simple
for eacht € [0, 1].

In our study of mapping class groups, it will often be coneanito think
about isotopy classes of simple closed curves instead obtapy classes.
One way to explain this is as follows. H : S' x I — S is an isotopy of
simple closed curves, then the péff, H(S! x {t})) “looks the same” for
all ¢ (cf. Section 1.3).

When we appeal to algebraic topology for the existence of radiopy,
the result is in general not an isotopy. We therefore want ¢hatkefor
converting homotopies to isotopies whenever possible.

We already knowi(a, b) is realized by geodesic representatives: @ndb.
Thus, in order to apply the above results on geometric iat#isn numbers
to isotopy classes of curves, it suffices to prove the follmpfact, originally
due to Baer.

Proposition 1.10 Let « and § be two essential simple closed curves in a
surfaceS. Thena is isotopic tog if and only ifa is homotopic ta5.
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Proof. One direction is vacuous, since an isotopy is a homotopyufpase
that o is homotopic tog. We immediately have that«,3) = 0. By
performing an isotopy of, we may assume that is transverse t@. If
« and g are not disjoint then by the bigon criterion they form a bigan
bigon prescribes an isotopy that reduces intersections,fa@ may remove
bigons one by one by isotopy untiland are disjoint.

In the remainder of the proof, we assurgéS) < 0; the casex(S) = 0

is similar, and the casg(S) > 0 is easy. Choose lift& and 3 of o and

3 that have the same endpoints dfil2. There is a hyperbolic isometry
¢ that leavesy and 8 invariant, and acts by translation on these lifts. As
a andB are disjoint, we may consider the regidhbetween them. The
quotientR’ = R/(¢) is an annulus; indeed it is a surface with two boundary
components with infinite cyclic fundamental grouppriori, the imageR”

of R in S is a further quotient ofR’. However, since the covering map
R’ — R" is single sheeted on the boundary, it follows tiRt~ R"’. The
annulusR” between and 3 gives the desired isotopy. O

1.2.6 EXTENSION OF ISOTOPIES

An isotopyof a surfaceS is a homotopyH : S x I — S so that, for each
t € [0,1], the mapH (S,t) : S x {t} — S is a homeomorphism. Given
an isotopy between two simple closed curve$jnit will often be useful to
promote this to an isotopy &f, which we call arambient isotopyf S.

Proposition 1.11 Let S be any surface. I : S' x I — S is a smooth
isotopy of simple closed curves, then there is an isofépyS x I — S so
that H[sxo is the identity andH | (g1 .0y <1 = F-

Proposition 1.11 is a standard fact from differential tagyl. Suppose that
the two curves are disjoint. To construct the isotopy, oaetstoy finding
a smooth vector field that is supported on a neighborhood efctbsed
annulus between the two curves, and that carries one cutke tather. One
then obtains the isotopy of the surfagdry extending this vector field t8
and then integrating it. For details of this argument seag, 20, Chapter 8,
Theorem 1.3].
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1.2.7 ARCs

In studying surfaces via their simple closed curves, we @fitn be forced
to think about arcs. For instance, many of our inductive argnts involve
cutting a surface along some simple closed curve in ordebtaim a “sim-
pler” surface. Simple closed curves in the original surfaitber become
simple closed curves or collections of arcs in the cut setfaduch of the
discussion about curves carries over to arcs, so here weatakement to
highlight the necessary modifications.

We first pin down the definition of an arc. This is one place whaarked
points are more convenient than punctures. So asstiies& compact sur-
face, possibly with boundary, and possibly with finitely mamarked points
in the interior. Denote the set of marked pointsy

A proper arcin S is a mapo : [0,1] — S such than =1 (PUdS) = {0,1}.
As with curves, we usually identify an arc with its image; iarficular this
makes an arc an unoriented object. Theaiis simple if it is an embed-
ding on its interior. The homotopy class of a proper arc i®tato be the
homotopy class within the class of proper arcs. Thus point8$ cannot
move off the boundary during the homotopy; all arcs would bmbtopic
to a point otherwise. But there is still a choice to be madeoradtopy (or
isotopy) of an arc is said to belative to the boundarif its endpoints stay
fixed throughout the homotopy. An arc in a surfagas essentialif it is
neither homotopic into a boundary componentSofior a marked point of
S.

Figure 1.4 The shaded region is a “half-bigon.”

The bigon criterion (Proposition 1.7) holds for arcs, exogfih one extra
subtlety, illustrated in Figure 1.4. If we are considerisgtopies relative to
the boundary, then the arcs in the picture are in minimaltjposibut if we
are considering general isotopies, then the “half-bigdroves that they are
not in minimal position.
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Corollary 1.9 (geodesics are in minimal position) and Pseijan 1.3 (exis-
tence and uniqueness of geodesic representatives) wogkdsiin surfaces
with punctures and/or boundary. Here, we switch back fromkethpoints

to punctures to take advantage of hyperbolic geometry. d%itpn 1.10

(homotopy vs. isotopy for curves) and Theorem 1.13 (extensif iso-

topies) also work for arcs.

1.3 THE CHANGE OF COORDINATES PRINCIPLE

We now describe a basic technique that is used quite frelyuarihe theory
of mapping class groups, often without mention. We call thishnique
the change of coordinates principlédOne example of this principle is that,
in order to prove a topological statement about an arbitremyseparating
simple closed curve, we can prove it for any specific simptsetl curve.
We will see below that this idea applies to any configuratibsiraple closed
curves that is given by toplogical data.

1.3.1 Q_ASSIFICATION OF SIMPLE CLOSED CURVES

As a prelude to our explanation of the change of coordinatiegiple, we
present a “classification of simple closed curves in a saerfac

We first need to introduce an essential concept. Given a sioipsed curve

« in a surfaceS, the surface obtained bgutting S along « is a compact

surfaceS,, equipped with a homeomorphishrbetween two of its boundary
components so that:

1. The quotientS, /(z ~ h(x)) is homeomorphic t&, and

2. the image of these distinguished boundary componentsr uihnis
quotient map is.

It also makes sense to cut a surface with boundary or markietsdong a

simple proper arc; the definition is analogous. Similarlye @an cut along a
finite collection of curves and arcs. There are severalrdis8ituations for

cutting along a single arc, depending on whether the entipofrthe arc lie

on a boundary component or a puncture; for instance, andutr®ucface is

allowed to have marked points on its boundary.
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We remark that the cutting procedure is one place where ibiwenient

to assume that all curves under consideration are smootleeth ify is a
smooth simple closed curve in a surfagethen the pair(S,~) is locally
diffeomorphic to(R?,R), and one can immediately conclude that the sur-
face obtained front' by cutting alongy is again a surface, now with two
additional boundary components. Hence the classificatisudaces can
be applied to the cut surface.

We say that a simple closed curwdn the surfaceS is nonseparatingf the
cut surfacesS,, is connected. We claim the following.

If o and 8 are any two nonseparating simple closed curves in a surfce
then there is a homeomorphispn S — S with ¢(a) = .

In other words, up to homeomorphism, there is only one naarsgipg sim-
ple closed curve in5. This statement follows from the classification of
surfaces, as follows. The cut surfac€s and Sz each have two bound-
ary components corresponding doand 3, respectively. Sinces, andSj
have the same Euler characteristic, number of boundary coemis, and
number of punctures, it follows th&f, is homeomorphic t53. We can
choose a homeomorphisf), — S that respects the equivalence relations
on the distinguished boundary components. Such a homedisorgives
the desired homeomorphism 8ftaking o to 8. If we want an orientation-
preserving homeomorphism, we can ensure this by postcampby an
orientation-reversing homeomorphism fixiggf necessary.

A simple closed curves is separatingin S if the cut surfaceSs is not
connected. Note that whehis closed,3 is separating if and only if it is the
boundary of some subsurface 8f This is equivalent to the vanishing of
the homology class of in H,(S,Z). By the “classification of disconnected
surfaces,” we see that there are finitely many separatinplsiaiosed curves
in .S up to homeomorphism.

The above arguments give the following general classibicabf simple
closed curves on a surface:

There is an orientation-preserving homeomorphism of aasertaking one
simple closed curve to another if and only if the correspogdiut surfaces
(which may be disconnected) are homeomorphic.

The existence of such a homeomorphism is clearly an equivaleslation.
The equivalence class of a simple closed curve or a colleaifosimple
closed curves is called itepological type For example, a separating sim-
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ple closed curve in the closed surfagg divides .S, into two disjoint sub-
surfaces of, say, genésandg — k. The minimum of{k, g — k} is called the
genusof the separating simple closed curve. By the above, thegyeha
curve determines and is determined by its topological tyy&te that there
are | 4] topological types of essential separating simple closedesuin a
closed surface.

The uninitiated may have trouble visualizing separatingpte closed curvis
that are not the “obvious” ones. We present a few in Figuredn8l we en-
courage the reader to draw even more complicated sepasatimgie closed
curves.

Figure 1.5 Some nonobvious separating simple closed curves

1.3.2 THE CHANGE OF COORDINATES PRINCIPLE

The change of coordinates principle is a kind of “change sfdidor curves

in a surfaceS. It roughly states that any two collections of simple closed
curves inS with the same intersection pattern can be taken to each other
via an orientation-preserving homeomorphismf In this way an arbi-
trary configuration can be transformed into a “standard goméition.” The
classification of simple closed curves in surfaces giverwvalmthe simplest
example.

We illustrate the principle with two sample questions. Swggxy is any
nonseparating simple closed cuwen a surfaces.

1. Is there a simple closed curgen S so thata and- fill S; that is,a
and~ are in minimal position and the complementcaf -y is a union
of topological disks?

2. Is there a simple closed curgean S with i(«,d) = 0? i(«, 6) = 1?
i(a,d) = k?
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Figure 1.6 A simple closed curve on a genus 2 surface.

Even for the genug surfaces,, it is not immediately obvious how to an-
swer either question for the nonseparating simple closegeau shown in
Figure 1.6. However, we claim that the picture in Figure liveg a proof
that the answer to the first question is “yes” in this case, anaw show.
The curves? and~ in Figure 1.7 fill the surface (check this!). By the clas-
sification of simple closed curves in a surface, there is adwnorphism

¢ Sy — Sy with ¢(8) = «. Since filling is a topological property, it
follows that ¢(~y) is the curve we are looking for, since it together with
a = ¢(p) fills Ss.

o

Figure 1.7 Two simple closed curves that fill a genus 2 surface

We think of ¢ as “changing coordinates” so that the complicated curve
becomes the easy-to-see cue The second question can be answered
similarly.

1.3.3 EXAMPLES OF THE CHANGE OF COORDINATES PRINCIPLE

The change of coordinates principle applies to more gersérations. We
give several examples here. Most of the proofs are minoatiaris of the
above arguments, and so are left to the reader.

1. Pairs of simple closed curves that intersect orféppose that; and3;
form such a pair in a surfacg. LetS,, be the surface obtained by cutting
S alonga;. There are two boundary componentssyf,, corresponding to
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the two sides ofy;. The image of3; in S,, is a simple arc connecting these
boundary components to each other. We canSgyitalong this arc to obtain

a surface(S,,)s,. The latter is a surface with one boundary component
that is naturally subdivided into four arcs—two coming frem and two
coming from;. The equivalence relation coming from the definition of a
cut surface identifies these arcs in order to recover theasa§ with its
curvesa; andg;.

If ap and 3, are another such pair, there is an analogous cut suffaces, .
By the classification of surfaceg$.,, ), is homeomorphic t4S,, )s,, and
moreover there is a homeomorphism that preserves equegleasses on
the boundary. Any such homeomorphism descends to a hompbisar of
S taking the paifaq, 41} to the pair{az, f2}.

2. Bounding pairs of a given genué. bounding pairis a pair of disjoint,
homologous, nonseparating simple closed curves in a clesddce. Fig-
ure 1.8 shows one example, but we again encourage the resfited thore
complicated examples. The genus of a bounding pair in adlssdace is
defined similarly to the genus of a separating simple closedec

Figure 1.8 A genus one bounding pair.

3. Pairs (ork—tuples) of disjoint simple closed curves whose union does n
separate.

4. Pairs of simple closed curvesy, 3} with i(a, ) = [a N B = 2 and
i(a, #) = 0, and whose union does not separate.

5. Nonseparating simple proper arcs in a surfagghat meet the same
number of components 85.

6. Chains of simple closed curve#. chain of simple closed curves in a
surfaceS is a sequencey, . . . , oy With the properties that(a;, o 1) = 1
for eachi andi(«;, ;) = 0 wheneveri — j| > 1. A chain isnonseparating
if the union of the curves does not separate the surface. waynbnsepa-
rating chains of simple closed curves, with the same numbeurves, are
topologically equivalent.
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This can be proved by induction. The starting point is theeagsnonsep-
arating simple closed curves, and the inductive step is i@t cutting
along the first few arcs, the next arc becomes a nonsepaiatinon the cut
surface. Note that Example 1 is the cése 2. One can also prove by in-
duction that every chain i, of even length is nonseparating, and so such
chains must be topologically equivalent.

We remark that the homeomorphism representing the changmoodinates
in each of the six examples above can be taken to be oriemiateserving.

1.4 THREE FACTS ABOUT HOMEOMORPHISMS

In this subsection we collect three useful facts from s@fipology. Each
allows us to replace one kind of map with a better one: a hopyoddhome-
omorphisms can be improved to an isotopy; a homeomorphisarsafface
can be promoted to a diffeomorphism; aHdmeoq(S) is contractible, so
in particular any isotopy from the identity homeomorphismitself is ho-
motopic to the constant isotopy.

1.4.1 HOMOTOPY VERSUS ISOTOPY FOR HOMEOMORPHISMS

When are two homotopic homeomorphisms isotopic? Let us &idkvo
of the simplest examples: the closed diskand the closed annulus. On
D, any orientation-reversing homeomorphigiinduces a degree 1 map
on S' = 9D, and from this follows thaif is not isotopic to the identity.
However, the straight-line homotopy gives a homotopy betwgand the
identity. OnA = S! x I, the orientation-reversing map that fixes thie
factor and reflects thé factor is homotopic but not isotopic to the identity.

It turns out that these two examples are the only exampleswiokopic
homeomorphisms that are not isotopic. This was proved inl8#0’'s by
Baer, using Proposition 1.10 (see [8, 9], and also [54]).

THEOREM 1.12 Let S be any compact surface, and |gtand g be homo-
topic homeomorphisms 6t Thenf and g are isotopic unless they are one
of the two examples described above & D andS = A). In particular,

if f andg are orientation-preserving then they are isotopic.
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In fact a stronger, relative result holds: if two homeomaspis are homo-
topic relative tod.S then they are isotopic relative S. Theorem 1.12 can
be proven using ideas from the proof of Proposition 2.8.

Theorem 1.12 also holds whethas finitely many marked points. In that
case, we need to expand our list of counterexamples to iacwgphere with
one or two marked points.

1.4.2 HOMEOMORPHISMS VERSUS DIFFEOMORPHISMS

It is sometimes convenient to work with homeomorphisms amdetimes
convenient to work with diffeomorphisms. For example it &ier to con-
struct the former but we can apply differential topology e tatter. The
following theorem will allow us to pass back and forth betwé@meomor-
phisms and diffeomorphisms of surfaces.

THEOREM 1.13 Let S be a compact surface. Then every homeomorphism
of S is isotopic to a diffeomorphism 6f.

It is a general fact that any homeomorphism of a smooth miahdan be
approximated arbitrarily well by a smooth map. By taking asel enough
approximation, the resulting smooth map is homotopic tatiginal home-
omorphism. However, this general fact, which is easy to @ras much
weaker than Theorem 1.13, because the resulting smooth riggy not be
smoothly invertible; indeed, it might not be invertible #t a

Theorem 1.13 was proven in the 1950’s by Munkres [162, Thaded],
Smale, and Whitehead [208, Corollary 1.18]. In part, thiskwaas promptelj
by Milnor's discovery of the “exotic” (hon-diffeomorphicdmooth struc-
tures ons”.

Theorem 1.13 gives us a way to replace homeomorphisms wiftodior-
phisms. We can also replace isotopies with smooth isotoplasother
words, if two diffeomorphisms are isotopic, then they ar@sthly isotopic;
see, e.g., [29].

In this book, we will switch between the topological settargd the smooth
setting as convenient. For example, when defining a map offacguto
itself (either by equations or by pictures) it is often eastewrite down a
homeomorphism than a smooth map. On the other hand, whenedetoe
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appeal to transversality, extension of isotopy, etc., wierveied to assume
we have a diffeomorphism.

One point to make is that we will actually be forced to consglf-maps
of a surface that are not smooth; pseudo-Anosov homeonsmmgshiwhich
are central to the theory, are special maps of a surface thaiezer smooth
(cf. Chapter 13).

1.4.3 CONTRACTIBILITY OF COMPONENTS OF Homeo(S)

The following theorem was proven by Hamstrom in a series pep&[75,
76, 77] in the 1960’s. In the statemeftpmeo(.S) is the connected com-
ponent of the identity in the space of homeomorphisms of tases.

THEOREM 1.14 Let S be a compact surface, possibly minus a finite num-
ber of points from the interior. Assume thétis not homeomorphic to
S?,R?, D?, T?, the closed annulus, the once-punctured disk, or the once-
punctured plane. Then the spademeo(S) is contractible.

The fact thatHomeo((.S) is simply connected is of course an immediate
consequence of Theorem 1.14. This fact will be used, amdmey places,

in Section 4.2, in the proof of the Birman exact sequencerdisea smooth
version of Theorem 1.14; see [71] or [51].



Chapter Two

Mapping class group basics

In this chapter we begin our study of the mapping class grdwpsurface.
After giving the definition, we compute the mapping classugrin essen-
tially all of the cases where it can be computed directly.sTihcludes the
case of the disk, the annulus, the torus, and the pair of pAmtsmportant

method, which we call the “Alexander method,” emerges a®hbftw such

computations. It answers the fundamental question: hovwooarprove that
a homeomorphism is or is not homotopically trivial? Equérdly: how can
one decide when two homeomorphisms are homotopic or not?

2.1 DEFINITION AND FIRST EXAMPLES

Let S be a surface. As in Chapter 1, we assume thas the connect
sum ofg > 0 tori, with b > 0 disjoint open disks removed, and > 0
points removed from the interior. Léfomeo™ (S, dS) denote the group of
orientation-preserving homeomorphismsSthat restrict to the identity on
0S. We endow this group with the compact-open topology.

Themapping class groupf S, denotedMod(.S), is the group
Mod(S) = mo(Homeo ™ (S, 0S)).

In other words,Mod(S) is the group of isotopy classes of elements of
Homeo™ (9, 85S), where isotopies are required to fix the boundary point-
wise. If Homeoq (S, 0S) denotes the connected component of the identity
in Homeo™ (S, S), then we can equivalently write

Mod(S) = Homeo™ (S, S)/ Homeog(S, S).

There are several possible variations in the definitiodokl(.S). For ex-
ample we could consider diffeomorphisms instead of homephsms, or
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homotopy classes instead of isotopy classes. By the thadreSection 1.4,
these definitions would result in isomorphic groups. To suripe, we
have:

Mod(S) = mo(Homeo™(S,d5))
~ Homeo™ (S, dS) / homotopy
~ mo(Diff ¥ (S, 05))
~ Diff 7 (S,0S) / ~

whereDiff 7 (.S, 955) is the group of orientation-preserving diffeomorphisms
of S that are the identity on the boundary arndcan be taken to be either
smooth homotopy relative to the boundary or smooth isotefstive to the
boundary.

The terminologyMod(S) is meant to stand for “modular group.” Fricke
called the mapping class group the “automorphic modulangjraeince, as
we will later see, it can be viewed as a generalization of thesical modu-
lar groupSL(2,7Z) of 2 x 2 integral matrices with determinamt

Elements ofMod(S) are callednapping classes/Ne use the convention of
functional notation, namely:

Elements of the mapping class group are applied right to left

Other definitions and notations. In the literature, there are various other
notations for the mapping class group, for instance: MEG Map(S),
M(S), andTy ,,. As a general rule, “mapping class group” refers to the
group of homotopy classes of homeomorphisms of a surfadcehbte are
plenty of variations: one can consider homeomorphismsdbatot neces-
sarily preserve the orientation of the surface, or that daobas the identity
on the boundary, or that fix each puncture individually, etc.

Punctures versus marked points. If S is a surface with punctures, then it
is sometimes more convenient to think of (some of) the puastas marked
points onS. Then,Mod(S) is the group of homeomorphisms 8that leave
the set of marked points invariant, modulo isotopies thavdethe set of
marked points invariant. Here, one has to be careful whargusamotopies
instead of isotopies: a homotopy of surfaces with markedtpanust not
only send marked points to marked points at all times, buttrals® send
non-marked points to non-marked points at all times.

Punctures versus boundary. One difference between a surface with punc-
tures and a surface with boundary is that, as an artifact oflefinitions, a
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Figure 2.1 An ordeb element ofMod(Ss).

mapping class is allowed to permute punctures on a surfatcé, hust pre-
serve the individual boundary components pointwise. Allsatopies must
fix each boundary component pointwise, while on the othedhseotopies
can rotate a neighborhood of a puncture.

Exceptional surfaces. Recall from Section 1.4 that there are four surfaces
for which homotopy is not the same as isotopy: the digk the annulus,

the once-punctured sphefg ;, and the twice-punctured sphesg .. Also
recall that in these cases, homotopy is the same as isotopyiémtation-
preserving homeomorphisms. Thus, even in these casesatioels defini-
tions of Mod(S) are still equivalent.

2.1.1 HRST EXAMPLES OF MAPPING CLASSES

As a first example of a nontrivial element dfod(S,), one can take the
order g homeomorphismp of S, indicated in Figure 2.1 foy = 5. The
mapping class represented $ylso has ordey. To see this, look for a sim-
ple closed curvey in S, so thate, ¢(a), ¢? (), ..., 971 () are pairwise
nonisotopic.

If we representS, as a(4g + 2)—gon with opposite sides identified (Fig-
ure 2.2 shows the cage= 2), we can get elements dfod(S,) by rotating
the (4g + 2)—gon by any number of “clicks.” For example, if we rotate by
an angler (that is,2g + 1 clicks) we get an important example of a mapping
class, called a “hyperelliptic involution” (see Sectiond @nd 9.4 for further
discussion of hyperelliptic involutions).
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Figure 2.2 Rotation bgx /10 gives an order 10 element dfod(.S2).

Figure 2.3 The rotation by about the indicated axis is a hyperelliptic involution.

It is possible to realize a hyperelliptic involution as adigotation of.S, in
R3, namely, the rotation byt about the axis indicated in Figure 2.3 (it is
not obvious that this is indeed a hyperelliptic involutio@)ther elements of
Mod(S,) obtained by rotating &g + 2)—gon are less easy to visualize; for
example, what does an order five symmetrySefiook like with respect to
the standard picture &, embedded iR3?

Unlike the preceding examples, most elements of the mappass group
have infinite order. The simplest such elements are Dehristwishich are
defined and studied in detail in Chapter 3.

2.2 COMPUTATIONS OF THE SIMPLEST MAPPING CLASS GROUPS

In this section we give complete descriptions of the mapjpiags groups
of the simplest surfaces, working directly from the defuniss.
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2.2.1 THE ALEXANDER LEMMA
Our first computation is the mapping class gradpd(D?) of the closed

disk D2. This simple result underlies most computations of mappiags
groups.

Lemma 2.1 (Alexander lemma) The groupMod(D?) is trivial.

In other words, Lemma 2.1 states that given any homeomarphisf D?
that is the identity on the bounda®yD?, there is an isotopy o to the
identity through homeomorphisms that are the identity)@r.

Proof. Identify D? with the closed unit disk ilR%. Let¢ : D?> — D? be a
homeomorphism witlp| 552 equal to the identity. We define

_ x_ < _
P - {0 06 (%) 0<lal <1t
T 1—t<|z| <1
for 0 < t < 1, and we defing”(z, 1) to be the identity map ob?. The

result is an isotopy’ from ¢ to the identity. O

We can think of combining théF (z, t)} from the proof into a level-preservijjg
homeomorphism of a cylinder with support a cone; see Figute Bhe in-
dividual F'(x,t) homeomorphisms appear at horizontal slices.

T

~.

Figure 2.4 The picture for the Alexander trick.

The isotopy given by the proof can be thought of as followstiraé ¢, do
the original mapp on the disk of radiud — ¢, and apply the identity map
outside of this disk. This clever proof is called the “Alexian trick.”
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The reader will notice that the Alexander trick works in alingnsions.
However, this is one place where it is convenient to thinkuatbh@meomor-
phisms instead of diffeomorphisms. The smooth version efAlexander
lemma in dimension 2 is not nearly as simple, although in ¢hise Smale
proved the stronger statement thaitf (D?, 9D?) is contractible [192]. In
higher dimensions, the situation is worse: it is not knowiff (D4, 9 D*)
is connected, and for infinitely manywe have thaDiff (D™, 9D") is not
connected.

The proof of Lemma 2.1 also holds with? replaced by a once-punctured
disk (take the puncture/marked point to lie at the origind dience we also
have the following:

The mapping class group of a once-punctured disk is trivial.

The sphere and the once-punctured sphereThere are two other mapping
class groupdviod(S,,,,) that are trivial, namelpMod(Sp 1) andMod(S?).
For the former, we can identif, ; with R? and use that fact that every
orientation-preserving homeomorphism®f is homotopic to the identity
via the straight-line homotopy. F@#?, any homeomorphism can be mod-
ified by isotopy so that it fixes a point, and so we can apply tlexipus
example.

2.2.2 THE MAPPING CLASS GROUP OF THE THRICE -PUNCTURED SPHERE

Our next example, the mapping class groupSek, illustrates an impor-
tant idea in the theory of mapping class groups. The way wiecathpute
Mod(Sp,3) is to understand its action on some fixed arSiy. The surface
obtained by cuttingSy 3 along this arc is a punctured disk, and so we will
be able to apply the Alexander lemma. This is in general howgeethe
cutting procedure for surfaces in order to perform induetwguments.

In this section it will be convenient to think &, 3 as a sphere with three
marked points (instead of three punctures). In order tordete Mod (S 3)
we first need to understand simple proper arcSjn.

Proposition 2.2 Any two essential simple proper arcsSp 3 with the same
endpoints are isotopic. Any two essential arcs that botit stad end at the
same marked point & 3 are isotopic.
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Proof. Let o and 3 be two simple proper arcs iy 3 connecting the same
two distinct marked points. We can modifiyby isotopy so that it has gen-
eral position intersections with. By thinking of the third marked point as
being the point at infinity, we can think ef and as arcs in the plane. As
in the proof of Lemma 1.8, ity and 5 are not disjoint, then we can find
an innermost disk bounded by an arccobind an arc of3. Pushinga by
isotopy across such disks, we may reduce intersection ardind 5 have
disjoint interiors. At this point, we can c 3 alonga'U 3. By the classifi-
cation of surfaces, the resulting surface is the disjoinbmif a disk (with
two marked points on the boundary) and a once-marked digk (wo ad-
ditional marked points on the boundary). Thuands bound an embedded
disk in Sy 3, and so they are isotopic.

The case wherex and 5 are essential simple proper arcs where all four
endpoints lie on the same marked pointSafs is similar. O

We are now ready compubdod(Sy 3). Let X3 denote the group of permu-
tations of 3 elements.

Proposition 2.3 The natural map
Mod(Sp3) — X3

given by the action okMod(Sp,3) on the set of marked points 5§ 3 is an
isomorphism.

Proof. The map in the statement is obviously a surjective homonismph
Thus it suffices to show that if a homeomorphignof S ; fixes the three
marked points—call therp, ¢, and r—then ¢ is homotopic to the iden-
tity. Choose an arex in Sy 3 with distinct endpoints, say andq. Since
¢ fixes the marked pointg, ¢, andr, the endpoints of)(«) are againp
andgq. By Proposition 2.2, we have tha{«) is isotopic toa. It follows
that ¢ is isotopic to a map (which we also cal) that fixesa pointwise
(Proposition 1.11).

We can cutSy 3 alonga so as to obtain a disk with one marked point (the
boundary comes frona, and the marked point comes fron). Since¢
preserves the orientations §f 3 and ofq, it follows that¢ induces a home-
omorphismy of this disk which is the identity on the boundary (the nasip

the unique set map on the cut-open surface indugind@y Lemma 2.1 the
mapping class group of a once-marked disk is trivial, and Bohomotopic

to the identity. The homotopy induces a homotopy froto the identity.O
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Pairs of pants. The surfaceS, 3 is homeomorphic to the interior of @air
of pantg P, which is the compact surface obtained frgi by removing
three open disks with embedded, disjoint closures. Pajpsuofs are impor-
tant because all compact hyperbolic surfaces can be built frairs of pants
(cf. Section 10.5). In Section 3.6 we will apply Proposit@3 to show that
Mod(P) ~ Z3.

The twice-punctured sphere. There is a homomorphismlod(Sp2) —
7./27. given by the action on the two marked points. An analogousfgm
that of Proposition 2.3 gives thafod(Sg ) ~ Z/27Z.

2.2.3 THE MAPPING CLASS GROUP OF THE ANNULUS

We now come to the simplest infinite order mapping class grthai of the
annulusA. The basic procedure we use to comphfed(A) is similar to
the one we used fa$, 3. That is, we find an arc il so that when we cut
A along that arc, we obtain a closed disk. If we can understhadttion
of a homeomorphism on the arc, then we can completely urahetghe
homeomorphism up to homotopy.

Proposition 2.4 Mod(A) ~ Z.

Proof. First we construct a map : Mod(A) — Z. Let f € Mod(A),
and let¢ : A — A be any homeomorphism representifig The universal
cover of A is the infinite stripﬁ ~ R x [0,1], and¢ has a preferred lift
¢ : A — A fixing the origin. Letg, : R — R denote the restriction af to
R x {1}, which is canonically identified witfR. Since¢~51 is a lift to R of
the identity map on one of the boundary componentgl oit is an integer
translation. We defing(f) to beg; (0). If we identify Z with the group of
integer translations dR, then the ma@l itself is an element of, and we
can writep(f) = $1 € Z. From this point of view, it is clear that is a
homomorphism, since compositions of mapsiofet sent to compositions
of translations ofR.

We can give an equivalent definition pfas follows. Let§ be an oriented
simple proper arc that connects the two boundary comporégms Given
f and¢ as above, the concatenatig’) 5! is a loop based at(0), and

IMdbius used the term “trinion” for a pair of pants (he calluannulus a “binion” and
a disk a “union”).
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p(f) equals(p(d) * 6~ 11'e m1(A,6(0)) ~ Z. Yet another equivalent way to
definep is to lets be the unique lift b to A based at the origin, and to set
p(f) to be the endpoint Qf)( ) iNnR x {1} =~ R.

We now show thap is surjective. The linear transformation &F given by

the matrix
1 n
u=(o 1)

preservesR x [0,1] and is equivariant with respect to the group of deck
transformations. Thus, the restriction of the linear mépto R x [0, 1]
descends to a homeomorphighof A. The action of this homeomorphism
on ¢ is depicted in Figure 2.5 for the case= —1. It follows from the
definition of p that p([¢

CR©

Figure 2.5 A generator faklod (A

It remains to show that is injective. Letf € Mod(A) be an element of the
kernel ofp, and say thaf is represented by a homeomorphi&mLethS be
the preferred lift ofp. Sincep(f) = 0, we have that acts as the identity
ondA. We claim that the straight line homotopy fra?ﬁrto the identity map
of Ais equivariant. For this, it suffices to show that

() =7 ¢(x)

for any deck transformatiom and for anyz € A. It follows from general
covering space theory that

O(r - x) = 6u(7) - B(a).

But because fixesdA pointwise it follows thatp, is the identity automor-
phism ofr (A) ~ Z, and sop.(7) = 7, and the claim is proven.

We have that the straight line homotopy freﬁmo the identity is equivariant,
and it fixes the boundary oA, so it descends to a homotopy betweeand
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the identity map of4 that fixes the boundary ol pointwise. Thusf is the
identity and s is injective. O

We remark that in the proof of Proposition 2.4 we took advgetaf the fact
that we can conflate homotopy with isotopy.

The homeomorphism ofl induced by the matrix

1 -1

0 1
is called a “Dehn twist.” Since any surface contains an am)uve can
perform a Dehn twist in any surface. Dehn twists are impardements of

the mapping class group. In fact, the next chapter is eptiteloted to their
study.

2.2.4 THE MAPPING CLASS GROUP OF THE TORUS

The torusI™? acts as a guidepost in the study of mapping class groups ewhil
it has an explicit description as a group of integral masjcand while it

is much easier to understand than mapping class groups bémhgenus
surfaces, it still exhibits enough richness to give us a dinwhat to expect

in the higher genus case. This is a recurring theme in thik.boo

THEOREM 2.5 The homomorphism
o: Mod(T?) — SL(2,Z)

given by the action o, (T'; Z) ~ Z? is an isomorphism.

Proof. Any homeomorphismy of T2 induces a map, : Hy(T?7Z) —
H1(T?;7). Sinceg is invertible, ¢, is an automorphism off,(T?;7Z) ~

Z?. Homotopic maps induce the same map on homology, and so the ma
¢ — ¢, induces a map : Mod(T?) — Aut(Z?) ~ GL(2,Z) (the exact
identification ofo (f) with a2 x 2 matrix depends on the particular identifi-
cation of H1(T?; Z) with Z?). The fact thatr(f) is an element 0BL(2, Z)

can be seen directly from the fact that the algebraic inttie® numbers

in T2 correspond to determinants (sgk2) and that fact that orientation-
preserving homeomorphisms preserve algebraic intesseatimber.
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We next prove that is surjective. Any elemeni/ of SL(2,Z) induces an
orientation-preserving linear homeomorphisni3fthat is equivariant with
respect to the deck transformation grafip, and thus descends to a linear
homeomorphismp,; of the torusT? = R?/Z2. Because of our identifi-
cation of primitive vectors irZZ? with homotopy classes of oriented simple
closed curves iff?, it follows thato([¢,/]) = M, and sav is surjective.

Finally, we prove that is injective. Sincel™ is aK (G, 1) space, there is a
correspondence:

Homotopy classes of Homomorphisms
based map%? — T2 72 — 77

(see [86, Proposition 1B.9]). What is more, any elemgaf Mod(7?) has

a representative that fixes a basepoint fa2. Thus, if f € ker(o), then

¢ is homotopic (as a based map) to the identitygde injective. Actually,

we can construct the homotopy oto the identity explicitly. As in the case

of the annulus, the straight-line homotopy between thetigemap of R?

and any lift of¢ is equivariant, and hence descends to a homotopy between
¢ and the identity. O

The annulus versus the torus. The reader will notice that our proof of the
injectivity of o : Mod(T?) — SL(2,Z) was actually easier than our proof
of the injectivity of p : Mod(A) — Z. The reason for this is that if we apply
K (G, 1) theory to two homeomorphisms df that induce the same map on
m1(A), then we only get that they are homotopic via a homotopy tbatd
not necessarily fix the boundary. That is why we needed totaartsthe
homotopy by hand in the case of the annulus.

Hands-on proof of Theorem 2.5. We can give another, more hands-on
proof of the injectivity ofo : Mod(T?) — SL(2,Z). Suppose that(f) is
the identity matrix irSL(2, Z), and lety be a representative ¢f If o andg
are simple closed curves corresponding to the elem@nty and (0, 1) of
71(T?), then it follows thaty(«) is homotopic tor and¢(3) is homotopic
to 5. We proceed in two steps to show thais isotopic to the identity.

1. By Proposition 1.10, we know thaf «) is isotopic toa (as a map),
and by Proposition 1.11 any such isotopy can be extended it&an
topy of 72. Thus, up to isotopy, we may assume thdixes o point-
wise. As¢ is orientation-preserving, we also know thapreserves
the two sides otv.
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2. LetA be the annulus obtained frofi? by cutting along. Given that
¢ fixes a pointwise and thap preserves the two sides of we have
that¢ induces a homeomorphismof A which represents an element
f of Mod(A). We can think ofs and(3) as arcs inA. Since¢(/3)
is isotopic tog in T2, we see thap(f) = 0, wherep : Mod(A) — Z
is the map from Proposition 2.4.

3. At this point, we can simply quote Proposition 2.4, whidveg that
f = 1. This means thap isotopic to the identity map ofi via an
isotopy fixingd A pointwise. But them is also isotopic to the identity.

In the last step, instead of quoting Proposition 2.4 one catirtue the line
of thought to give a hands-on proof of that proposition. Assheall see
in Section 2.3, these hands-on proofs lead to a method foeratashding
mapping classes of arbitrary surfaces.

The once-punctured torus. For the once-punctured torus, ;, we have
H1(S11;Z) ~ H1(T? Z) ~ Z*. Therefore, as in the case Bf, there is a
homomorphisny : Mod(S;,1) — SL(2,Z). The mapo is surjective since
any element oL(2,Z) can be realized as a map BF that is equivari-

ant with respect t&? and that fixes the origin; such a map descends to a
homeomorphism of ; with the desired action on homology.

To prove that is injective we can apply a version of the “hands-on” proof
we used in the case of the torus, as follows. &etind 3 be simple closed
curves inS; ; that intersect in one point. If € ker(o) is represented by
¢, theno(a) and¢(3) are isotopic tax and 5. We can then modify» by
isotopy so that it fixesx and 3 pointwise. If we cutS; ; alonga U 3, we
obtain a once-punctured disk, apdnduces a homeomorphism of this disk
fixing the boundary. By the Alexander trick, this homeomasph of the
punctured disk is homotopic to the identity by a homotopyt fires the
boundary. It follows that is homotopic to the identity, as desired.

2.2.5 THE MAPPING CLASS GROUP OF THE FOUR -TIMES PUNCTURED SPHEREIN

In the theory of mapping class groups, there is a strongioelstiip between

the torus and the sphere with four punctures. Recall thatithink of the
torus as a square (or hexagon) with opposite sides identifies the hy-
perelliptic involution. is the map that rotates about the center of the square
(or hexagon) by an angle of. The map. has four fixed points, and so
the quotient, which is topologically a sphere, has fourinigtished points.
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We identify this quotient withSy 4. Since every linear map d&f? (fixing
the image of the origin ifR?) commutes with, each element dffod(7?)
induces an element dflod(Sp.4). We will now exploit this relationship in
order to computéod(Sp 4).

We begin by classifying simple closed curvesSif, up to homotopy.

Proposition 2.6 The hyperelliptic involution induces a bijection between
the set of homotopy classes of essential simple closedscir?& and the
set of homotopy classes of essential simple closed curgs,in

Proof. Proposition 1.5 gives a bijection between the set of hompottasses
of essential simple closed curvesii and the set of primitive elements of
72. Given a primitive element o2, we obtained dp, ¢)—curve by taking
aline of slopey/p to T2.

We will give a different construction ofp, ¢)—curves inT2, and we will
give a construction of &, ¢)—curves inSy 4, and then we will observe that
the lift of a (p, ¢)—curve inSp 4 to T is a(p, g)—curve inT>.

Let o and 3 be two simple closed curves i that intersect each other in
one point. We identifyy with (1,0) € Z?2 andg with (0,1) € Z2. Let(p, q)
be a primitive element of.2. A simple closed curvey in T2 is a(p, q)—
curve if (up to sign) we havéi(v, 8),(v, «)) = +(p,¢). To construct the
(p, q)—curve, we start by taking parallel copies ofx and we modify this
collection by & /q twist along(.

Up to homotopy inl?, we may assume thatand project via, to simple
closed curvest and 3 in S 4 that intersect in two points, as in Figure 2.6.
We can then perform an analogous construction @b,g)—curve inSp 4.
We takep parallel copies ofr and twist along3 by 7 /q.

We need to check that every homotopy class of essential siipked
curves inSp 4 comes from our construction. Letbe an arbitrary essen-
tial simple closed curve i, 4. Up to homotopy, we may assume thais
in minimal position with respect ta. If we cut Sy 4 along3 we obtain two
twice-punctured disks, andanda both give collections of disjoint arcs on
each. By the assumptions on minimal position, these arcalbessential.
By Proposition 2.2, the arcs coming frasmand the arcs coming from are
freely homotopic. It follows that the homotopy classyo€omes from our
construction.



MAPPING CLASS GROUP BASICS 59

The preimage of dp, g)—curve inSp 4 in T2 is a “(2p, 2¢)—curve,” that is
to say, two parallel copies of @, ¢)—curve inT2. That is to say that the
identification of(p, ¢)—curves in the two surfaces is induced by O

Proposition 2.7 Mod(Sp4) ~ PSL(2,Z) x (Z/2Z x Z/2Z).

Proof. We first construct a homomorphisen: Mod(Sp4) — PSL(2,Z)
together with a right inverse. Then we will show that the letiis isomor-
phic toZ /27 x 7./ 2.

Let ¢ be a homeomorphism representing a giyes Mod(Sp 4). There are
two lifts of ¢ to Homeo™ (T72), say¢ and.¢. We definez(f) to be the ele-

ment of PSL(2, Z) represented by the matrix[$]), wheres : Mod(T2) —
SL(2,Z) is the homomorphism from Theorem 2.5. This is well-defined

since the two lifts ofp differ by ¢, ando (1) = —1.

Next we construct the right inverse @f An element of°SL(2,7Z) induces
an orientation-preserving, linear homeomorphisni'éthat is well-defined
up to multiplication by.. Any such map of”? commutes with, and hence
induces an orientation-preserving homeomorphisnSf. In this way we
have defined a maBSL(2,Z) — Mod(Sp.4); it is a right inverse of by
construction.

Figure 2.6 The hyperelliptic involutions ¢ 4.

The order two homeomorphisms 8f 4 indicated in Figure 2.6 are called
hyperelliptic involutionof Sy 4. The corresponding mapping classesind
Lo generate a subgroup &fod(Sp 4) isomorphic toZy x Za. The hyper-
elliptic involutions each lift to a homeomorphism @ ~ S!' x S! that
rotates one of the factors by Hence,(:1,t2) is contained in the kernel of

g.
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We will show that(c, ¢2) is the entire kernel of. Let f € ker(7). By defi-
nition of 7, any lift of a representative of to Homeo™ (72) acts by+id on
H1(T?;7), and hence acts trivially on the set of homotopy classesnof si
ple closed curves ifi?. By the natural bijection given by Proposition 2.6, it
follows that f acts trivially on the set of homotopy classes of simple adose
curves inSp 4. In particular f fixes the homotopy classes afand 3. It
follows that we can precomposéwith an element ok € (i1, ¢2) so that
[k fixes the four marked points & 4.

Our goal now is to show thatk is the identity. Say thafk is represented
by a homeomorphism. As in the proof of Theorem 2.5, we can modify
so that it fixesy and3. Sinceg fixes the four marked points, we have that
induces relative homeomorphisms of the four once-marksksdobtained
when we cutS, 4 alonga and3. At this point, we can once again apply to
Alexander lemma to show thgt is the identity. O

Two splittings of Mod*(Sp.4). Let Mod* (S 4) denote group of ho-
motopy classes of all homeomorphisms%f,, including the orientation-
reversing ones (see Chapter 8 for more about this grouppllttws from
Theorem 2.5 and the argument of Proposition 2.7 that

Mod*(Sp4) ~ PGL(2,7Z) x (Z/27 x 7./27).

We can give another description dfod*(Sy4) as a semidirect product.
There is a short exact sequence

1 — PMod®(Sp4) — Mod*(Sp4) — X4 — 1,

whereY, is the symmetric group on the four punctures, the mbmli(SOA) —|
¥, is given by the action on the punctures, d@lod® (S 4) is the sub-
group ofModi(SOA) consisting of those elements fixing each of the punc-
tures (one is tempted to write a sequence Wiibt (S 4) surjecting onto the
alternating groupd,, but the image oMod(.Sy 4) is all of £4). Thinking of
So,4 as the 2—skeleton of a tetrahedron minus its vertices, wthaethere is

a section®; — Mod* (S 4), and so the grouplod® (Sp 4) is isomorphic

to the semidirect prOdU(HModi(SoA) X 4. It follows from the results in
Section 4.2 below tha®Mod* (S 4) ~ F» x Z/27Z, and so

Mod*(Sp4) ~ (Fy x Z/27,) x %y,
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2.3 THE ALEXANDER METHOD

Our computations of the mapping class groupsSef, So2, A, T?, Si.1,
and Sy 4 all follow the same general scheme: find a collection of csirve
and/or arcs that cut the surface into disks, and apply theallder lemma
in order to say that the action of the mapping class group ersthface is
completely determined by the action on the isotopy claséésese curves
and arcs.

It turns out that this basic setup works for a general surfate Alexander
method (given below) states that, for afiyan element oMod(.S) is often
determined by its action on a well-chosen collection of esrand arcs in
S. Thus, there is a concrete way to determine when two homeahismns
f,g € Homeo™ (S) represent the same element\dbd (.S).

Before we give the precise statement, we point out that thatgn is more
subtle than one might think at first. It is simply not true imgeal that if a
homeomorphism of a surfacefixes a collection of curves and arcs that cut
S into disks, then it represents the trivial mapping class: ifstance, the
hyperelliptic involution ofS,, fixes the2g + 1 simple closed curves shown
in Figure 2.7; on the other hand, we know that the hyperdlipivolution
represents a nontrivial mapping class since it acts noalivon Hy (Sg; Z).
Even worse, the hyperelliptic involutions Mod(7?) andMod(S2) fix ev-
ery isotopy class of simple closed curves (cf. Section 3.4). Vighaap-
pening in the case of the hyperelliptic involution, and wbaih happen in
general, is that a homeomorphism of a surface can fix a callecf curves
while still permuting or rotating the complementary disks.

Figure 2.7 A collection of simple closed curves that is fixgdte hyperelliptic involution.

In view of the example of the hyperelliptic involution, orsetémpted to sim-
ply add the hypothesis that the curves and arcs are fixed haih drienta-
tions. But this is still not right: the hyperelliptic invdion in Mod(S:) fixes
the orientation of every isotopy class of separating singfdeed curves in
So, and certainly there are enough of these curves tégunto disks; see
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Figure 2.8 for such a configuration.

Figure 2.8 The hyperelliptic involution fixes the isotopypss$ of every simple closed curve
in Sz, and even fixes the orientation of each separating isot@ssclHowever,
it is a nontrivial mapping class.

We finally arrive at the following statement, which we caléthlexander
method To simplify the discussion we consider only compact s@$ac
possibly with finitely many marked points in the interior. #@g, for all
intents and purposes, marked points play the same role asypes in the
theory of mapping class groups. For a surf&oith marked points, we say
that a collection{~;} of curves and arc8lls S if the surface obtained from
S by cutting along alky; is a disjoint union of disks and once-marked disks.

Proposition 2.8 (Alexander method) Let S be a compact surface, possi-
bly with marked points, and let € Homeo™(S,0S). Let~y,...,v, be

a collection of essential simple closed curves and simpgeeqrarcs inS
with the following properties.

1. The~y; are pairwise in minimal position.

2. The~; are pairwise nonisotopic.

3. For distincti, j, k, at least one ofy; N y;, v; Ny, OF v; Ny IS empty.
(1) If there is a permutationr of {1, ..., n} so thatp(y;) is isotopic toy,;
relative to0.S for eachi, theng(U~;) is isotopic toU; relative to0S.

If we regardU~; as a (possibly disconnected) graphn S, with vertices at
the intersection points and at the endpoints of arcs, thercttmposition of
¢ with this isotopy gives an automorphissp of I".

(2) Suppose now thdty; } fills S. If ¢, fixes each vertex and each edge of
I", with orientations, ther is isotopic to the identity. Otherwise, has a
nontrivial power that is isotopic to the identity.
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The power of the Alexander method is that it converts the agatpn of
a mapping class into a finite combinatorial problem. We wélk uhis fre-
quently, for example:

1. to compute the center of the mapping class group 433

2. to prove the Dehn—Nielsen—Baer theorem (see Chapter 8)

3. to show thaMod(S) has solvable word problem (see Chapter 4)
4. to verify that certain relations hold ¥od(S) (see, e.g., Prop. 5.1)

We leave it as an exercise to check that every compact susfénzes a col-
lection{~;} as in the statement of Proposition 2.8.

A priori the Alexander method only allows us to determine a mappiagscl

up to a finite power. However, on almost every surface, it issjige to
choose thev;} so that mapping classes are determined uniquely by their
action on the{; }; that is, on almost every surface one can choosetlse

that whenever a homeomorphisprfixes eachy; up to homotopy, then the
induced mapp, of the graphl” is necessarily the identity. One example of
such a collection is used in the proof of Theorem 3.10.

One would like to strengthen statement (2) of the Alexandethad to say
that ¢ is isotopic to a nontrivial finite order homeomorphism. ladgeit
is a general fact that if a homeomorphism of a surface has @pthat is
isotopic to the identity then the homeomorphism itself atapic to a finite
order homeomorphism. This fact is stated precisely in Giraptand is
proven in Section 13.2.

The condition on triples in the statement of the Alexandethoe is cru-
cial. This is because there is not, in general, a canonicainmail position
configuration for a triple of curves that intersect pairwi3derefore, there
is no canonical way to construct the graphConsider for instance the con-
figuration shown in Figure 2.9; the three arcs are indiviualotopic, but
there is no isotopy from the first union of arcs to the second.

We point out the following slight (but useful) improvemeifitioe Alexander
method. Consider the graph

I’ = (Uy;) UdS U {marked point}.

2Technically, if some component 6fS does not meetiy;, then we need to add a marked
point on that component in order to obtain a graph.
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Sincel" is in general larger thah, it gives more information. For instance,
sayI' is a chain of three simple closed curvgs 72, andys in S; 2. By the
Alexander method, if € Mod(S) fixes the isotopy classes of eaghthen
one can deduce thdtis either the identity or the hyperelliptic involution
(see Figure 3.8 below). If we know thtalso fixes the two marked points
of Sy 2, then it is immediate from the action ¢fonI” that f = 1.

O
Figure 2.9 There is no canonical way to arrange these theewithout creating a triple
point.

Statement (1) of the Alexander method is an immediate caresem of the
following lemma which, in addition to being slightly morerggral, is also
notationally simpler.

Lemma 2.9 Let.S be a compact surface, possibly with marked points, and

let v1,...,7v, be a collection of essential simple closed curves and simple
proper arcs inS that satisfy the three properties from Proposition 2.8. If
Y4, -, is another such collection so thaf is isotopic toy; relative to

05 for eachi, then there is an isotopy &f relative to9.S that takesy, to ;
for all 7 simultaneously, and hence takes; to U,.

Our proof of this lemma was greatly simplified by Allen Hatche

Proof. We will work by induction onn; that is, we assume that we can
construct an isotopy of that takesy, to~; fori = 1,...,k—1, and we will
construct a relative homotopy 6fthat fixesthe sef\;,_1 =y U---U~yg_1
throughout the isotopy and take$ to ;. We can take the base case to be
k = 0, which is vacuous.

First we perform a relative isotopy of that fixesA;_; and perturbsy, to
have general position intersections with as follows. By the hypothesis
on triples{~}, v}, 7.}, and that fact that\,_; is equal toy; U--- Uy,
we have thaty, is disjoint from the vertices of the graph;,_,. Thus, there
is a relative isotopy ofS' that fixesAy_; and makesy,. disjoint from -,
along the edges o\, ;. Finally, we perform a relative isotopy &f that



MAPPING CLASS GROUP BASICS 65
A1

a5

Yk

Figure 2.10 The intersection df;_; with a bigon formed byy, and-;.

is the identity in a neighborhood @k;_; and perturbsy; to intersecty
transversely in the complement 4f, ;.

Next we perform a relative isotopy &f that fixesA;_;, and takesy, to be
disjoint from . If ~, and~, are not already disjoint, then by the bigon
criterion they form a bigon (since, and-;, are isotopic relative t0.S, they
have the same endpoints, and hence they cannot form ankipgatis). By
the hypothesis on triples, the intersectionfof_; with this bigon is a col-
lection of disjoint arcs. By the assumption on minimal gpiosit each such
arc connects one boundary arc of the bigon to the other; spad-R.10.

It follows that there is an isotopy &f that fixesA;_; as a set, and pushes
7}, across this bigon, thus reducing its intersection with Repeating this
process a finite number of times, we obtain the desired igotop

Finally, we are in the situation that, is disjoint from~,. As in the proof
of Proposition 1.10, the region betweep and~y,, is either an annulus or a
disk, depending on whethey, and-~, are simple closed curves or simple
proper arcs. The intersection Af;_; with this region, if nonempty, is again
a collection of disjoint arcs, each connectingto ;.. Thus, as above, there
is a relative isotopy of that fixesA;_; and takesy; to ;. O

We can now complete the proof of the Alexander method.

Proof of Proposition 2.8Let {~1,...,7,} be as in the statement (1), and
for eachi lety; be the simple closed curvéy,-1(;)). Applying Lemma 2.9
to the collectiong~; } and{~/}, we can construct an isotopy Sfthat takes
~} to; for eachi, and hence takesy, to U~;. This proves statement (1). It
now follows, as in the statement of the proposition, thatduces an auto-
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morphisme, of I' = U~;. Since the automorphism group of a finite graph is
necessarily finite, we may choose a poweso that¢, is the identity auto-
morphism, that is, it fixes each vertex, and fixes each eddeatigntation.
Since¢ is orientation-preserving, it follows that also preserves the sides
in S of each edge of'. It follows that¢”, after possibly modifying it by an
isotopy, fixed pointwise and sends each complementary region into itself;
indeed, a complementary region is completely determinethbyoriented
edges of" that make up its boundary.

Now assume that the fill S, as in statement (2). In other words, the surface
obtained by cuttings alongI is a collection of closed disks, each possibly
with one marked point. By applying the Alexander lemma (Lear@ril) to
each of these disks we see théts isotopic to the identity homeomorphism
of S. Obviously in the case = 1 we have thap is isotopic to the identity.

In the caser > 1, we have only obtained thaf’ is isotopic to the identity.
This proves statement (2). O



Chapter Three

Dehn twists

In this chapter we study a patrticular type of mapping clased¢a Dehn
twist. Dehn twists are the simplest infinite order mappingsses in the
sense that they have representatives with the “smallestSiple supports.
Dehn twists play the role for mapping class groups that efgamg matri-
ces play for linear groups. We begin by defining twistsSirand proving
that they have infinite order iod(S). We determine many of the basic
properties of Dehn twists by studying their action on simptesed curves.
As one consequence, we compute the centédad(S). At the end of the
chapter we determine all relations that can occur betweerD@hn twists.

3.1 DEFINITION AND NONTRIVIALITY

In this section we define Dehn twists and prove they are naaltelements
of the mapping class group.

3.1.1 DEHN TWISTS AND THEIR ACTION ON CURVES

Consider the annulug = S* x [0, 1]. To orient4 we embed it in théd, )—
plane via the magd,t) — (0,t + 1), and take the orientation induced by
the standard orientation of the plane.

©-© @-

Figure 3.1 Two views of a Dehn twist.
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LetT : A — A be the “twist map” ofA given by the formula
T(0,t) = (6 + 2nt,t).

The magl’ is an orientation-preserving homeomorphism that fixdgpoint§
wise. Note that instead of usirfg+ 27t we could have usef — 27t. Our
choice is a “left twist,” while the other is a “right twist.”

Figure 3.1 gives two pictorial descriptions of the twist nilp We have
seen the picture on the left-hand side before, in our pro&froposition 2.4.
Indeed, the twist mag” here is the same as the map used to show that
Mod(A) surjects ontd.

Now let S be an arbitrary (oriented) surface and debe a simple closed

curve inS. Let NV be aregular neighborhood af and choose an orientatigh-
preserving homeomorphism : A — N. We obtain a homeomorphism
T, : S — S, called aDehn twist abouty, as follows:

[ ¢oTog¢pl(z) ifxeN
Ta(“")—{x if 2 € S\ V.

In other words, the instructions fat, are: “perform the twist mafd’ on the
annulusN, and fix every point outside a¥.”

The Dehn twistT,, depends on the choice &f and the homeomorphism
¢. However, by the uniqueness of regular neighborhoods thtepy class
of T,, does not depend on either of these choices. What is nigreloes
not depend on the choice of the simple closed curweithin its isotopy
class. Thus, it: denotes the isotopy class ef thenT, is well-defined as
an element oMod(S), called theDehn twist about:. We will sometimes
abuse notation slightly and writg, for the mapping clasg,,.

The Dehn twist was introduced by Max Dehn. He originally useslterm
“Schraubungen,” which can be translated as “screw map”{28].

Dehn twists on the torus. Via the isomorphism of Theorem 2.5, the Dehn
twists about thé1, 0)—curve and thé0, 1)—curve in7? map to the matrices

1 -1 and 10
0 1 11
Thus, these two Dehn twists generated(7?) ~ SL(2,Z). We will see in

Chapter 4 that in fact for every > 0 the groupMod(.S,) is generated by a
finite number of Dehn twists.
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cut

twist

glue

Figure 3.2 A Dehn twist via cutting and gluing.

—

Dehn twists via cutting and gluing. Here is another way to think about the
Dehn twistT,,. We can cutS alonga, twist a neighborhood of one boundary
component through an angle 2, and then reglue; see Figure 3.2. This
procedure gives a well-defined homeomorphisn$ efhich is equivalent to
T,. If «is a separating simple closed curve, these instructionsotisay

to cut alonga, twist one of the two pieces of the cut surface by, and
then reglue; this would give the identity homeomorphisntofThe key is
to twist just the neighborhood of one boundary component.

Dehn twists via the inclusion homomorphismIn general, ifS; is a closed
subsurface of a surfac®, there is an induced homomorphigvfod(S;) —
Mod(Ss); see Theorem 3.18 below. Given any inclusion of the anndlus
into a surfaceS, we obtain a homomorphismlod(A) — Mod(S). The
image of a generator dflod(A) is a Dehn twist inMod(S).

Action on simple closed curves.We can understand, by examining its
action on the isotopy classes of simple closed curveS.dhb is an isotopy
class withi(a,b) = 0 thenT(b) = b. In the case that(a,b) # 0 the
isotopy classT, (b) is determined by the following rule: given particular
representative$ anda of b anda, respectively, each segment®trossing

« Is replaced with a segment that “turns left, followsall the way around,
and then turns right.” This is true no matter which way we wtig; the
reason that we can distinguish left from right is that the mpagsed in the
definition of T, is taken to be orientation preserving.

Left versus right. We emphasize that, once an orientatiorba$ fixed, the
direction of a twistl, does not depend on any sort of orientationaofT his
is because “turning left” is well-defined on an oriented aoe. (Similarly, a



70 CHAPTER 3

left-handed screw is still a left-handed screw when it is¢arupside-down.)
The inverse mafi; ! is simply the twist about in the other direction; it is
defined similarly tdl},, with the twist magl” replaced by its invers@—!.

The action on curves via surgery. If i(a,b) is large (say, more than two),
it can be difficult to draw a picture df,(b) using the “turn left—turn right”
procedure given above. It is hard to plan ahead and leavegbrrmom for
all of the strands off,(b) that run around:. A convenient way to draw
T,(b) in practice is as follows. Start with one cungein the classh and
i(a, b) parallel curvesy;, each in the class, each in minimal position with
6 (one can also take the; to not have minimal position witl#, but then
one must takeo; N F| parallel curvesy;). Of course, the result is not a
simple closed curve. At each intersection point betwgesnd somexy;,
we do surgery as in Figure 3.3. The rule for the surgery is solke the
intersection in the unique way so that if we follow an arcjofowards the
intersection, the surgered arc turns left at the intersactAgain, this does
not rely on any orientation ofy; or of 3, but rather the orientation of the
surface. After performing this surgery at each intersegtihe result is a
simple closed curve in the cla%5(b).

|
ﬁ o

Figure 3.3 Dehn twists via surgery.

3.1.2 NONTRIVIALITY OF DEHN TWISTS

If a is the isotopy class of a simple closed curve that is homotimpa point
or a puncture, theffy, is trivial in Mod(S)—whatever twisting is done on
the annulus can be undone by untwisting the disk or oncetprett disk
inside. We can use the action of a Dehn twist on simple closedes to
prove that all other Dehn twists are nontrivial.

Proposition 3.1 Leta be the isotopy class of a simple closed cutvim a
surfaceS. If a is not homotopic to a point or a puncture 8f then the Dehn
twist T, is a nontrivial element okod(S).
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Proof. If «is a nonseparating simple closed curve, then by change of coo
dinates, we can find a simple closed cuprvith i(«, 5) = 1. Denote the
isotopy class of by b. As in Figure 3.2, one can draw a representative of
T,(b) that intersects once transversely. By the bigon criteriaii7,(b), b)

is actually equal to 1 (a bigon requires two intersectiofi$)ereforeTy (b)

is not the same dsand sol, is nontrivial inMod(S).

Perhaps a simpler way to phrase the proof in the casetisatonseparating

is to check thaf’, acts nontrivially onH;(S;Z); see Chapter 6 for more on
this homology action. lix is a separating essential simple closed curve,
then the action of, on H,(S;Z) is trivial, and so we are forced to use the
more subtle machinery of the change of coordinates prie@pd the bigon
criterion.

By the change of coordinates principle, an essential sgépgreurvec is as
depicted in Figure 3.4 (possibly with different genera aiffcent numbers
of punctures/boundary on the two sidesf We can thus choose an isotopy
classb with i(a,b) = 2, and we consider the isotopy claBg(b). We claim
thatT,(b) # b, from which it follows thatT, is nontrivial.

We now prove the claim. In the right hand side of Figure 3.4,shiew
representativeg and 5’ of b and7,(b); the given representatives intersect
four times. We will use the bigon criterion to check that atersections are
essential and s{7,(b),b) = 4, from which it follows that7, (b) # b. To
do this, note thap cuts 3’ into four arcs,3], 35, 35, and g}, and similarly
3’ cuts g into four arcss3y, 52, B3, and3,. For eachs; there is a uniqu@}
that has the same pair of endpoints®n 3'. This gives four candidates for
bigons. But each of these four “candidate bigoAs’ ﬁ; is a nonseparating
simple closed curve, and so none is an actual bigon. Thiseprthe claim,
and sdl, is nontrivial.

The remaining case is thatis homotopic to a boundary component®énd
thata is neither homotopic to a point or a puncture. It follows thas some
surface with boundary other than the disk or the once-puedtdisk. LetS
denote thedoubleof S, obtained by taking two copies &f and identifying
corresponding boundary components.Sinthe curvea becomes essential.
By our definition of the mapping class group for a surface Wwitindary, if

T,, were trivial inMod(.5), it would be trivial inMod(S), contradicting the
previous cases. a



72 CHAPTER 3

(67

Figure 3.4 Checking that a Dehn twist about a separatinglsigipsed curve is nontrivial.

3.2 DEHN TWISTS AND INTERSECTION NUMBERS

We have already seen the effectiveness of analyzing Delstst¢and other
mapping classes) via their actions on simple closed curVés.now give
two explicit formulas for this action.

Proposition 3.2 Leta andb be arbitrary isotopy classes of essential simple
closed curves in a surface, and febe an arbitrary integer. We have

i(T7(b),b) = |kli(a, b)*.

We remark that, as an important consequence of Proposittym@ have
the following:

Dehn twists have infinite order.

The only observation needed to prove this fact is that giveisatopy class
a of essential simple closed curves, one can find an isotofss élavith
i(a,b) > 0. As in the proof of Proposition 3.1, this is accomplishedhwit
the change of coordinates principle. Thus, PropositioniS&generaliza-
tion of Proposition 3.1. What is more, the proof of Propasiti3.2 is a
generalization of the proof of Proposition 3.1.

Proof. We choose representative simple closed cutvesd 5 in minimal
position and form a simple closed cungin the class ofl,(b) using the
surgical recipe given above. More specifically, we tdk&a,b) parallel
copies ofa lying to one side otx and one copy of; lying parallel tos, and
then we surger as in Figure 3.3; see the left-hand side ofr&igLb for a
picture in the case of(a,b) = 3 andk = 1.
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Figure 3.5 The simple closed curves in the proof of Propmsi8.2.

Simply by counting we see that

18N 6| = |kli(a,b)>.

Thus it suffices to show that and 5’ are in minimal position. By the bigon
criterion we only need to check that they do not form any bgyon

We cut and 3’ at the points of3 N 3’ and call the resulting closed arcs
{B;} and{3!}. We see that there are two types of “candidate bigons,” that
is, simple closed curves that can be formed from onearand one arc

ﬂ;: either the orientations of the two intersection points e same, as
for the curvey; on the right hand side of Figure 3.5, or the orientations of
the intersection points are different, as fgrin the same picture. In a true
bigon, the orientations at the two intersection points afierént, and so
the simple closed curve; in the first case cannot be a bigon. In the second
case, ify, were a bigon, then since the vertical arcgibtire parallel to arcs

of a we see thatv and form a bigon, contrary to assumption. O

Proposition 3.4 below is a useful generalization of Prajpmsi3.2. In order
to prove it, we require the following lemma.

Lemma 3.3 Leta and S be simple closed curves in a surface. Suppose that
« and g are in minimal position. Given a third simple closed cunyghere
exists a simple closed curvéthat is homotopic tey and that is in minimal
position with respect to both and 5.

Proof. By perturbing~ by isotopy if necessary, we may assume thas
transverse to botlax and 5. If ~ is not in minimal position witha, say,
then by the bigon criteriom and~ form a bigon. We can take this bigon
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to be innermost with respect t@ and~. By the assumption that and 3
are in minimal position, any arc of intersection @fwith this bigon either
connects the~—side of the bigon to the-side, or they—side to itself. In the
latter case, we have a bigon formed Byand~ that is contained inside the
original bigon.

Continuing in this way, we can find either a bigon formeddand~ or a
bigon formed bys and~ that is innermost among all such bigons. Say the
innermost bigon is formed by and~. As above, any intersection gfwith

this bigon is an arc connecting one side to the other. Thugangushy by
homotopy across the bigon, reducing the number of intarsepbints with

« by two and preserving the number of intersection points WithWe can
repeat this process until all bigons are eliminated, andethnena is proved.

O

Another approach to Lemma 3.3 is the following: one can shuwav there
exists a hyperbolic metric on the surface so that the cutvesd 5 are

geodesics [59, Exposé 3, Proposition 10]. Then the cyhean be taken to
be the geodesic in the free homotopy class.of

Proposition 3.4 Letay,...,a, be a collection of pairwise disjoint isotopy
classes of simple closed curves in a surfaéteand letM = ], T

Suppose that¢; > 0 for all 7 or e; < 0 for all 7. If b and ¢ are arbitrary
isotopy classes of simple closed curvesjrthen

i(M(b),¢) = > lesli(a, b)i(ai, ¢)| < i(b,c).
=1

Settingn = 1, e; = k, andc = b gives Proposition 3.2 as a special case.
There is a version of Proposition 3.4 where theare allowed to have ar-
bitrary signs, but the proof is not as straightforward; wierg¢he reader to
[102, Lemma 4.2].

Proof. We start by forming a representatiy# of M (b) as in the proof of
Proposition 3.2. As in that proof, it follows from the bigoriterion thatg3
and 3’ are in minimal position. This uses the fact that all of thestwiare

in the same direction, that is, tlhe all have the same sign. By Lemma 3.3,
there is a representativeof ¢ that is in minimal position with bots and3’.

By perturbing~ if necessary, we can assume that it does not pass through

pnp.
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There is a continuous map of the disjoint unionXafle;|i(a;, b) copies of
St into S with image3 U ', and where the images ¢f;| copies ofS* lie
in the class:;. Each copy ofi; intersectsy in at leasti(a;, ¢) points, by the
definition of geometric intersection number. Singés in minimal position
with 3 and’, we obtain:

> leili(ai, b)i(ai, ) < [(BUB) Ny| = i(M(b),c) +i(b, c)

It remains to prove that

i(M(b),c) <Y leili(as, b)i(ai, ) + i(b, c).

For this it suffices to find representatives f(b) andc whose intersection
consists of)  |e;|i(a;, b)i(ai, ) + i(b, c) points. The most natural repre-
sentatives satisfy this property. Precisely, idi(b) we can choose a curve
that lies in the union of the curvg and small regular neighborhoods of
disjoint representatives; of thea;. Then, forc, we take a curve that cuts
across each;-annulus ini(a;, ¢) arcs, and intersects in i(b, ¢) points not
contained in they,—annuli. O

Pairs of filling curves. We now give one useful consequence of Proposi-
tion 3.4. Say that a pair of isotopy classes b} of simple closed curves in

a surfaces fill if any pair of minimal position representatives fill (thattise
complement in of the representatives in the surface is dddin of disks
and once-punctured disks). This is the same as saying thewdoy isotopy
classc of essential simple closed curves in the surface eitfierc) > 0 or
i(b,c) > 0.

Proposition 3.5 Letg,n > 0 and assume thag(S,,,) < 0. There exists a
pair of simple closed curves iy, ,, that fill S ,,.

Proof. Choose a maximal collectiofw, . .., ay } of pairwise disjoint, non-
homotopic, essential simple closed curvesin,. When we cutS, ,, along

the o; we obtain a collection of surfaces. Each of these surfacasjphere
with b boundary components andpunctures withb + p = 3 (cf. Sec-

tion 8.3). We claim that there is a simple closed cugvé¢n S, so that
i(B3,a;) > 0 for eachi. We can construct as follows. First, we cuf,,,
along thew;. On each component of the cut surface, we then connect by
an arc each pair of distinct boundary components coming troma;. We

can take these arcs to be disjoint. dp,, these arcs can be pasted together
in an arbitrary fashion in order to obtain a collectiGn . . ., 5 of pairwise
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disjoint simple closed curves ifi; ,. By the bigon criterion eacl; is in
minimal position with respect to eacely and eachy; intersects either one
or two of the3;. Suppose thag; and ;. intersecta; and that3; and 3,/
are distinct. Then we can perform a “half-twist” abeytso thats; and3;,
become a single curve. Since this process does not createigons, the
resulting collection{3;} is still in minimal position with eacly;. Continu-
ing in this way, we obtain a single simple closed cufv#hat inersects each
«; and is in minimal position with respect to eaech as desired.

LetM =T, ---T,,. We claim that and M (3) fill S, ,,. Indeed, lety be
an arbitrary isotopy class of simple closed curvesn,. We wish to show
that eitheri(3,~) > 0 ori(M(5),~v) > 0. By Proposition 3.4 we have

k

i(M(B),y) = ias, B)ias,7)| < i(B,7).

i=1

If i(8,~) andi(M(3),~) are both equal to zero, then this immediately im-
plies thati(«;,v) = 0 for eachi. This means that is isotopic to somey;.
But theni(~, 3) > 0 by the construction off, and so we have a contradic-
tion. O

3.3 BASIC FACTS ABOUT DEHN TWISTS

In this section we prove some fundamental facts about Delststhat will
be used repeatedly throughout this book. Throughout thisesttiona and
b denote arbitrary (unoriented) isotopy classes of simpleed curves.

Fact3.6 T, =1, < a=01.

We have already addressed the reverse implication of Factwhich says
that Dehn twists are well-defined mapping classes. For tiveata impli-
cation, we start by noting that the statement is not as obvamuit seems.
Indeed, suppose we know thd{ = T1,. Then we know that, given any
two representatives df, andT; with annular supports (neighborhoods of
simple closed curves in the classeandb), there is an isotopy between the
representative homeomorphisms. One would then like to lsatythere is
an induced isotopy from one annular support to the otherhamde an iso-
topy between curves. But partway through the isotopy of lemarphisms,
the support might become something other than an annuludiajpe the
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whole surface, even—and we have lost any information we badtasim-
ple closed curves.

So assume now that # b. We will show that7, # T,. We start by
finding an isotopy class of simple closed curves so théa,c) = 0 and
i(b,c) # 0. There are two cases. First,ifa,b) # 0, then we can take

¢ = a. Ifi(a,b) = 0, then one can use change of coordinates to easily
find ¢ (there are several cases, depending on the separatiorrtgemd the
curves). Given any such choice @fwe apply Proposition 3.2 and find:

i(Ta(c),¢) = i(a,¢)® = 0 #i(b,¢)* = i(Ty(c), c).
It follows that T, (c) # Ty(c) and sdl, # Tp.

We have the following formula for the conjugate of a Dehn twis

Fact 3.7 For any f € Mod(S) and any isotopy class of simple closed
curves inS we have:

Ty = fTaf "

Fact 3.7 can be checked directly, as follows. First, redak tve apply
elements of the mapping class group from right to left. 4etenote a rep-
resentative off, let o« denote a representative af and letiy, denote a
representative df,, whose support is an annulus. Note that takes a reg-
ular neighborhood ob(«) to a regular neighborhood af (preserving the
orientation), then),, twists the neighborhood ef, and¢ takes this twisted
neighborhood ofy back to a neighborhood af(«) (again preserving the
orientation). So the net result is a Dehn twist abo(t).

From the previous facts we obtain the following.
Fact 3.8 For any f € Mod(S) and any isotopy class of simple closed
curves inS, we have:

f commutes witll, <= f(a) = a.

Indeed, by Facts 3.7 and 3.6 we have:
fTa :Taf<:>fTaf71 =T,
T =Ta
< f(a) = a.
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By the classification of simple closed curvesdr{see§1.3), given any two
nonseparating simple closed curveandb in S, there existgr € Mod(.5)
with h(a) = b. Hence Fact 3.7 also gives the following.

If « andb are nonseparating simple closed curvessithenT,
and T} are conjugate ifMod(S).

The last statement can be generalized, using change ofinatesd, to twists
about any two simple closed curves of the same topologiqe. ty

The next fact follows from Proposition 3.2 and Fact 3.8.

Fact 3.9 For any two isotopy classesand b of simple closed curves in a
surfaceS, we have:

i(a,b) =0 <= T,(b) =b = T, T, = Ty1,.

The only nontrivial part of the proof of Fact 3.9 is that themed statement
implies the first. But ifT,(b) = b, theni(T,(b),b) = i(b,b) = 0. By
Proposition 3.24(T,(b), b) = i(a, b)?, and it follows thati(a, b) = 0.

Powers of Dehn twists.There are analogues of each of the above facts for
powers of Dehn twists. Fof € Mod(S), we have

jp—1 _
Hal ™ =Ty

and sof commutes withZ? if and only if f(a) = a. Also, for nontrivial
Dehn twistsT,,, T;, and nonzero integers k, we have:

Ti =Tf <=a=bandj =k
TITF = TFT) <= i(a,b) = 0

In each case the proof is essentially the same as the casagwhg = 1.

In the remainder of this section we give three applicatiohthe Alexan-
der method and our basic facts about Dehn twists: we compatednter
of the mapping class group, we derive some geometricatlyéad homo-
morphisms between mapping class groups, and we give cotigm#aof
mapping class groups of certain surfaces with boundary.
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3.4 THE CENTER OF THE MAPPING CLASS GROUP

Recall that thecenter Z(G) of a groupG is the subgroup o> consisting
of those elements that commute with every elementzofWe will apply
Fact 3.8 and the Alexander method to compute the centefooff(S).

THEOREM 3.10 For g > 3 the groupZ (Mod(.Sy)) is trivial.

Figure 3.6 The simple closed curves used to determine thtercefMod(.S).

Proof. By Fact 3.8, any central elemeyfitof Mod(S,) must fix every iso-
topy class of simple closed curvesSf). Consider the simple closed curves
ap, . .., aiag Shown in Figure 3.6. By statement (1) of the Alexander method
f has a representativethat fixes the graphi;, and thusg induces a map
¢, of this graph.

Figure 3.7 The collection of simple closed curves in Figu@f8rm a graph inS4 that is
abstractly isomorphic to the graghshown here for the cage= 4.

The graphUq; is isomorphic to the abstract graphshown in Figure 3.7
for the casey = 4. Forg > 3, the only automorphisms df come from
flipping the three edges that form loops and swapping pairsdges that
form a loop. In particular, any automorphismIofimust fix the three edges
coming fromay. Thus, we see that preserves the orientation af;, and so
sinceg is orientation preserving, it must also preserve the twesimfay. It
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follows that¢, does not interchange the two edge$'@oming fromay, the
two coming fromas, or the two coming fromws. Inductively, we see that
¢, fixes each edge df with orientation. By statement (2) of the Alexander
method, plus the fact that tHey; } fill .S,, we have that is isotopic to the
identity; that is,f is the identity. O

The proof of Theorem 3.10 actually shows that the center pfiaite index
subgroup ofMod(S,) is trivial wheng > 3, since a finite index subgroup
contains some power of each Dehn twist and since Fact 3.&applpowers
of Dehn twists.

Figure 3.8 Rotations byr about the indicated axes give hyperelliptic involutionstioé
punctured surfaceSo,2, So,4, S1,1, andSt 2.

By choosing appropriate configurations of simple closed/esiron other
surfaces, the method of proof of Theorem 3.10 shows that the aandi-
dates for nontrivial central elements of (finite index suhgrs of)Mod (S, )|
are the hyperelliptic involutions df? and S, as well as the hyperelliptic
involutions shown in Figure 3.8. So the order®6fMod(S, ,)) is at most
2 whenS, ,, is one of the punctured surfacés », Si,0, S1,1, 51,2, Or S2.0,
the order ofZ(Mod(Sp 4)) is at most 4, and/ (Mod (S, ,,)) is trivial in all
other cases. In the caseNiod(Sy 4) the center is trivial since the the sub-
group generated by the hyperelliptic involutions actshfaily on the four
punctures, and the symmetric group on the four puncturesnitedess.

On the other hand, to show that a mapping claseally is an element of
Z(Mod(S)), it suffices to choose a generating set of Dehn twists and half
twists forMod(S) and show that fixes each of the corresponding isotopy
classes of simple closed curves and simple arcs (see QgrdllEb). In this
way, we find thatZ(Mod (S, ,)) ~ Z/2Z when S, is Sp 2, S1,0, S1,1,

S1.2, 0rSz 0. By the same argument, for a surface with boundary, the Dehn
twist about any boundary component is central.

We summarize the results for punctured surfaces in theviiatig table.



DEHN TWISTS 81

| Surface (with punctures] Z(Mod(S)) |

So0,2, 51,0, 51,1, 51,2, 52,0 L
all otherS, , 1

As stated in the proof of Theorem 3.10, these nontrivial redrglements
have the property that they fix the isotopy class of every kmjpsed curve.

3.5 RELATIONS BETWEEN TWO DEHN TWISTS

The goal of this section is to answer the question: what atgelelations
can occur between two Dehn twists? In fact we answer the memergl

question where powers of Dehn twists are allowed. We hawadjr seen
that Dehn twists about disjoint curves commute in the mappiass group.
The next most basic relation between twists is the braidioglaExcept in a
few cases, we will see that there are no other relations lesgt\lehn twists.

3.5.1 THE BRAID RELATION

The following proposition gives a basic relation betweernDéwists in
Mod(S), called thebraid relation

Proposition 3.11 (Braid relation) If a andb are isotopy classes of simple
closed curves with(a, b) = 1 then

T, T, T, = TyT,Tp.

Proof. The relation
T.T,T, = T, ToT,
is equivalent to the relation
(T.Ty) To(TuTy) ™ = Th.
By Fact 3.7, this is equivalent to the relation

I, 1,(a) = Tb-
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Ty
& -

T,

\

Figure 3.9 The proof of Proposition 3.12.

Applying Fact 3.6, this is equivalent to the equality
TaTb(a) =b.

By the change of coordinates principle, it suffices to chéelast statement
for any two isotopy classes andb with i(a,b) = 1. The computation is
shown in Figure 3.9, where is some representative efand 3 is some
representative of. O

If aisthe(1,0)—curve and is the(0, 1)—curve on the torug?, then via the
isomorphism of Theorem 2.5 the braid relation correspoond$ié familiar
relation inSL(2, Z):

)G )-CG 0T

The next proposition records our rephrasing of the braidti@h for use in
our proof of Theorem 4.1 below.

Proposition 3.12 If ¢ andb are isotopy classes of simple closed curves that
satisfyi(a,b) = 1, thenT,Ty(a) = b.



DEHN TWISTS 83

The braid relation gets its name from the analogous relatiotie braid
group (see Section 9.4).

One can ask for a converse to the braid relation: if two Dehstsasatisfy
the braid relation algebraically, then do the correspogdurves necessarily
have intersection number one? McCarthy gave the followigfathat the
answer is yes [140]. Theorem 3.14 below is a much more gefaralwe
consider Proposition 3.13 as a warmup.

Proposition 3.13 If a and b are distinct isotopy classes of simple closed
curves and the Dehn twists, and T, satisfty T, 7,7, = T,T,T;, then
i(a,b) = 1.

Proof. As in the proof of Proposition 3.11, the relatiGh 7,7, = T,7,T;
is equivalent to the statement tHa{7}, (a) = b, which implies
i(a, TyTy(a)) = i(a,b).

Applying T;! to both curves on the left hand side of the equation, we see
that

i(a, Ty(a)) = i(a,b).
Now, by Proposition 3.2, we have that
i(a,b)? =i(a,b).

And soi(a, b) is either equal to 0 or 1. If(a,b) were 0, an application of
Fact 3.9 reduces the relationty = T;, which, by Fact 3.6, contradicts the
assumptioru # b. Thus,i(a,b) = 1. O

We note that the same proof really shows the stronger resaftita # b
andTiTFT: = TFT,TF, theni(a,b) = 1 andj = k = +1.

3.5.2 GROUPS GENERATED BY TWO DEHN TWISTS

Now that we know the braid relation it is natural to try to finther rela-
tions between two Dehn twists. In this subsection we wilegivcomplete
classification of such relations. We begin with the follogiin
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THEOREM 3.14 Leta andb be two isotopy classes of simple closed curves
in a surfaceS. If i(a,b) > 2, then the group generated By, and 7} is
isomorphic to the free group, of rank 2.

We can also say what happens in the other cases=Ib, then(T,,T}) ~ Z
sinceTy = T{ ifand only ifa = bandj = k. If a # b andi(a,b) = 0,
then (T, Ty) is isomorphic taZ? by Fact 3.9 plus the fact that! = Tlf‘ if
and only ifa = b andj = k. Wheni(a,b) = 1 we have that

(T, Thy) = Mod(S7) = (z,y | zyx = yay),
whereS] is a torus with an open disk removed (see above).

We remark that the question of which groups can be generatetirbe
Dehn twists is completely open. See Section 5.1 for oneioeldtetween
three Dehn twists.

Below we give the proof of Theorem 3.14 published by Ishidd Hamidi-

Tehrani [99, 74]. The theorem, though, was apparently kntwlvanov

(and perhaps others) in the early 1980's. We first introdineesio-called
“ping pong lemma,” which is a basic and fundamental tool frg@ometric

group theory. Itis a method to prove that a group is free byeustdnding
how it acts on a set. Poincaré used this method to provefthabihyper-

bolic translations have different axes, then sufficientightpowers of these
elements generate a free group of r&nk

Lemma 3.15 (Ping pong lemma)Let G be a group acting on a seY. Let

g1, - - -, gn D€ elements afr. Suppose that there are nonempty, disjoint sub-
setsXy,..., X, of X with the property that, for eachand eachj # i, we
havegf‘(Xj) C X, for every nonzero integet. Then the group generated
by theg; is a free group of rank.

Proof. We need to show that any nontrivial freely reduced word inghe
represents a nontrivial element@f First suppose that is a freely reduced
word that starts and ends with a nontrivial powergef Then for anyz €
X5, we havew(z) € Xi, and sow(z) # z sinceX; N Xy = (. Thusw
represents a nontrivial element g@f Since any other freely reduced word
in the g; is conjugate to a word that starts and ends withevery freely
reduced word in they; represents an element 6f that is conjugate to a
nontrivial element, and hence is itself nontrivial. O
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Proof of Theorem 3.14Suppose thai(a,b) > 2. Let G be the group gen-
erated byg; = T, andg, = Ty, and letX be the set of isotopy classes of
simple closed curves ii§. The groupG acts onX. With the ping pong
lemma in mind, we define sefs, and X, as follows:

={ce X :i(e,b) >i(c,a)}
_{ceX. i(c,a) >i(c,b)}

These sets are obviously disjoint, and they are nonemptesir X, and
be Xy

By the ping pong lemma, the proof is reduced to checking TH&tX,) C
X, andT,f(Xa) C X, for k # 0. By symmetry, we only need to check the
former inclusion.

SettingM = T in Proposition 3.4 yields

i(Tf(c),b) — |kli(a, b)i(a,c)| < i(b,c),
and so
—i(b,¢) < i(T¥(c),b) — |K|i(a, b)i(a,c) < i(b,c).

If ¢ € X, theni(a,c) > i(b,c). Sincek # 0, the left-hand inequality
implies

i(Ty (¢),b) > |kli(a, b)i(a, ¢) — i(b, )
>2|kli(a, c) — i(b,c)
> 2|kli(a, c) — i(a,c)
= (2|k| = 1)i(a, c)
>i(a,c)
=i(Ty (), Ty (c))
=i(a, Ty’ (¢)).
Thusi(T¥(c),b) > i(T¥(c),a), and saT¥(c) € X,, as desired. O

A free group in SL(2,Z). The proof of Theorem 3.14 given above is
inspired by a proof that the matrices

(o 1) = (07)
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generate a free subgroup ®L(2,7) for n > 2 (this fact is originally due
to Magnus [133]). In this case, the sets used for the ping pemgna are
{(z,y) € 2% : |z > |y|} and{(z,y) € Z* : |y| > |2[}.

The classification of groups generated by two Dehn twistsWith a little
more care, the method of proof of Theorem 3.14 can be appigilve the
stronger statement thé&t;, %) ~ F, except ifi(a,b) = 0 or if i(a,b) = 1
and the se{j, k} is equal to{1}, {1,2}, or {1,3}. Whenj = k = 1 we
already know that we have the braid relation. And in the otheeptional
cases, there exist nontrivial relations as well. For instarif i(a,b) = 1
thenT? andT;, satisfy the relation

T’TyT2Ty, = TyT2T, T2
and7T? andT, satisfy
T3 T3T,T3T, = Ty T3 Ty T3 T, T3.

What is more, it turns out that these are the defining relatfonthe groups
(T2, T) and (T3, T,). The group(T?2,T,) corresponds to a well-known
index 3 subgroup oBj3 (the subgroup “fixing” the first strand). The group
(T3, T,) does not seem to be a well-known subgrougBaf Luis Paris has
explained to us that this is an index 8 subgroupBgfand he has used the
Reidemeister—Schreier algorithm to give an elementargfgtat the stated
relation is the unique defining relation; see [169].

Combining the results from this section, we can completisiydll possi-

bilities for groups generated by powers of two Dehn twiststhie table we
assume that andb are essential and that> k£ > 0, and that the underlying
surface is nof™? or S ;.

| | Group generated by}, 7}*

i(a,b) =0,a=0b | (T4, TF) = (z,ylz =y) = L

i(a,b) =0,a#b | (T2, T, > (w,y |2y = yx) ~ 72

i(a’v b) =1 <TaaTb> ~ <x Y ‘ TYT = y$y>
<ﬁﬂw%@www=ww>
(T3, Ty) =~ (x,y|zyzyry = yryzryz)
<T§,T’“> ~ (z,y|) ~ F, otherwise

i(a,b) > 2 (T, TF) =~ (x,y|) ~ F

If the surface isI”? or Sy ; andi(a,b) = 1 we have the added relations
(TaTb)6 =1, (zﬂgfrb)4 =1, and(Tg’Tb)?) =1.
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3.6 CUTTING, CAPPING, AND INCLUDING

In this section we apply our knowledge about Dehn twists dresk a ba-
sic general question about mapping class groups: When dgesraetric
operation on a surface induce an algebraic operation ondiresponding
mapping class group? We investigate three such operatiockiding a
surface into another surface, “capping” a boundary compboka surface
with a punctured disk, and deleting a simple closed curvenfeosurface.
We will see that in each case there indeed an induced homdisorpon
the level of mapping class groups.

The results in this section are somewhat technical, but useful. The
reader might consider skipping the proofs on a first reading.

3.6.1 THE INCLUSION HOMOMORPHISM

We start with a simple lemma.

Lemma 3.16 Letayq,. .., «, be a collection of homotopically distinct sim-
ple closed curves in a surface each not homotopic to a point i%\. Let3
and 3’ be simple closed curves fthat are both disjoint fronu«; and are
homotopically distinct from each;. If 3 and 3" are isotopic inS, then they
are isotopic inS' — Uaqy;.

Proof. It suffices to find an isotopy fromi to 3’ in S that avoideUc«;. First,
we may modify3 so that it is transverse 1@ and is still disjoint fromUcay;.
If 3N 3" =0, thens ands’ form the boundary of an annulusin S. Since
3 (and/’) is not homotopic to anyy;, it cannot be that any; are contained
in A. The annulusA gives the desired isotopy frofito 3.

If 3N B # 0, then by the bigon criterion they form a bigon. Since the
are not homotopic to a point aridie;;) N (B U ) = 0, the intersection of
Uay; with the bigon is empty. We can thus pustacross the bigon, keeping
£ disjoint from Ua; throughout the isotopy. By induction we reduce to the
case wheregg and3’ are disjoint. This completes the proof. O

LEmMMA 3.17 Let {ay,...,a,} be a collection of distinct nontrivial iso-
topy classes of simple closed curves in a surféicend assume thata;, a;) =|}
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0 for al 4,5. Let{by,...,b,} be another such collection. Let,q; €
Z —{0}. If

ToTe - Toy =TT - Ty
in Mod(S) thenm = n and the set§7; } and {7} } are equal. In partic-
ular,

(Toy s Tayy - Ta,, ) = Z™.

A mapping clas§] 7%/ asin Lemma 3.17 is callednaultitwist Lemma 3.1]]
is a generalization of Fact 3.6, and in fact the proof is alstraghtforward
generalization. Note that in the statement theand b; are allowed to be
peripheral.

When S is a closed subsurface of a surfage there is a natural homomor-
phism7 : Mod(S) — Mod(S"). For f € Mod(S), we represent it by some
¢ € Homeo™ (S,85). Then, if¢ is the element oHomeo™ (5’,95") that
agrees withp on S and is the identity outside df, we definen(f) to be
the class ofs. The mapy is well-defined because any homotopy between
two elements ofp € Homeo™ (S, dS) gives a homotopy between the cor-
responding elements éfomeo™ (S, 9S’). The next theorem describes the
kernel ofr.

THEOREM 3.18 (The inclusion homomorphism)Let S be a closed sub-
surface of a surfacé’. Assume tha$ is not homeomorphic to a closed an-
nulus and that no component §f — S is an open disk. Lej : Mod(S) —
Mod(S”) be the induced map. Let, ..., «,, denote the boundary compo-
nents ofS that bound once-punctured disks§h-S and let{ 51,71}, - - -, {5n, v 1
denote the pairs of boundary components$ @hat bound annuli in5” — S.

Then the kernel af is the free abelian group

ker(n) = (Tu,, . .. ,Tam,TﬁlT;ll, . ,TﬁnT;}y

In particular if no connected component 8f — S is an open annulus, an
open disk, or an open once-marked disk thes injective.

The annulus is a special case for Theorem 3.18 for the sinqolethat it
has two boundary components that are isotopicS i§ an annulus, then
is injective unlessS’ is obtained fromS by “capping” one or both boundary
components with disks or once-punctured disks.
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Proof. Let f € ker(n), and let¢p € Homeo™(S,dS) be a representa-
tive. As above we may extendl by the identity in order to obtair$ €
Homeo ™ (S’, 8S"). By definition represents)(f). Thereforeg lies in the
connected component of the identityliflwmeo™ (S’, 95").

Let § be an arbitrary oriented simple closed curveS’lnSinceAqE is isotopic
to the identity, we have tha@(d) is isotopic tod in S’. Since¢ agrees with
¢ on S, we have that)(9) is isotopic tod in S’. By Lemma 3.16 and the
assumption o’ — S, we have that () is isotopic tod in S.

We can choose a collection of simple closed curdgs..,d; in S that
satisfy the three properties in the statement of the Aleganaethod (pair-
wise minimal position, pairwise nonisotopic, no tripleaérgections) and so
that the surface obtained frofby cutting alongJd; is a collection of disks,
once-punctured disks and closed annular neighborhdgas the boundary
components. Moreover, we can chodsg} so that any homeomorphism
that fixesUd; U 35S necessarily preserves the complementary regions.

By the first statement of the Alexander methadis isotopic (inS) to a
homeomorphism ofS that fixesus; U 9S. SinceMod(D?) = 1 and
Mod(D? — point) = 1 (Lemma 2.1), it follows thatf has a representa-
tive that is supported in thév;. SinceMod(A) ~ Z (Proposition 2.4),

it follows that f is a product of Dehn twists about boundary components.
By Lemma 3.17,f must become the trivial multitwist i8’. The theorem
follows. O

The proof of Theorem 3.18 extends to the case wiSeigedisconnected and
Mod(S) is taken to be the direct product of the mapping class groéigs o
connected components.

3.6.2 THE CAPPING HOMOMORPHISM

One particularly useful special case of Theorem 3.18 isdlse evheres’— S

is a once-punctured disk. We say tHtis the surface obtained frorfi

by cappingone boundary component. In this case we have the following
statement.

Proposition 3.19 (The capping homomorphism)Let S’ be the surface of§-
tained from a surfac& by capping the boundary componeghivith a once-
marked disk; call the marked point in this diskDenote byMod(S, {p1, ..., px})}
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the subgroup oMod(.S) consisting of elements that fix the punctyses . . , pxli
wherek > 0. LetMod(S’, {po,...,pr}) denote the subgroup dflod(S’)
consisting of elements that fix the marked popts . . , px, and letCap :
Mod(S, {p1,..-,pr}) — Mod*(S’,{po,...,pr}) be the induced homo-
morphism. Then the following sequence is exact:

Ca
1 — (T) — Mod(S, {p1,---,pk}) —= Mod(S', {po, - -.,pk}) — 1.

One might also wonder about the case where a boundary comipohg’
is capped by a (unmarked) disk. The kernel in that case isagainit to the
fundamental group of the unit tangent bundleSéfsee Section 4.2.

3.6.3 THE CUTTING HOMOMORPHISM

The next geometric operation we consider is the followinget & be an
essential simple closed curve in a surfate We can deletex from S in
order to obtain a surfacé — « that has two more punctures thandoes.
For example, ifS has no boundary, thefi — o can be identified with the
interior of the surface obtained by cuttiitgalonga.

Let a denote the isotopy class efand letMod (.S, a) denote the stabilizer
in Mod(SS) of a. We would like to show that there is a well-defined homo-
morphismMod (S, a) — Mod(S — «). There is an obvious map: givghe
Mod(S,a), choose a representativethat fixesa. The homeomorphism
¢ restricts to a homeomorphism 6f — « and hence gives an element of
Mod (S — «). In order to show that this map: Mod (.S, a) — Mod(S — «)

is well-defined, we need to show that if two homeomorphismthefpair
(S, «) are homotopic as homeomorphisms&fthen they are homotopic
through homeomorphisms that fix We now show that this is indeed the
case.

Proposition 3.20 (The cutting homomorphism) LetS be a closed surface
with finitely many marked points. Let, ..., «, be a collection of pairwise
disjoint, homotopically distinct essential simple clogedves inS. There
is a well-defined homomorphism

¢ : Mod(S, {[a1],- .., [an]}) = Mod(S — Ua).

with kernel(T,,, ..., Ta,)-
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Proof. Itis clear that the mag defined above is a homomorphism, as long
as it is well-defined. Thus, we only need to show tha well-defined.

Let NV be an open regular neighborhoodwa#;. The inclusionS — N — S
induces a homomorphismy : Mod(S — N) — Mod(S). The mapn,
surjects ontdMlod(S, {[a1], ..., [an]}) and by Theorem 3.18 its kernéf;
is generated by elemerﬂ%jT;}, whereozz.+ anda; are the two boundary

components ofV that are isotozpic tey; in S.

Let S — N denote the surface obtained fra#n- V by capping each bound-
ary component with a punctured disk. The surf#€e- N is naturally
homeomorphic t&6 — Ua; and thus there is a canonical isomorphism
Mod(S — N) — Mod(S — Uq;).

By Theorem 3.18, the kernel of the homomorphigsm: Mod(S — N) —
Mod(S — N) is the groupK,; generated by th& . andT, -.

We consider the following diagram.

K
1 Ky Mod(S — N) —2— Mod(S — N)
m O ~|T
Mod(S, {[a1],. .- , [an]}) ——— Mod(S — Uay)
1

Since K1 < Ko, it follows thatT o 7, o n; ! is well-defined. But this

composition is nothing other than the maplefined above, and so we are
done. 0

3.6.4 COMPUTATIONS OF MAPPING CLASS GROUPS VIA CAPPING

We can use Proposition 3.19 to determine the mapping clasgpgiof some
surfaces with boundary.

Let P denote goair of pants that is, a compact surface of genus 0 with 3
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boundary components (and no marked points). Recall fromd3ition 2.3
thatPMod(Sp,3) = 1. Starting from this fact and applying Proposition 3.19
three times, we obtain the isomorphism

Mod(P) ~ Z3.

Let S{ denote a torus minus an open disk. We will show that

P

Mod(S1) ~ SL(2,Z)

whereSL(2,Z) denotes the universal central extensioisbf2, Z). We will
need the following group presentations (see [X895]):

SL(2,Z) ~ (a,b| aba = bab, (ab)® = 1)

SL(2,Z) ~ {(a,b| aba = bab)

From these presentations one sees that there is a surjaotivemorphism
SL(2,Z) — SL(2,Z) sendinga to a andb to b with kernel {(ab)%) ~ Z.

There are also homomorphismé.(2,Z) — Mod(S]) andSL(2,Z) —
Mod(S1,1), where in each case the generatwedb map to the Dehn twists
about the latitude and longitude curves. These maps fit reddllowing
diagram of exact sequences, where each square commutes:

1—=Z—>S02,7)— > SL(2,Z) —>1

T

Ca,
1 ——7Z —> Mod(S}) —% Mod(S; 1) — 1

The desired isomorphism follows from the five lemma.

We mention that the groupL(2,7Z) is also isomorphic to the braid group
on 3 strands (see Chapter 9), the fundamental group of theleament of
the trefoil knot inS3, as well as the local fundamental group of the ordinary
cusp singularity, that is, the fundamental group of the demgent inC? of

the affine curver? = 43,



Chapter Four

Generating the mapping class group

Is there a way to generate all (homotopy classes of) homqursons of

a surface by compositions of simple-to-understand homeghisms? We
have already seen thafod(7?) is generated by the Dehn twists about the
latitude and longitude curves. Our next main goal will be tove the fol-
lowing result.

THEOREM 4.1 (Dehn—Lickorish theorem) For g > 0 the groupMod(S)
is generated by finitely many Dehn twists about nonsepayaimple closed
curves.

Theorem 4.1 can be likened to the theorem that for each 2 the group
SL(n,Z) can be generated by finitely many elementary matrices. As wit
the linear case, Theorem 4.1 is fundamental to our undefistguefMod (.S, ) J]

In the 1920’s Dehn proved thatod(S,) is generated bgg(g — 1) Dehn

twists [49]. Mumford, building on Dehn’s work, showed in I@that only

Dehn twists about nonseparating curves were needed [189]964 Lick-

orish, apparently unaware of Dehn’s work, gave an indepanplieof that
Mod(S,) is generated by the Dehn twists about 8ze— 1 nonseparating
curves shown in Figure 4.5 below [128].

In 1979 Humphries [96] proved the surprising theorem thattttists about
the2g + 1 curves in Figure 4.1 suffice to generatd(S,). These genera-
tors are often called thlumphries generatorsHumphries further showed
that any set of Dehn twist generators ¥dbd(S,) must have at leagty + 1
elements; see Section 6.3 for a proof of this fact.

Punctures and pure mapping class groups. Theorem 4.1 is simply not
true for surfaces with multiple punctures, since no conmsiof Dehn
twists can permute the punctures. [R&lod(S, ,) denote thepure map-
ping class groumf S, ,, which is defined to be the subgroupMbd(S, )
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Figure 4.1 Dehn twists about the2¢ + 1 simple closed curves generdt&d(S).

consisting of elements that fix each puncture individuallihe action of
Mod(S, ) on the punctures of, ,, gives us a short exact sequence

1 — PMod(Sg,n) — Mod(Sy,n) — ¥, — 1

wherey,, is the permutation group on the punctures. We will show for
any surfaceS, ,, thatPMod(S, ,,) is finitely generated by Dehn twists (see
Theorems 4.9 and 4.11). We will give a finite generating settie full
groupMod(Sy ) in Section 4.4.4.

Inthe case: = 1 we havePMod(S,,1) = Mod(Sy,1). If we place a marked
point at the rightmost point of, in Figure 4.1, we obtain a collection of
curves inS, 1. A slight modification of our proof of Theorem 4.1 will show
that the corresponding Dehn twists form a generating se¥fiad (.S, 1 ).

Outline of the proof of Theorem 4.1. In proving Theorem 4.1 we will ac-
tually need to prove a more general statement. Preciselyilvprove that
PMod(S,.) is generated by finitely many Dehn twists about nonsepayatin
simple closed curves for any> 1 andn > 0 (Theorem 4.11 below).

We begin by giving a brief outline of the weaker statement Eidod (.S, ,,)
is generated by the (infinite) collection of all Dehn twisb®at nonseparat-
ing simple closed curves. We do this in order to motivate tmpartant
tools: the complex of curves and the Birman exact sequenaeh Bf these
tools is of independent interest, and is introduced befoegoroof of Theo-
rem4.1.

The argument is a double induction grandn, with base casg ;.

Step 1: Induction on genusSupposey > 2, and letf € Mod(Sy ).
Let a be an arbitrary isotopy class of nonseparating simple dasgves
in Sy,,. We want to show that there is a producof Dehn twists about
nonseparating curves i\, ,, that takesf (a) to a. For if this is the case then
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we can regard f as an element of the mapping class grouf pf; ,,;», the
surface obtained by cutting, ,, along a representative af Then we can
apply induction on genus.

If we are fortunate enough théa, f(a)) = 1, then Lemma 3.12 gives that
T, Tj(q)T, takesf(a) to a, and we are done. In the general case, we just
need to show that there is a sequence of isotopy classes plesaiosed
curvesa = cy,...,c; = f(a)in Sy, sothati(c;, c;+1) = 1. This is exactly
the content of Lemma 4.5. In the language of Section 4.1,|¢msna is
phrased in terms of the connectedness of a particular “nesdddfomplex of
nonseparating curves.”

Step 2: Induction on the number of punctur&ipposgy > 1 andn > 1.
The inductive step om reads as follows. There is a natural méip,, —
Sg.n—1 Where one of the punctures/marked points is “forgottend #ns
induces a surjective homomorphisiiod(Sy,,) — Mod(Sy,—1). Ele-
ments of the kernel come from “pushing” th¢h puncture around the sur-
face, and the Birman exact sequence (Theorem 4.6) identifegernel
with 71(Sg.,—1). We also show that generators foy(S, ,,—1) correspond
to products of Dehn twists about nonseparating simple dl@sgves; see
Fact4.7. In other words the difference betw@énd (S, ,) andMod(Sg ,,—1)]
is (finitely) generated by Dehn twists about nonseparatimgas, and so this
completes the inductive step on the number of punctures.

We give the details of the proof of Theorem 4.11 in Section 4.3

The word problem. Aside from his seminal work on the mapping class
group, another of Max Dehn'’s highly influential contribuigoto mathemat-
ics is the idea of the word problem for a finitely generatedugrb. The
word problemfor I" asks for an algorithm that takes as input any finite prod-
uctw of elements from a fixed generating set fofand their inverses), and
as output tells whether or nat represents the identity elementof It is

a difficult result of Adian from the 1950’s that there are fahjt presented
groupsI” with unsolvable word problem; that is, no such algorithmfaas
above exists. It is not difficult to prove that the (un)soiiabof the word
problem for a given group does not depend on the generating se

Now consideMod(.S) with an explicit finite generating set, say for example
the Humphries generators (see below). Suppose we are giwefirdte
productw of these generators. We can choose a colleciof curves and
arcs that fill.S, and we can apply each generatoruinto each curve and
arc of C. We can then use the bigon criterion and the Alexander mettinod
determine whether the elementfod(.S) is trivial or not. ThusMod(S)
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has a solvable word problem.

THEOREM 4.2 LetS = S, ,,. The groupMod(S) has solvable word prob-
lem.

4.1 THE COMPLEX OF CURVES

The complex of curveg(S), defined by Harvey [83], is an abstract sim-
plicial complex associated to a surfaSe Its 1-skeleton is given by the
following data.

Vertices. There is one vertex af(S) for each isotopy class of
essential simple closed curvesSin

Edges.There is an edge between any two vertice€ (@) cor-
responding to isotopy classesandb with i(a,b) = 0.

More generally,C(S) has ak—simplex for eachk + 1)-tuple of vertices
where each pair of corresponding isotopy classes has gaormggrsection
number zero. In other wordsg;(S) is aflag complex which means that
k + 1 vertices span &—simplex ofC(S) if and only if they are pairwise
connected by edgésWhile we only make use of the 1-skeletonfs),
the higher-dimensional simplices are useful in a numbeppfieations (see,
e.g., [103]).

Note that, as far as the complex of curves is concerned, aymenicas the
same effect as a boundary component (simple closed curatardnhomo-
topic to either a puncture or a boundary component are inéafe There-
fore we will only deal with punctured surfaces.

4.1.1 CONNECTIVITY OF THE COMPLEX OF CURVES

The following theorem, first stated by Harvey, was essdytialoved by
Lickorish (Figure 4.2 is his) [128]. Lickorish used it in tlsame way we
will: to show thatMod(.S) is finitely generated.

1In other words, every nonsimplex contains a nonedge.
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THEOREM 4.3 If 3g +n > 5 thenC(S,,,,) is connected.

In particular, Theorem 4.3 holds for every surfag, except whery = 0
andn < 4, org = 1 andn < 1. We will discuss these sporadic cases below.

Theorem 4.3 can be rephrased as stating that for any twopisafasses:
andb of simple closed curves ifi, ,, there is a sequence of isotopy classes

a==cCl,...,ck =b

SO that’i(ci, Ci+1) = 0.

Proof. Suppose we are given two verticesh € C(S,,); thusa andb are
isotopy classes of simple closed curvesSyy,). We must find a sequence
a=cy,...,cp =bwithi(c;, c;11) = 0. We induct oni(a, b).

If i(a,b) = 0 then there is nothing to prove. ifa,b) = 1 then we can
find representatives and 3 that intersect in precisely one point. A closed
regular neighborhood of U /3 is a torus with one boundary component.
Denote byc the isotopy class of this boundary component.c ifere not
essential, that would mean that eith®y,, ~ Si or S, ~ T2, which
violates the conditior3g + n > 5. Thereforea, ¢, b gives the desired path
inC(Sg.n)-

For the inductive step we assume th@at, b) > 2 and that any two simple
closed curves with intersection number strictly less th@nb) correspond
to vertices that are connected by a patlf {15, ,). We now prove the induc-
tive step by giving a recipe for finding an isotopy claswith bothi(c, a)
andi(c, b) less than(a, b).

Let o and3 be simple closed curves in minimal position representirgnd

b. We consider two points of their intersection that are consee along

6. We orienta: and 3, so that it makes sense to talk about the index of an
intersection point ok andg3, be it+1 or —1.

B
« » —_—
v gl V2
« > / —_—,

Figure 4.2 The surgered curves in the proof of Theorem 4.3.
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If the two intersection points have the same index, theain be chosen to be
the class ofy shown in bold in the left hand side of Figure 4.2 (outside ef th
picture,~ follows alonga). We see that is essential sinckxN~| = 1. We
emphasize that we construgiso that, outside the local picture indicated in
the figure;y always lies “just to the left” ofy; in particular~ can be chosen
so that it intersectg fewer times tharmy does (it “skips” one of the two
intersections in the picture).

If the two intersection points have opposite indices, abesihe simple
closed curves; and~, shown in bold in the right hand side of Figure 4.2.
Neither+; nor~, can be nullhomotopic, since that would mean thaindg
were not in minimal position. If botk; and~, are homotopic to a puncture,

it follows thata bounds a twice-punctured disk on one of its sides (the side
containingy; and-~.). In this case there are similarly defined curggsand

~4 on the other side of. Again, neithery; nor v, can be nullhomotopic.
Also, it cannot be that boths and~, are peripheral, because that would
imply that S, ,, =~ Sp 4, violating the conditiorBg +n > 5. Thus, we can
chooser to be the class of either; or 4.

By construction, it is evident thatc,b) < i(a,b) andi(c,a) < i(a,b)

(in fact, i(a, c) is either O or 1). By our inductive hypothesis, the vertices
corresponding ta andc are connected by a pathdS, ,,), and the vertices
corresponding té andc are connected by a path. The concatenation of these
paths is a path between the vertices correspondiragatadb. O

We point the reader to Ivanov’s survey [103, Section 3.2]emhhe gives
a beautiful alternative proof of Theorem 4.3 using Morsef@e=sory. The
key idea is that two simple closed curves that are level sethensame
Morse function are necessarily disjoint.

Sporadic cases and the Farey complexn the cases 02, So0,1, So,2 and
So,3 the complex of curves is empty, and in the casebeSM and.So 4
it a countable disjoint union of points. If we alter the defiom of C(.S) by
assigning an edge to each pair of distinct vertices thaizesathe minimal
possible geometric intersection in the given surface, therdisconnected
complexes become connected. In each of the latter three absee((S)
is isomorphic to thérarey complexwhich is the ideal triangulation >
indicated in Figure 4.3.

The more classical description of the Farey complex is devigl. It is the
flag complex where vertices correspond to cyclic subgrodpand two
vertices span an edge if the corresponding primitive vectpar?Z?.
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Figure 4.3 The Farey complex.

4.1.2 THE COMPLEX OF NONSEPARATING CURVES

Let V/(S) denote the subcomplex 6{.5) spanned by vertices correspond-
ing to nonseparating simple closed curves. This subcomplezlled the
complex of nonseparating curvebhis is an intermediate complex between
the complex of curves and the modified complex of nonsepayaturves
/\A/(S) (defined below), which is the complex that will actually beedisn
the proof of Theorem 4.1.

THEOREM 4.4 If g > 2 thenN/(S,,,,) is connected.

Proof. We first prove the theorem fof > 2 andn < 1, and then use
induction onn to obtain the rest of the cases. Soddte eitherS, or S ;. If

a andb are arbitrary isotopy classes of simple closed nonseparaimple
closed curves inS, then by Theorem 4.3 there is a sequence of isotopy
classesi = cy,...,c, = bwith i(c;, ¢i41) = 0.

We will alter the sequencéc; } so that it consists of isotopy classes of non-
separating simple closed curves. Suppgsgseparating. Letf; be a simple
closed curve representing, and letS’ and S” be the two components of
Sg.n — 7i- By the assumption that > 2 andn < 1, both.S” and 5" have
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positive genus. lk;_; andc;,1 have representatives that lie in different
subsurfaces, thei{c;_1,c;+1) = 0 and we can simply remowg from the
sequence. I§;_; andc; 1 have representatives that both liedfy then we
replacec; with the isotopy class of a nonseparating simple closedecumv
S”. We repeat the above process until eagclis nonseparating, at which
point we have obtained the desired path\iiS). This proves the theorem
in the casen < 1.

For the induction om we assume: > 2 and proceed as above. The only
possible problem is that it might happen that represemtatofc;_; and
ci+1 lie on S andS” has genus 0. But thefi has genug > 2, and has
fewer punctures than the original surfaeso by induction we can find a
path in\/(S”) between the vertices corresponding-to; andc; 1, and we
replacec; by the corresponding sequence of isotopy classes of cumgs i
O

Theorem 4.4 is not true for any surface of genus 1. IndeedntqeS, , —

T? obtained by filling in the: punctures induces a surjective simplicial map
N(S1,) — C(T?), where the simplicial structure ai(7?) is the original
simplicial structure, which is disconnected.

4.1.3 AMODIFIED COMPLEX OF NONSEPARATING CURVES

Let N(S) denote the—dimensional simplicial complex whose vertices are
isotopy classes of nonseparating simple closed curveisutfaceS, and
whose edges correspond to pairs of isotopy clagsesvith i(a, b) = 1.

LEMMA 4.5 If ¢ > 2 andn > 0 then the compleﬂ/’(Sg,n) is connected.

Proof. Let a andb be two isotopy classes of simple closed curvesjn,.
By Theorem 4.4, there is a sequence of isotopy clagses:y,...,c; = b
representing vertices of/(ng) with i(c;, ¢i+1) = 0. By the change of
coordinates principle, for eachone can find an isotopy clags of non-
separating simple closed curves witla;, d;) = i(d;,c;+1) = 1. The se-
quences = ¢1,dq,¢co,...,CL_1,dp_1,c; = brepresents the desired path in
N(Sy.n). O

The conclusion of Lemma 4.5 also holds for &y, with » > 0. This can
be proved by induction. The base cases&teand.S; 1, where N (T?) ~
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~

N(S1,1) is the 1-skeleton of the Farey complex. The inductive step isn
similar to the inductive step on punctures in the proof of drieen 4.4.

4.2 THE BIRMAN EXACT SEQUENCE

As mentioned above, the proof of Theorem 4.1 will be a doubhtkiction
on genus and the number of punctures. The Birman exact segjweif
provide the inductive step for the number of punctures. Myeerally it is
a basic tool in the study of mapping class groups.

4.2.1 THE POINT PUSHING MAP, THE FORGETFUL MAP , AND THE BIRMAN
EXACT SEQUENCE

Let S be any surface, possibly with punctures (but no marked ppiand
let S* be the surface obtained frofby marking a point: in the interior of
S. There is a natural homomorphism

Forget : Mod(S*) — Mod(S)

called theforgetful map This map is realized by “forgetting” that the point
x is marked. If we think of the puncture 6f as a puncture (distinguishable
from any other punctures f), then the mapForget is the one obtained
by “filling in” this puncture. In other wordsForget is the map induced
by the inclusionS* — S. The forgetful map is clearly surjective: given
any homeomorphism of, we can modify it by isotopy so that it fixes the
marked point/puncture o§*.

We would like to describe the kernel gforget. To this end, think ofS*
asS with a marked point. Let f € Mod(S*) be an element of the kernel
of Forget, and letyp be a homeomorphism representifigWe can think of
¢ as a homeomorphism of S. SinceForget(f) = 1, there is an isotopy
from ¢ to the identity map of. During this isotopy, the image of the point
traces out a loop in S based at:. What we will show is that, by “pushing”
x alonga~!, we can recovef € Mod(S*).

Now to make the idea of pushing more precise. &dte a loop inS based
atz. We can think ofa : [0,1] — S as an “isotopy of points” fromx to
itself, and this isotopy can be extended to an isotopy of thelevsurfaces
(this is the 0—dimensional version of Proposition 1.11} ¢gbe the home-
omorphism ofS obtained at the end of the isotopy. By removing/marking
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the pointz, regardingy, as a homeomorphism d¢f*, and then taking its
isotopy class, we obtain a mapping clé8ssh(«) € Mod(S*). The way
we think of Push(«a) informally is that we stick our finger om and we
pushz alonga, dragging the rest of the surface along as we go.

What one would like of course is that the mapping cl®ssh(«) is well-

defined, that is, it does not depend on the choice of the igagfension.
One would also want thePush(«) does not depend on the choice @f
within its homotopy class. In other words, one hopes to hawvelkdefined
push map

Push : 71(S, ) — Mod(S™).

It turns out that this is indeed the case. But it is not obviauall. To begin
with, there is no way in general to extend a homotopy of a l@opg homo-
topy of a surface (rather, only isotopies can be extendedyelb the point,
what if we modify o by a homotopy that passes the loop over the marked
point z? There is certainly no obvious way to show that the corregipgn
homeomorphisms of the punctured surf&teare homotopic.

The Birman exact sequence gives that the image of the posttipg map
is in fact exactly the kernel of the forgetful map.

THEOREM 4.6 (Birman exact sequence).et .S be a surface with(S) <
0, possibly with punctures and/or boundary. |$tbe the surface obtained
from S by marking a pointz in the interior of S. Then the following se-
guence is exact:

Forget
—

1 — m(S, z) 240 Mod(S*) Mod(S) — 1.
Once we know thaPush is well-defined, it follows immediately from the
definitions that its image is contained in the kernel of th@arget, and
that is surjects onto the kernel @forget. Also, it is easy to see thfush

is injective fory(S) < 0. Indeed, any representatifeush(a) € Mod(S*)
can be thought of as a map of pais =) — (.5, ) whose induced automor-
phism ofr (S, z) is the inner automorphism,. Sincer;(.5) is centerless,
we have thatl,, is nontrivial whenevery is. Thus if a is nontrivial then
the homeomorphism,, : (S,z) — (S, z) defined above is not homotopic
to the identity as a map of pairs, from which it is immediatattRush(«)

is nontrivial as an element dflod(S*). In summary, the entire content of
Theorem 4.6 is thaPush is well-defined.

2Birman’s original terminology was “spin map.”
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We remark that Theorem 4.6 still holds if we repladed with Mod*, the
extended mapping class group.

Also, we can take the restriction of the sequence to any sulpgsfMod(S*) ]
The most commonly used restriction isRdIod(S*). In this caséVlod(.S)
should be replaced witRMod(.S). We can rephrase the Birman exact se-
qguence in this case as follows:

1—m (ng) — PMOd(Sgyn_H) — PMOd(Sgyn) — 1.

We will show in Section 5.5 that the Birman exact sequence aog split.

4.2.2 RUSH MAPS ALONG LOOPS IN TERMS OF DEHN TWISTS

For a simple loopx in S based at the point, we can give an explicit rep-
resentative ofPush(«), as follows. Identify a neighborhood of with the
annulusS! x [0,2]. We orientS! x [0, 2] via the standard orientations on
St and|0,2]. Say the marked point is at the point(0, 1) in this annulus.
There is an isotopy of the annulus given by

(0 + 27rt,r) 0<r<1

F(@m),) = {(9+27r(2—7‘)ta7’) 1<r<2

We can extend” by the identity to get an isotopy &f. When we restrict’
to {z} x [0,1] we get

F((0,1),) = (27t, 1).

In other words, the isotopy’ “pushes”x around the core of the annulus.
Also, the homeomorphism of S* induced byF' att = 1 is a product of two
Dehn twists. More precisely, identifying the boundary @i x {0} of the
annulus as a simple closed curvin S*, and identifyingS* x {2} as a curve
£ in S*, we have thap is (isotopic to)TaTﬁ* L A smooth representative of
Push(«) is shown in Figure 4.4. We summarize this discussion asvislio

Fact 4.7 Let« be a simple loop in a surfac& representing an element of
m1(S,x). Then

Push(a]) = T,T; !

wherea andb are the isotopy classes of the simple closed curves'in-
S — x obtained by pushingv off itself to the left and right, respectively.
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The isotopy classes and b are nonseparating in5* if and only if « is
nonseparating irb.

Figure 4.4 The point pushing m&ush from the Birman exact sequence.

Naturality. We record the following naturality property for the pointgtu

ing map.

Fact 4.8 For anyh € PMod(S*) and anya € m(S, ), we have
Push(hs(a)) = hPush(a)h™L.

Fact 4.8 follows immediately from the definitions.

4.2.3 THE PROOF

We now give the proof of the existence of the Birman exact seqe.

Proof of Theorem 4.6There is a fiber bundle
Homeo ™ (S, 2) — Homeo™ (9) £ s. (4.1)

with total spaceHomeo™ (S), with base space (i.e., the configuration
space of a single point i), and with fiber the subgroup dfomeo™ (S)
consisting of elements that fix the poin{technically, we should only allow
homeomorphisms that fidS pointwise, but this does not affect the proof).
The map€ is evaluation at the point.

We now explain why¢ : Homeo™ (S) — S is a fiber bundle, that is, why
Homeo™ (.9) is locally homeomorphic to a product of an open Eebf S
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with Homeo™ (S, ) so that the restriction of is projection to the first fac-
tor. LetU be some open neighborhood:ofn S that is homeomorphic to a
disk. Givenu € U we can choose &, € Homeo™ (U) so thatg,(z) = u
and so that,, varies continuously as a function of We have a homeomor-
phismU x Homeo™ (S, z) — £~1(U) given by

(u, V) = Gy 0 ¥

The inverse map is given by — (¢ (z), %(11,) o 1). For any other point
y € S, we can choose a homeomorphisgraf S takingz to y. Then there is
a homeomorphisrg ~1(U) — £-1(£(U)) given by — & o 1), and so we
have verified the fiber bundle property.

The theorem now follows from the long exact sequence of hopyogroups
associated to the above fiber bundle. The relevant part sigheence is the
following.

-+ — m1(Homeo™ (8)) — 71(S) — mo(Homeo™ (S, x))
— mo(Homeo™ (S)) — mo(S) — - --

By Theorem 1.14 the group, (Homeo™ (S)) is trivial, and of coursery(.S)
is trivial. The remaining terms are isomorphic to the termshe Birman
exact sequence.

Finally, the maps given by the long exact sequence of horgalogups are
exactly the point pushing maPush and the forgetful magForget. O

There is a version of Theorem 4.6 where one forgets multiplecfures

instead of a single version; see Chapter 9. However, in nasss; one can
simply apply Theorem 4.6 iteratively in order to forget onenpture at a
time.

Surfaces with x(S) > 0. In the proof of Theorem 4.6 we used the
assumption that(S) < 0in order to say that; (Homeo™ (5)) = 1. Butwe
can still use the long exact sequence coming from the fibedlbu@.1) for
other surfaces. For instance, for the toffiiswe haver; (Homeo™ (T?)) ~
71 (T?) ~ 72, and the relevant part of the short exact sequence becomes

72972 % Mod(S11) — Mod(T2) — 1 — -+

This gives another proof thatod(S 1) ~ Mod(T?).
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4.2.4 GENERATING Mod(So,n)

Let So,,, be a sphere with punctures. As per Section 2RMod(Sp,,) = 1
for n < 3. To understand the situation for more punctures, we caryapgpl
Birman exact sequence:

1— 7T1(SQ73) — PMOd(SQA) — PMOd(S()’g) — 1.

Sincer; (Sp 3) ~ F», we obtain thaPMod (S 4) ~ F>. Moreover, the Bir-
man exact sequence gives geometric meaning to this algeftatement:
elements ofr Sy 3) represented by simple loops map to Dehn twists in
PMod(Sp4), and so the standard generating setfoS, 3) gives a gener-
ating set folPMod (S 4) consisting of two Dehn twists about simple closed
curves with geometric intersection number 2.

We can increase the number of punctures using the Birman sgguence:
1— Wl(SO’4) — PMOd(S()’g,) — PMOd(SOA) — 1.

Sincen(Sp4) ~ F3 andPMod(Sp4) ~ F, we obtainPMod(Sp5) ~
F5 x F3. Inductively, we see tha®Mod(Sy ) is an iterated extension of
free groups. Applying Fact 4.7, plus the fact that .S ,,) is generated by
simple loops, we find the following.

THEOREM 4.9 For n > 0 the groupPMod(Sp ) is generated by finitely
many Dehn twists.

To generate all oMod(Sy ), we again apply the following exact sequence:
1 — PMod(Sp,,) — Mod(So,n) — £, — 1.

It follows that a generating set fllod(Sy ,,) is obtained from a generating
set forPMod(.Sy ,) by adding lifts of generators fat,,. We know that>,, is
generated by transpositions. A simple lift of a transposiis a “half-twist,”
defined in Chapter 9.

4.2.5 CAPPING THE BOUNDARY

By souping up the proof of the Birman exact sequence we canagother
perspective on the boundary capping sequence (Propo8iti®) that uni-
fies it with the Birman exact sequence.
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Let S° be a surface with nonempty boundary, andJdbe the surface ob-
tained fromS° by capping some componeptof 95° with a disk. Letp
be some point in the interior of this disk. As in Propositiad® we have a
short exact sequence:

1 — (Tj) — Mod(S°) ¥ Mod(S, p) — 1. 4.2)

Note that(7) is central inMod(S°), since any element dflod(S5°) has a
representative that is the identity in a neighborhood 8.

We now give our second proof of Proposition 3.19, using thtatian from
the sequence (4.2).

Second proof of Proposition 3.19he proof has two steps. Step 1 is to
identify Mod(.S°) with a different group and to reinterpret the capping map
in the new context, and Step 2 is to apply the method of prodi@Birman
exact sequence to the corresponding fiber bundle.

~

Step 1. Let(p,v) be a point of the unit tangent bundléT’(S) that lies
in the fiber abovey. Let Diff*(g, (p,v)) denote the group of orientation-
preserving diffeomorphisms cﬁfixing (p,v). The resulting mapping class
group, denotedlod(S, (p, v)), is defined as((Diff* (3, (p, v))). We clainf]
that there is an isomorphism

Mod(S°) ~ Mod(S, (p, v)).
To prove this isomorphism we first identifod (5°) with wo(DifE+(§, o)
whereD is the boundary capping disk, and diffeomorphisms are t&kén

D pointwise. This identification can be realized by simply o¢ng the in-
terior of D. There is a fiber bundle

Diff (S, D) — Diff (S, (p,v)) — Emb* (D, ), (p,v))

where Emb (D, 5), (p, v)) is the space of smooth, orientation-preserving

embeddings o) into S taking some fixed unit tangent vector in to the
tangent vectop, v). As in the proof of the Birman exact sequence, we
obtain a long exact sequence of homotopy groups that catfaésequence

- — m(Emb*((D, S), (p,v))) — mo(Diff (S, D))
— mo(Diff (S, (p,v))) — mo(EMb™ (D, 5). (p,v))) — -

Since D is contractible, the space Emt(D,§), (p,v))) is contractible,

and so we obtain the claimed isomorphisvd(S, (p,v)) ~ Mod(S°)
(see [103, Theorem 2.6D] and [44]).
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The projection magp, v) — pinduces a maplod(S, (p,v)) — Mod(S, p)li
that makes the following diagram commute:

Mod(§ (p,v)) — Mod(g, )

I )
Mod(S°) — ™~ Mod*($*)
Thus, we have succeeded in writing the nGap in terms ofMod(§, (p,v)).
Step 2. We have another fiber bundle:
Diff* (S, (p,v)) — Diff *(5,p) — UT,(S)

where the second map is the evaluation map onto the fiberpoeéithe
unit tangent bundle af. As in the proof of the Birman exact sequence, we
obtain a long exact sequence, part of which is:

- — m (DiftH(S,p)) = m(UT,(5)) — mo(Dift (S, (p, v)))
— mo(Diff (S, p)) = mo(UT,(S)) —

These terms exactly give the desired short exact sequence. O

Not only is the last proof similar to the proof of the Birmareex sequence,
but actually both proofs can be combined to give the follgvihagram,
which encapsulates the two points of view. In the diagramseduences are
exact and all squares commute.
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To get the middle row directly, one can consider the fiber leind

Diff (S, (p,v)) — Diff *(S) — UT(S).

4.3 PROOF OF FINITE GENERATION

To show thafMod(S) is finitely generated we consider its action &f(S).
Note thatMod(S) indeed acts otN'(S) since homeomorphisms take non-
separating simple closed curves to nonseparating simpéedicurves, and
homeomorphisms preserve geometric intersection numiisra basic prin-
ciple from geometric group theory that if a grogpacts on a path-connected
spaceX, and if D is a subspace oX whoseG—translates covek, thenG

is generated by the s€y € G : ¢D N D # ()}. The proof of this is implicit
in our proof of Theorem 8.2. The next lemma is a specializedior of this
fact, designed specifically so that we can apply it to theoaotif Mod(.S)

on N/ (S).

Lemma 4.10 Suppose that a grou@@ acts by simplicial automorphisms on
a connected,l—dimensional simplicial compleX. Suppose thaty acts
transitively on the vertices oX, and that it also acts transitively on pairs
of vertices ofX that are connected by an edge. bedindw be two vertices
of X that are connected by an edge, and chobse G so thath(w) = v.
Then the groug~ is generated by the elementogether with the stabilizer
ofvinG.

Proof. Letg € G. We would like to show thaj is contained in the subgroup
H < G generated by the stabilizer oftogether with the elemerit. Since
X is connected, there is a sequence of vertices

v="vg,...,0 = g(v)

where adjacent vertices are connected by an edge. Giraws transitively
on the vertices ofX, we can choose elemengsof G so thatg;(v) = v;.
We takegy to be the identity and;, to beg. We will prove by induction that
g; € H. The base casg € H clearly holds. Now assume thgtc H. We
must prove thay; ., € H.

Applying the elemeny; ! to the edge between; = g;(v) andv;;; =
gi+1(v), we obtain the edge betweerandg; ' g;, 1 (v). SinceG acts transi-
tively on ordered pairs of vertices df that are connected by an edge, there
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is an element € G that takes the paiw, g; ' g;+1(v)) to the pair(v, w). In
particular, lies in the stabilizer ob andrg; *g;11(v) = w. We then have
thathrg; 'gi+1(v) = v, which means thakrg; ' g;11 lies in the stabilizer
of v. In particular,hrgjlgiﬂ € H. Sinceh andr lie in H by the definition
of H and sincey; lies in H by induction, we have thaj;,; lies in H. In
particular,g, = g lies in H, which is what we wanted to show. O

We are now ready to prove the following theorem, which corgaiheo-
rem 4.1 as the special case= 0.

THEOREM 4.11 Let S, ,, be a surface of genug > 1 with n > 0 punc-
tures. Then the groufp’Mod(S, ) is finitely generated by Dehn twists
about nonseparating simple closed curvesn,.

Recall that we already showed thBMod(Sy ,,) is finitely generated by
Dehn twists fom > 0 (Theorem 4.9).

Proof. We will use double induction on genus and the number of puastu
of S, with base cases? = S o andS; ;.

We start with the inductive step on the number of puncturest gL> 1
and letn > 0. Assuming thatPMod(S, ) is generated by finitely many
Dehn twists about nonseparating simple closed cufwg$in S, ,,, we will
show thatPMod (S, »+1) is generated by finitely many Dehn twists about
nonseparating curves i\, ,.1. We may assume thay,n) # (1,0) since
we know thatMod(S;1) ~ Mod(T?) is generated by Dehn twists about
nonseparating simple closed curves.

We have the Birman exact sequence
1 — m(Sgn) — PMod(Synt+1) — PMod(Sy,n) — 1.

Sinceg > 1, we have thatr (S, ) is generated by the classes of finitely
many simple nonseparating loops. By Fact 4.7, the image af eathese
loops is a product of two Dehn twists about nonseparatinglsimlosed
curves. We begin building a generating set Rivlod(S, ,+1) by taking
each of these Dehn twists individually. In order to compléie generating
set it remains to choose a lift 8Mod (S, ,,+1) of each Dehn twist gener-
ator T,,, of PMod(S,,,). But given the nonseparating simple cuevgin
Sy, there exists a nonseparating curvesiy,, 1 that maps tay; under the
forgetful map Sy ,,+1 — Syn. Thus the Dehn twist,, in PMod(Sy.,,)
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has a preimage i®Mod(S, ,+1) that is a Dehn twist about a nonseparat-
ing simple closed curve i, 1. This completes the inductive step on the
number of punctures.

Since we know thaMod(7?) and Mod(S; ;) are each generated by two
Dehn twists about nonseparating simple closed curg2<), it follows
from the inductive step on the number of punctures that fgr:a> 0 the
groupPMod(S; ) is generated by finitely many Dehn twists about nonsep-
arating simple closed curves.

We now attack the inductive step on the genusLet ¢ > 2, and as-
sume thatPMod(S,—1,,) is finitely generated by Dehn twists about non-
separating simple closed curves for any> 0. SinceJ\A/(Sg) is connected
(Lemma 4.5), and since by the change of coordinates primaifld(S,)
acts transitively on ordered pairs of isotopy classes op&rnslosed curves
with geometric intersection number 1, we may apply Lemma 4dlthe
case of theMlod(S,) action OW(Sg).

Leta be an arbitrary isotopy class of nonseparating simple digseves in
Sy, and letb be an isotopy class witf{a,b) = 1. Let Mod(S,, a) denote
the stabilizer inMod(S,) of a. By Lemma 3.12, we havé, T, T,(b) = a.
Thus, by Lemma 4.1Qylod(S,) is generated bylod(Sy, a) together with
T, andT},. Thus, it suffices to show thafod(S,, a) is finitely generated by
Dehn twists about nonseparating simple closed curves.

Let Mod(Sy, @) be the subgroup dflod(Sy, a) consisting of elements that
preserve the orientation af We have the short exact sequence

1 — Mod(S,, @) — Mod(Sy,a) — Z/27 — 1.

SinceT,T*Ty, switches the orientation af, it represents the nontrivial coset
of Mod(Sy, @) in Mod(Sy, a). Thus, it remains to show thatod(Sy, @) is
finitely generated by Dehn twists about nonseparating €rojoised curves
inS,.

By Proposition 3.20 we have a short exact sequence
1 — (T,) — Mod(Sy,d) — PMod(Sy — a) — 1,

where S, — « is the surface obtained fromi, by deleting a representative
a of a. The surfaceS, — « is homeomorphic t&5,_1 . By our induc-
tive hypothesisPMod (S, — «) is generated by finitely many Dehn twists
about nonseparating simple closed curves. Since each siuhti¥ist has a
preimage inMod (S, @) that is also a Dehn twist about a nonseparating sim-
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ple closed curve, it follows thatlod(S,, @) is generated by finitely many
Dehn twists about nonseparating curves, and we are done. O

4.4 EXPLICIT SETS OF GENERATORS

The goal of this section is to find an explicit finite set of Deluist gen-
erators forMod(.S). Our strategy for accomplishing this is to sharpen our
proof thatMod(.S) is generated by finitely many Dehn twists. More specif-
ically, we choose a candidate set of generators, and chetledith step of
the proof of finite generation can be achieved by using oudiciate set.

4.4.1 THE CHAIN RELATION

In the very last step of our proof of Theorem 4.13 below, wé reijuire the
following relation between Dehn twists. Recall that a seqaeof isotopy
classesy, ..., ¢ in a surfaceS is called achainif i(c;,c;+1) = 1 for all i

andi(c;, c;) = 0for |i — j| > 1.

Proposition 4.12 (Chain relation) Letk > 0 and letcy, - - - , ¢; be a chain
of curves in a surfacé. If we take representatives for thethat are in min-
imal position, and then take a closed regular neighborhobtheir union,
then the boundary of this neighborhood consists of one ostmple closed
curves, depending on whetheis even or odd. Denote the isotopy classes
of these boundary curves kiyin the even case and ki andd, in the odd
case. Then the following relations holdNiod(S):

(T, - T,

Ck

(T.,---T,

Ck

22— Ty k even
)k+1 = leTdQ k odd

In each case the relation in Proposition 4.12 is calleldain relation or ak—
chain relation The chain relation can be proved via the Alexander method.
In Chapter 9 we will derive the chain relations as consege&if relations

in the braid group.

The 2—chain relationis a well-known example of the chain relation. In this
case, the relation says that {f:, b) = 1, then

(T,T,)° =T,
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whered is the boundary of a regular neighborhooduaf b. If « andb lie in
T? or Sy 1, thenTy is trivial, and we have the relatioff, 73,)% = 1. Via the
isomorphism of Theorem 2.5, this is simply the relation

() (1))~

There is another version of the chain relation that is sameti useful. In
the above notation, this other version reads:

in SL(2,Z).

(TCQITCQ .. T

Ck

* =1, and (T2T.,---T.)" =Ty Tu,,
for k even and odd, respectively.

Dehn twists have roots.A surprising consequence of the last relation is that

the Dehn twist about a nonseparating simple closed curve mamtrivial

root in Mod(S,) wheng > 2. If we consider a chain of simple closed

curvescy, . .., caq—1 IN Sy, then the two boundary components of a regular

neighborhood ofJc; are nonseparating simple closed curves in the same

isotopy classgl, so we have
(T021T02 ... T

2g—1 _ 2
C2g71) - Td'

Thus, sincél; commutes with eaclh;,, we have

(T8 T, T,

ng—l)ligTd]Qgil =Ty
McCullough—Rajeevsarathy proved ttzat— 1 is actually the largest order
of a root of T; for any g > 2 [143]. It is not difficult to see that Dehn
twists about separating simple closed curves have roat&xample, if we
imagine fixing the subsurface of, to one side of a separating curdeand
twisting the other side by an angte then we get a square root @f. A
more formal way to do this is to use the first chain relatiorhvéitchain of
even length.

4.4.2 THE LICKORISH GENERATORS

Our eventual goal is to show that the Humphries generatingsse the
beginning of the chapter) is indeed a generating sebfod (.S,). As a first
step we show that the Dehn twists about 8ge— 1 simple closed curves
indicated in Figure 4.5 general¢od(S,). This specific generating set was
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first found by Lickorish, and so we call these Dehn twists ltekorish
generatorg128].

Figure 4.5 The Lickorish generating set fdiod(S).

THEOREM 4.13 (Lickorish generators) Let .S, be closed surface of genus
g > 1. Then the Dehn twists about the isotopy classes

at,...,ag,M1,...,Myg,C1,...,Cq—1

shown in Figure 4.5 generafeod(S,).

In the proof of Theorem 4.13 we refer to the Dehn twists in tiagesnent of
the theorem as “Lickorish twists,” so as not to confuse teaesthat we will
be proving that they are indeed generatorsNbrd(S).

Proof. We proceed by induction op. Since the Lickorish twists for the
torusT? =~ S; are the standard generators fdod(7?), the theorem is true
for the case ofy = 1, and we may assume that> 2.

We again apply Lemma 4.10 to the actio\dbd (.S, ) on the 1-dimensional
simplicial compIeX/\A/'(Sg) from Section 4.1. By Lemma 3.12 we have
To, Tm, To, (m1) = a1. Thus by Lemma 4.10 it suffices to show thébd(.S,, m1) Jj
the stabilizer inMod(S,) of my, lies in the group generated by Lickorish
twists.

If Mod(Sy, 1) is the subgroup oMod(S,) consisting of elements that
preserve the orientation of, then we have

1 — Mod(Sy, 1) — Mod(Sg, m1) — Z/27 — 1.

Since the product of Lickorish twisg,, 772 1., reverses the orientation of
my, it suffices to show thatlod(S,, 1) lies in the group generated by the
Lickorish twists.
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By Proposition 3.20 we have the following exact sequence:
1 — (T, ) — Mod(Sg, m1) — PMod(S,y,,) — 1

whereS,,, ~ S,_12 is the surface obtained by deleting a representative of
my from S, (this is perhaps a slight abuse of notation, since we usuaityg

Sm, to mean the surface obtained from a surfadey cutting along a curve
m1). SinceT,,, is a Lickorish twist, it is enough to show thBMod(S,,, )

is generated by the images of the Lickorish twists.

Figure 4.6 The images of the curves from Figure 4.54p andsS;,, .

We apply the Birman exact sequence (Theorem 4.6) twiceSf etdenote
the surface obtained froifi,,, by forgetting the first puncture._, and let
Sm, be the surface obtained froy, by forgetting the second puncture
my. We then have the following maps of exact sequences, whete ea

square commutes:

1 —— m1(SL,,,m_) 24" PMod (S, ) —— Mod(S!,, ) — 1

1]—— 7T1(Sg,171) —_— PMOd(Sg,LQ) S MOd(ngl,l) —1

(4.3)

and
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my) Zu Mod(SY,, ) ——= Mod(Slh, ) —

-

Figure 4.7 Standard generators far(S;,, , m+)

In the discussion below, we use the notatiyp,, S;,,, ands;,, instead of
the simpler notationsS,_; 2, Sy—1,1, andS,_; in order to emphasize the
point that each of these surfaces comes with fixed nfaps — S;, —
Sy, In particular, there is no choice for the images of the Litko twists
in Mod(S,,,) andMod(S;,, ).

We start with sequence (4.4). The goal is to show Matl(S;,, ) is gen-
erated by the images of the Lickorish twists Miod(S;, ); that is, we
want to show thatMod(S;,,) is generated by the Dehn twists about the
simple closed curves shown on the bottom of Figure 4.6. Bwadtidn,
Mod(S;,,) = Mod(S,_1) is generated by the Dehn twists about the im-
ages of these curves if};, =~ S,, and so by the exact sequence (4.4), it
suffices to show that each elementi.sh’(71(S;,,)) is a product of the
Dehn twists given in the bottom of Figure 4.6.

Standard generators for, (S, ) ~ m(Sy—1) are shown in Figure 4.7.
The mapping clasBush/(aq) is equal to the produdt,, 7,,,, ! (refer to Fig-
ure 4.6) so this element is a product of Lickorish twists.

We now explain how to writéPush/(31) as a product of Lickorish twists.
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Using Lemma 3.12 we see that
ngTaQ (al) = [.

Thus, by Fact 4.8Push/(3;) is conjugate tdPush’(«y) by a product of
Lickorish twists, and hence itself is a product of Lickoristists.

Repeating this conjugation trick, we see that the imagedi standard gen-
erator form (S, ) underPush’ is a product of the images of the Lickorish
twists inMod(S;,, ). The required formulas are:

(T Ty NI T (Bie1) = Bi
Ta—z+1 mz+1(/87’)

We remark that the Lickorish twists seem to be exactly desigior com-
pleting this step.

Sy

Figure 4.8 The Dehn twistﬁmé, ceey Tm;k1 are all products of Lickorish twists.

Turning to sequence (4.3), it now remains to show Pty (S, ,m—))

lies in the group generated by the Dehn twists about the sigipsed curves

shown on the top of Figure 4.6. The proof is essentially thaesas the

previous argument. To facilitate the argument, it is hdlpéunotice that

eachT,, is a product of Lickorish twists, where thes, ..., m;_, are the

isotopy classes shown in Figure 4.8. This follows from thamhlelatlon
(T Ty Tey 1 Tay 1Ty o+ Tupyy Te) 29D = T, T

ak41
This completes the proof. O
4.4.3 THE HUMPHRIES GENERATORS

We can now give Humphries’ proof that the Humphries genesato indeed
form a generating set fdvlod(S,).
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THEOREM 4.14 (Humphries generators)Letg > 2. Then the grouplod(S, )|}
is generated by the Dehn twists about #fae+ 1 isotopy classes of nonsep-
arating simple closed curves

a1y...,0g,C1y...,Cq—1,1M1,12

shown in Figure 4.5.

In Proposition 6.5 below we show that Theorem 4.14 is shathensense
that, forg > 2, any generating set favlod(S,) consisting only of Dehn
twists must have at lea8t + 1 elements.

Proof of Theorem 4.14By Theorem 4.13 it suffices to show that the Licko-
rish twistsT,,,,, . .. , T, Can each be written in terms of the other Lickorish
twists.

For anyl < i < g — 2 we will find a producth of Dehn twists about the;,
¢i, andm;; that takesn; to m;o. It will then follow from Fact 3.7 ing3.3
that

—1
Tmi+2 = hszZ h‘l 9
and the theorem will be proved.
a; Qi+1
ai+2 —_— ——
& Ci+1
my mMi+1 mMi4-2 my l

== — = = =

Figure 4.9 Takingn; to m;42.

The top left of Figure 4.9 shows the simple closed curves Wanse. In the
top right of the figure we se@;. The bottom right shows,,,, ., T, , T¢, Ta, (m;) ]
and the bottom left shows the imagd®f the latter under the product

Te  To, Ty T,

Ci+17 Qi1 Q542" Cit1°
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Note that the last curve is symmetric with respect todheand(: + 2)nd
holes. It follows that we can do a similar product of Dehn tais in order
to taked to m;;2. Sinceh usedm;;; and no othern;, it follows thats’
will use m;11 and no other ;. This completes the proof. O

4.4.4 SIRFACES WITH PUNCTURES AND BOUNDARY

Given the Humphries generators for the mapping class gréwupaosed
surface, we can use the Birman exact sequence to find a finit# gener-
ators for the mapping class group of any surfége, of genusg > 0 with

n > 0 punctures.

Figure 4.10 Twists about these simple closed curves genedbd (S, ).

The 2g + n twists about the simple closed curves indicated in Figui® 4.
give a generating set fatMod (.S, ) whenn > 0. The argument in the last
step of Theorem 4.13, i.e. the argument that the imag&&a.ef, andPush’
lie in the group generated by the Lickorish twists, applieghis case to
show that the given set of Dehn twists genefaidod (.S, ).

To obtain a generating set for all dfod(S, ), we can take a generating set
for PMod(S,,,,) together with a set of elements bfod (.S, ,,) that project

to a generating set for the symmetric grotip. One standard generating
set for,, consists ofn — 1 transpositions. The most natural elements of
Mod(S,,,) that map to transpositions iB,, are the half-twists discussed
in Chapter 9. We thus have the following corollary of Theoréra and
Theorem 4.11.

Corollary 4.15 For any g,n > 0, the groupMod(S, ) is generated by a
finite number of Dehn twists and half-twists.

Finally, let S be a compact surface with boundary (and no marked points).
Recall that the elements dfod(.S) do not permute the boundary compo-
nents ofS. By Proposition 3.19 we see thiod(S) is generated by Dehn
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twists about nonseparating simple closed curves if eacmbstst about
a boundary curve is a product of Dehn twists about nonsepgratmple
closed curves. It turns out that fgr> 2 this is possible. Consider the sim-
ple closed curves shown in Figure 4.11. A special case oftdreralation
from Section 5.2 gives that

(TclTC2TCSTb)3Td_11Td_21

is equal to the Dehn twist about the boundary cutve

Figure 4.11 Writing the Dehn twist about the boundary in ewehDehn twists about non-
separating curves.

We thus have the following.

Corollary 4.16 Let S be any surface of genys> 2. The groupPMod(.S)
is generated by finitely many Dehn twists about nonsepayaimple closed
curves inS.

In particular, for any surfac& with punctures and/or boundaryMod(.S)
is generated by the Dehn twists about the simple closed ssh@wvn in Fig-
ure 4.10 (in the picture, one can interpret the small cirakesither boundary
components or as punctures).

On the other hand, for a genus 1 surfagavith more than one boundary
componentMod(S) is not generated by Dehn twists about nonseparating
curves. In this case there is a generating set consistingit#l§i many Dehn
twists about nonseparating curves dandg 1 Dehn twists about boundary
curves, where is the number of boundary components. It follows from
the computation off; (Mod(SS); Z) (Section 5.1 below) that all— 1 Dehn
twists are needed.



Chapter Five

Presentations and low-dimensional homology

Having found a finite set of generators for the mapping classmg we now
begin to focus on relations. Indeed, one of our main goaléis ¢hapter
is to give a finite presentation fdvlod(S). In doing so we will see some
beautiful topological ideas, as well as some useful tealggdrom geomet-
ric group theory.

The relations in a groufr are intimately related to the first and second ho-
mology groups of=. Recall that the homology groups 6f are defined to
be the homology groups of ank (G, 1) space. The first and second ho-
mology groups have direct, group-theoretical interpretet. For example,
H,(G;Z) is just the abelianization af. Also, Hopf’s formula, given be-
low, gives an explicit expression fdif»(G;Z) in terms of the generators
and relators fol. In this chapter we will give explicit computations of the
first and second homology groups of the mapping class group.

5.1 THE LANTERN RELATION AND H;(Mod(S); Z)

In the late 1970’s D. Johnson discovered a remarkable oelainong Dehn
twists. He called it theéantern relation since his diagram for the relation
was “lanternlike” [49, 111]. In the 1990's N. V. lvanov poaat out that
Dehn, in his original paper on mapping class groups from 9205, had
already discovered the lantern relation. The existencéisfrelation has a
number of important implications for the structure of mapgpclass groups.
As a first example, we will use the lantern relation to show Mad(S) has
trivial abelianization for moss.
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5.1.1 LANTERN RELATION

Thelantern relationis a relation inMod(S) between seven Dehn twists, all
lying on a subsurface o homeomorphic ta;, a sphere witht boundary
components.

Figure 5.1 Two views of the lantern relation 6f.

Proposition 5.1 (Lantern relation) Letx, y, z, b1, b2, b3, andb, be sim-

ple closed curves in a surface that are arranged as the curves shown in
Figure 5.1. Precisely, this means that there is an orientafpreserving em-
beddingS; — S and that each of the above 7 curves is the image of the
curve with the same name in Figure 5.1.Nfod(S) we have the relation

T, T,T, = Ty, Ty, T, T, .

Proof. As discussed in Section 3.1, any embedding of a compactcsusfa
into a surfaceS induces a homomorphistod(S’) — Mod(S). Since re-
lations are preserved by homomorphisms, it suffices to ctieatithe stated
relation holds inVlod(S§).

To check the relation iMod(Sg), we cutSg into a disk using three arcs
and apply the Alexander method (actually, two arcs wouldice)f The
computation is carried out in Figure 5.2.

For the computation, itis important to keep track of threevemtions: Dehn
twists are to the left, the simple closed curvesy, andz are configured
clockwise on the surface, and the relation is written usiumgfional nota-
tion (i.e. elements on the right are applied first). O
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Tb1 Tbg Tb3 Tb4 Ty

Figure 5.2 Proof of the lantern relation. The simple closexesz, y, andz are shown in
Figure 5.1.

Any surfaceS with x(S) < —2 contains an essential subsurfagehome-
omorphic toS3. Indeed, ifz andy are any two simple closed curves $h
with i(z,y) = 2 andi(z,y) = 0, thenS’ can be taken to be any closed
regular neighborhood af Uy. To see this, one can use the fact thai @&nd

[ are any two simple closed curvesShandX is any regular neighborhood
of « U 3, then|x(N)| = |a N S]. As such, we see that the lantern relation
occurs in any sucls.

The lantern relation implies another relation that is senpyet still inter-
esting, namely:

T,T,T, = T,T.T, = T.T,T,.

This relation follows easily from the lantern relation plie relation that
eachT;, commutes with each df,,, T;,, and7,. We can contrast this result
with Theorem 3.14, which states that there are no relatietaden Dehn
twistsT,, andT}, with i(a, b) = 2. Note thatT}, T, T, is not equal td&[, T}, T}.
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The lantern relation via the push map. There is another way to derive
the lantern relation that makes it much less mysterious.A_bt a pair of
pants, that is, a sphere with 3 boundary components. Ermffbiadhe plane
and label the outer boundary componerand the inner components and

by. We obtain an element dflod(P) by pushingb; aroundb,, without
ever turningb; (think about a “do-si-do”). From the Alexander Method and
Figure 5.3 we see that this map is equal to

T.T,'T, .
More formally, this push map is an element of the image of thedmor-

phismm (UT(A)) — Mod(P), whereA is the annulus obtained by cap-
ping b; by a closed disk (see Section 4.2).

bo

b1

Figure 5.3 A push map.

Let S§ be a sphere with four boundary components. We have the fioitpw
easy-to-see relation im (UT(P)) < Mod(S§), depicted in the left-hand
side of Figure 5.4: pushing, aroundbs and then pushing, aroundb; is
the same as pushintg around bothbs andb,. In other words, using the
simple closed curves shown in the right-hand side of Figutee have:

(T, ' 1, )T, T, T, ) = T, T, T
Since thel;,, are central in this group, we can rewrite this as
T,T,T, = Ty, Ty, Ty, Tp, -

And this is exactly the lantern relation.
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Figure 5.4 A new view of the lantern relation.

5.1.2 HRST HOMOLOGY OF THE MAPPING CLASS GROUP

It is a basic fact from algebraic topology that, for any patimnected space
X, the groupH; (X; Z) is isomorphic to the abelianization of (X). Since
the homology of a groug is defined as the homology of ady(G, 1), we
have that the first homology group 6fwith integer coefficients is

G

Hl(G; Z) =~ [G, G]

~ yab
~ G2,

where[G, G] is the commutator subgroup 6f, andG3°is the abelianization
of G.

THEOREM 5.2 For g > 3, the groupH; (Mod(S,), Z) is trivial. More gen-
erally, for any surfaceS with genus at least 3, we have thdt (PMod(S); Z)}
is trivial.

In other words, if the genus & is at least 3, then the groupMod(S) is
equal to its commutator subgroup, or, equivalenBylod(S)2® is trivial.
A group with this property is callegerfect As we will see below, the
statement of Theorem 5.2 is false fpe {1, 2}.

The following proof is due to Harer [80].
Proof. Let S be a surface whose genus is at least 3. Since Dehn twists

about nonseparating simple closed curves are all conjgat 3.7) it fol-
lows that each of them map to the same element under the hgquaient
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homomorphismMod(S) — Hi(Mod(S);Z). Call this element. Because
Mod(S) is generated by Dehn twists about nonseparating simpledlos
curves (Corollary 4.16), it follows thatl, (Mod(S); Z) is generated by.

Figure 5.5 A copy of a sphere with four boundary components imigher genus surface,
which gives rise to a lantern relation between 7 nonsepayatimple closed
curves.

We now claimh is trivial. Since the genus df is at least 3, it is possible to
embedsSj in S so that each of th& simple closed curves i involved
in the lantern relation are nonseparating; see Figure 5.be ifhage of
this lantern relation under the homomorphidfiod(S) — H;(Mod(S); Z)
gives the relatioth* = k3, from which we deduce that is trivial, giving
the theorem. O

The search for the right relation. Mumford was the first to attack
the problem of finding the abelianization dfod(S,). He proved that
H;(Mod(Sy);Z) is a quotient ofZ/10Z for g > 2 [160]. In his paper,
he punctuated his result with a question-exclamation makan annota-
tion used in chess for a “dubious move.” As above, once yowvkiiat
Mod(S,) is generated by Dehn twists about nonseparating simpledlos
curves, it is a matter of using relations between Dehn twistdetermine
the abelianization. Mumford used the 3—chain relatidyl;, 7. )* = T,T.,
hence his result. Birman noticed that one could use a differedation to
show that the abelianization dfod(S,) is a quotient ofZ/2Z for g > 3
[20, 21]. Powell then produced a product of 15 nonseparddehn twists
that equals the identity olod(S,) for g > 3, finally proving Theorem 5.2
[176]. Later, Harer [80] noticed that the lantern relati@ande used to give
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a simple proof, as above.

Forn > 1 the groupMod(S,. ) is not perfect: if we take the sign of the
induced permutation on the punctures (or marked pointsgeta surjective
homomorphism fronMod(S, ) to the abelian groufd/27Z.

a2 a4

Figure 5.6 The Dehn twists about these simple closed cumesrgteéMod(S2).

5.1.3 LOW GENUS CASES

In order to determind{; (Mod(S); Z) whenS is a surface of genus 1 or 2,
we work directly from the known presentations of these gesoup

Genus two. The groupMod(S2) has the following presentation, due to
Birman—Hilden. In the presentation, we useto denote the Dehn twist
about the simple closed curwg shown in Figure 5.6.

Mod(S2) = (a1, a2, a3, as,as | [a;,a;] =1 li —j] > 1,
AiQi41G5 = Qi4+105Q5+41,
(a1a2a3)4 = aé,
[(asasazazaiarazazasas), ar] = 1,

(a5a4a3a2a1a1a2a3a4a5)2 = ]_>

The first relation is simply disjointness, the second thedorelation, and

the third a special case of the 3—chain relation (the two rolpsed curves

forming the boundary of the 3—chain are isotopic). The el@mgu asaza1aia2a3a4as]
appearing in the last two relations is exactly the hypgatdiinvolution. We

give the Birman—Hilden proof of this presentation in Chagteand we give

a brief discussion of the “hyperelliptic relations” latarthis section.

To get a presentation fdvlod(S;)?, we simply add the relations that all
generators commute. This makes the first and fourth relstredundant.
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The braid relations then tell us that all therepresent the same element
in the abelianization. The next relation becomés= «?, or, a!° = 1, and
the last relation becomeg® = 1, which is redundant. ThudJod(S,)® is
a cyclic group of order 10, as proved by Birman—Hilden [25].

It turns out that for any surfacé, ,, of genus 2 withn > 0 punctures, we
haveH;(Mod(S2,,); Z) ~ Z/10Z; see [120].

Genus one. Similarly, we can find thatf; (Mod(T?); Z) ~ 7Z/127Z, using
the classical presentation:

Mod(T?) ~ SL(2,Z) ~ {(a,b | aba = bab, (ab)® = 1).

In Mod(T?), the elements: and b are Dehn twists about simple closed
curves that intersect once. The relations are the braidioaland the 2—
chain relation.

In the genus 1 case, adding punctures does not change thieofinstiogy
of Mod(S), but adding boundary does. # is a genus 1 surface with no
boundary thenf; (Mod(S);Z) ~ Z/12Z, and if S is a genus 1 surface
with b boundary components, théi, (Mod(S);Z) ~ Z°; again, see [120].
Combining the last statement with Proposition 3.19 we saettie map-
ping class group of a genus 1 surface with multiple boundargmonents is
not generated by Dehn twists about nonseparating simpdedlourves (cf.
Section 4.4.4).

Genus zero. By again considering presentations, we see thah if is a
sphere withn punctures, the; (Mod(Sy ,);Z) is isomorphic to a cyclic
group of order2(n — 1) orn — 1, depending on whether is even or odd,
respectively. The presentation fdfod(.Sy ) is

MOd(S()m):<01,...,0n_1|[0i,0j]:1 |Z—j| >1,
0i0i+103; = 0i+10404+41,
(o1 on_1)" =1,

(01 0p_10p_1---01) = 1).

One can arrive at this presentation from a presentatiorhfobtaid groups;
theo; correspond to half-twists. See Chapter 9.
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5.1.4 THE HYPERELLIPTIC RELATIONS

In our presentation oMod(S;) above we encountered a new, seemingly
complicated relation. Here, we generalize this relatiohigiher genus sur-
faces, and in Chapter 9 we give a geometric explanation ferdtation.

Letey, ..., cag+1 be achain of isotopy classes of simple closed curves in the
closed surfacé,; that is,i(c;, ¢;+1) = 1 andi(c;, ¢;) = 0 when|i—j| > 1.
There is only one such chain i, up to homeomorphism (this follows
from the fact that there is orizy—chain inS, up to homeomorphism, as in
Section 1.3). The product

T

Cc2g+1 "

.. Tcchl e TCQW_1
is a hyperelliptic involution the hyperelliptic involution whery is equal to
1or2).

Thus, we have the followingyperelliptic relationgn Mod(S,):

(T,

C2g+1

o T Toy - T,

C2g+17

T Ty - T,

C2g+1

T

C2g+1

=1

T =1

C2g+1

A strange fact. If we rewrite the first hyperelliptic relation, we see that
there is a product ofg + 1 Dehn twists that equals the inverse of one Dehn
twist. In other words, a right Dehn twist is a product of lefefih twists.
This, plus the Dehn-Lickorish theorem, gives us the follayvgsurprising
fact (pointed out to us by Luis Paris):

Every element d¥lod(S,) is a product of left (positive) Dehn
twists.

5.2 PRESENTATIONS FOR THE MAPPING CLASS GROUP

We have already seen several relations between Dehn timsparticular,
we have the disjointness relation (Fact 3.9), the braidticela the chain
relation, the lantern relation, and the hyperelliptic tigla. We will see that
these relations suffice to give a finite presentationMoid (S, ).
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5.2.1 WAINRYB’S PRESENTATION

Finite presentations for the mapping class groups of cleaedces of genus
1 and 2 were already discussed in Section 5.1.2. McCool davdirst

algorithm for finding a finite presentation for the mappingsd group of
a higher genus surface [141]. His techniques are algebmaim@iure; no
explicit presentation has been derived from this algorithm

Hatcher and Thurston made a breakthrough by finding a tojmalthg fla-
vored algorithm for constructing an explicit finite presaidgn forMod(.S).
The algorithm was carried out by Harer, who produced a finiteunwieldy
presentation [80]. Wajnryb used these ideas to derive thewfimg ex-
plicit presentation, which is considered to be the stangaedentation for
Mod(S) [204, 28]. The exact form of the presentation given hereksra
from a survey paper of Birman [24]. In the statement, we usetfanal
notation as usual (elements applied right to left).

C1 Co

Figure 5.7 The Humphries generators §dod(S).

THEOREM 5.3 (Wajnryb’s finite presentation) Let .S be either a closed
surface or a surface with one boundary component and genes3. Let
a; denote the Humphries generatoy,, wherec; is as shown in Figure 5.7.
The mapping class groudod(S) has a presentation where the generators
areay, . .., asg, and the relations are as follows.

1. Disjointness relations

a;a; = a;a; if i(Ci,Cj) =0

2. Braid relations

aaja; = ajaia; it i(c,ci) =1
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3. 3—chain relation
4= agb
(a1a2a3)” = agbg
where
bo = —1
0 — (a4a3a2a1a1a2@3a4)a0(a4a3a2@1ala2a3a4)
4. Lantern relation
aobgbl = a1a3a5b3
where

by = (a4a5a3a4)71a0(a4a5a3a4)
b2 = (a2a3a1a2)_1b1 (agagalag)

_ -1 -1 -1 -1 -1 -1 -1 —1y-1
bz = (asasasazagua; "ay as a; )ag(asasasazasua; " a; as ay ")

and where
u = (agas) b1 (asas)
5. Hyperelliptic relation § closed)
(a9g---aray -~ agg)d = d(agg - -~ ayay - - - agy)

whered is any word in the generating set that, under the previous re-
lations, is equivalent to the Dehn twist about the simplsetbcurve
d in Figure 5.8.

In the statement, we mean that the hyperelliptic relatimnly needed (and
it is only true) for closed surfaces. The reason for the tehypérelliptic

relation” is that the produat(ay, - - - aias - - - azg)d is a hyperelliptic invo-
lution.

Strictly speaking, Theorem 5.3 does not give a formal prizgiem ofMod(.S,) ]
since we have not given the elemerih terms of the generators, so we take
care of that now. If we rephrase things, we need to write therDvist d

as a product of the generatarsin the mapping class group of the surface
with one boundary component. Let,...,n, be the Dehn twists about
the simple closed curves shown in Figure 5.9. Note that,, andn, are
the same as the Dehn twists, by, andd from Theorem 5.3. Similarly to
Section 4.4.3, we can inductively write the in terms of the Humphries
generators. We start withy = a; andns = by. Then, we have

-1
Ni+2 = Winw; —,
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Figure 5.8 Extra elements used in the relations for Wajsryiresentation foMod(.S).
We have labelled the simple closed curves by the correspgnelements of
Mod(S).

where
w; = (a2i+4a2i+302i+2ni+1)(a2i+1a2ia2i+2a2i+1)(a2i+3a2i+2a2i+402i+3)(ni+1a2i+2a2i+1a2i)'l

Finally, setd = n,.

Figure 5.9 Extra elements used in the relations for Wajsryiresentation foMod(.S).
We have labelled the simple closed curves by the correspgneliements of
Mod(SS).

A presentation of the mapping class group of a surface withentioan
one boundary component can be obtained by applying the Biegract se-
quence. Also, a presentation fisfod (.S, 1) can be obtained by combining
Wajnryb’s presentation with Proposition 3.19.

The effect of relations on homology. Harer notes that if we take the ab-
stract group with the Humphries generators and the first et®af relations
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in the Wajnryb presentation, then we have a group (an Artougy whose
first homology isZ. We see from our proof of Theorem 5.2 that if we next
add in the lantern relation, the resulting group has trifirat homology. At
this point, our abstract group has trivial second homolggyHarer proved
that H>(Mod(Sy); Z) ~ Z (Theorem 5.8 below). Adding in the 3—chain
relation corrects this.

The algebro-geometric approach. Years before McCool's result, Baily
and Deligne-Mumford gave different compactifications\df.S, ), the mod]j
uli space of Riemann surfaces homeomorphi§ foshowing thatM (.S,) is

a guasiprojective variety [10, 50]. We will prove in Theor&® below that
Mod(S,) has a finite index subgroup that is torsion free, from which it
follows that M (S, ) has a finite cover (corresponding i which is a man-
ifold, and so a smooth quasiprojective variety. Lojasiewiad also shown
that any smooth quasiprojective variety has the homotopg tf a finite
complex; in particular its fundamental group is finitely peated. We con-
clude thatl”, henceMod(S,), is finitely presented. However, this approach
does not give an algorithm for finding an explicit finite pnetseion.

5.2.2 THE CUT SYSTEM COMPLEX

We now very briefly outline the strategy used to derive thespngation in
Theorem 5.3. In Section 5.3 below, we will give a completeoprihat
Mod(S,) is finitely presented, although we will not derive an expljmie-
sentation.

The cut system complex. Hatcher—Thurston [84] defined a 2—dimensional
CW-complexX (S,), called thecut system compleas follows. Vertices of
X (S,) correspond teut systemi S, that is (unordered) sefs:, ..., ¢}
where:

1. each; is the isotopy class of a nonseparating simple closed cyrve
inSy,

2. i(ci,cj) = 0forall s andyj, and

3. §4 — Uy; is connected.

An example of a vertex inX(S,) is given by the set of isotopy classes
{a1,...,a4} shown in Figure 5.10. Vertices represented{lay} and {b; }
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are connected by an edge M(S,) if (up to renumbering)a; = b; for
2<:< g, andi(al,bl) =1.

Just as the edges 0f (S,) are defined by certain topological configura-
tions of curves, so are the 2—cells &f(S,). For example, we glue in
a triangle to the 1-skeleton of (S,) for each triple of vertices that are
pairwise connected by edges. For example, in Figure 5.X0yvémutices
vg = {a,az,...,a4}, vp = {b,az,... a4}, andv. = {c,az,...,a,} Span

a triangle inX(S,). The complexX (S,) also has squares and pentagons;
we refer the reader to the paper [84] for the detalils.

Hatcher—Thurston give a beautiful Morse—Cerf-theoretimop that X (.S,)
is simply connected. Later Hatcher—Lochak—Schneps gaattemate prodf
for a closely related complex [87], and Wajnryb gave a coratuirial proof
of simple connectivity for the original complex [205].

The mapping class group action. In general, when a grou@ acts co-
compactly on a simply connected compl&xwith finitely presented vertex
stabilizers and finitely generated edge stabilizers, tbap( is finitely pre-
sented (see Proposition 5.6 below). For each orbit of vestiaf X, there
are relations inG coming from the relations in those vertex stabilizers, for
each orbit of edges of there are relations i6¥ coming from the generators
of those edge stabilizers (the relations identify elemefithe two vertex
stabilizers), and finally there is one relationdhfor each orbit of 2—cells in
X. See the paper of Ken Brown for details [36].

Since the complexX (S,) is defined by topological rules, it follows that
Mod(S,) acts onX(S,). Using the change of coordinates principle it is
not hard to see that the action is cocompact; indeed thereiisgée orbit

of vertices and a single orbit of edges. Now, the stabilinévlbd(S,) of a
vertex of X (S,) is closely related to a braid group. This is because if we cut
S, along the simple closed curves corresponding to a vertéy ahe result

is a sphere witl2g boundary components, cf. Chapter 9. Therefore, the
presentation for a vertex stabilizer can be derived fromakmpresentations

of braid groups, or, mapping class groups of genus 0 surfaBeserating
sets for edge stabilizers are obtained similarly.

Wajnryb’s calculation.  To give a flavor of the calculation used to get
Wajnryb's actual presentation, we explain how the braidtieh comes up
in his analysis of the action dflod(S,) on X (S,). Of course, to verify
the braid relation inMod(S,) is not difficult (see Proposition 3.11). The
point here is that, by the general theory, a full set of refaiforMod(.S,)

is obtained by identifying elements of different cell stedgirs. We will
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realize the braid relation as one such relation.

a = ay as as Qg

Figure 5.10 The simple closed curvesgive a vertex of the cut system complex, and the
simple closed curves, b, andc, along withas, . .. ag, give a triangle of the
complex.

In what follows, we abuse notation, denoting a simple clasggte and its
associated Dehn twist by the same symbol.

Letv, be the vertex ofX (S,) corresponding to the cut systefw; } given in
Figure 5.10. We will make use of two particular elements &f skabilizer
G,, of v, namely the Dehn twist and the element = ba?b, whereb is
the Dehn twist about the simple closed curve shown in Figur.5

Let e,y be the edge ofX(S,) spanned by the vertices, and v, defined
above. One element of the stabilizét , of ey is r = aba. Sincer
interchanges the vertices af;, it follows thatr? is an element of5,,,. In
particular, it is the elementa® € G,,. So we obtain the following relation
(relation P10 in [205, Theorem 31]):

We now focus on the stabilizer of a 2—cell, namely the triang). spanned
by v,, vy, andv.. The elementr does not stabilize, or e, but it does
stabilizet ,;.., inducing an order 3 rotation @f;.. Thus,(ar)? is an element
of G,,, and again one can write it as a word in the elements ¢ G,,,
namely, (asa)?. So we have the following relation (relation P11 in [205,
Theorem 31]):

(ar)® = (asa)?.

We can rewrite this last relation using the relatioh= sa? and the trivial



136 CHAPTER 5

relationsaa=! = 1 andbb~—1 = 1.

(ar)® = (asa)?

(ar)® = a(sa®)sa

I

Replacingr with aba ands with ba?b, we find:
a?ba®badba = a*ba’baba’ba
— (a®ba?)aba(a?ba) = (a*ba?)bab(a’ba)
=—> aba = bab

Thus we see the braid relation arising from the actioklofl(.S,;) on X (S,);}
it comes from two relations one gets by flipping edges and tatirg trian-
gles. Deriving the complete presentatiom\dbd(S,) given in Theorem 5.3
is quite involved; we refer the reader to Wajnryb’s papeSPfor details.

It is straightforward to carry out this procedure in the cakthe torus. The
complex X (T?) is the Farey complex (see Section 4.1), and, in fact, the
relationsr? = sa? andaba = bab already discussed suffice to present the
groupMod(7T?) ~ SL(2,7Z).

5.2.3 THE GERVAIS PRESENTATION

While Wajnryb’s presentation (Theorem 5.3) is the most salbwn and
classical presentation ®flod(S), there are several other useful ones. We
now present one due to Gervais. Some of the features of tageptation
are: it is fairly easy to write down explicitly, it works fohé pure mapping
class group of any surface with boundary, and all of the icriatare de-
scribed on uniformly small subsurfaces (tori with at mostodifidary com-
ponents). It is important to keep in mind that Gervais’s \tion of this
presentation is accomplished by starting from Wajnrybsspntation and
simplifying the relations there. The same is true for theubiéa presen-
tation due to Matsumoto [139], which is phrased in terms dfmAgroups,
and which we do not discuss here.

The Gervais presentation uses one new relation which we haveeen
before.

The star relation. Consider the torus$$ with 3 boundary components,
ds, andds. Letcq, co, c3, andb be isotopy classes of simple closed curves
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configured as in Figure 5.11. Note th§§ is homeomorphic to a closed
regular neighborhood af; U ¢, U ¢3 U b (really, the union of four represen-
tatives).

Figure 5.11 The simple closed curves used in the star relatio

Gervais gives the following relation [69]. #, cs, c3, b, d1, d3, andds are
the isotopy classes of simple closed curvesjrgiven in Figure 5.11, then
we have:

(TC1 TC2 T03 Tb)3 = Td1 sz Td3 :

As with the lantern relation, this relation can be checkethhwwie Alexander
method. We calb the central curveof the star relation. For any embedding
SS’ — S into a surfaceS, the image of the star relation under the induced
homomorphismMod(S3) — Mod(S) of course gives a relation (betwen
the images of the above curves)Nfod(S).

Suppose thas§ is embedded ir$ in such a way that the isotopy classegs
andce are equal, but distinct froms. This happens when the image &f
under the embedding is the trivial isotopy class and the ésaxjd; andds

are nontrivial. In this case, the star relation becomes

(T2 T.,Ty)* = Tu, Ty,

We call this adegenerate star relationWe will not need to consider star
relations withc; = ¢ = ¢3. We note that the degenerate star relation is the
same as one of the 3—chain relations given in Section 4.4.

Recall that we used the star relation in Section 4.4.4 togf@arollary 4.16.

The Gervais presentation. Let S be a compact surface of gengisvith
n boundary components. We begin by giving the generating aethie
Gervais presentation dflod(S). Each of the generators is a Dehn twist,
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and so it suffices to list the corresponding simple closegiasurThe curves
are shown in Figure 5.12, where we have dra$vas a torus withy — 1
handles attached anddisks removed.

We start with the top picture in the figure. There is one singidsed curve
b which will form the central curve for all of our star relatisn There are
2(g — 1) +n simple closed curvegc; } with i(b, ¢;) = 1. There ar&(g —1)
simple closed curves corresponding to the latitudes anditisaes of the
g — 1 handles attached to the central torus. We also include theundary
components. Finally, for each ordered pair of distinct esr;, ¢;), there
is a simple closed curve; ; that lies in a neighborhood @f U ¢; U b and
that lies in the clockwise direction from alongb (note that each; ;1 has
already appeared on the list). The curves are depicted in the bottom
picture of Figure 5.12; there af@g — 2 + n)(2¢g — 3 + n) of these curves.

T

EakIES

-

Figure 5.12 The generators for the Gervais presentation.

THEOREM 5.4 (Gervais' finite presentation) Let .S be a surface of genus
g with n boundary components. The grodfwd(.S) has a presentation with
one Dehn twist generator for each simple closed curve showigure 5.12,
and with the following relations.

1. All disjointness relations between generators.

2. All braid relations between generators.

3. All star relations between generators, including theafegyate ones,
whereb is the central curve.
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From Theorem 5.4, it is straightforward to write down theganetation ex-
plicitly, by listing the generators and relations. For thstftwo kinds of re-
lations, one needs to find all pairs of generators that ajeidisr that have
intersection number 1. The degenerate star relations & diy triples
{ci,ci,c;}, wheree; # c¢;, and the other star relations are given by triples
of distinctc¢;—curves.

By Proposition 3.19, one can get a presentation for the desswface with
punctures by setting each generator corresponding to a Brdbhabout a
boundary curve to be trivial.

5.3 PROOF OF FINITE PRESENTABILITY

We now give a proof thatlod(S) is finitely presented. While it is possible
to give a proof analogous to our proof of finite generationjnetead choose
to introduce a new technique. As a result, we obtain a newfpbbinite
generation.

The strategy, suggested by Andrew Putman, is to show thadtticecom-
plex” A(S) is contractible, and use the actionddbd(S) on A(S) to build a
K(Mod(S), 1) with finite 2—skeleton. It immediately follows thafod(.S)
is finitely presented. While this is a simple proof of finitepentability, we
do not know what explicit finite presentation comes out of gipproach.

5.3.1 THE ARC COMPLEX

Let S be a compact surface that either has nonempty boundary cathas
least one marked point. We define tae complexA(S) as the abstract
simplicial flag complex described by the following data (4.1).

Vertices. There is one vertex for each free isotopy class of es-
sential simple proper arcs if\.

Edges.Vertices are connected by an edge if the corresponding
free isotopy classes have disjoint representatives.

If we take a surfac& with nonempty boundary and cap one or more bound-
ary components with a once-marked disk, th&rb') is naturally isomorphic
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to the arc complex for the capped surface. So in this sense th@o dif-
ference between marked points and boundary componentdimngethe
arc complex. When we consider the action of the mapping gesgp on
the arc complex, marked points are more natural than boyrmemponents
since Dehn twists about boundary components act triviallyhe arc com-
plex.

As a first example, the arc complex of the torus with one bogndampo-
nent is the Farey complex (see Section 4.1).

The most fundamental fact about the arc complex is the fatigwheorem,
due to Harer [80].

THEOREM 5.5 Let S be any compact surface with finitely many marked
points. If A(S) is nonempty then it is contractible.

The elegant proof we present is due to Hatcher [85]. A numbertloer
mathematicians made various contributions to the circlelefs surround-
ing this theorem, including Thurston, Bowditch—Epsteiryrivford, Moshelj
and Penner.

For the proof, recall that the simplicial star of a vertexn a simplicial
complex is the union of closed simplices containingThe simplicial star
of a vertex is contractible.

Proof. We choose some base verterf A(S). To prove that4(S) is con-
tractible we will define a flow 0f4(.S) onto the simplicial star o.

An arbitrary pointp in the simplex of4(S) spanned by vertices, ..., v, is
given by barycentric coordinates, that is, a formal suha;v; whered  ¢; =

1 and¢; > 0 for all i. Let« be a fixed representative of We can realize
pin S as follows: first realize the; as disjoint arcs irt, each in minimal
position withq, and then thicken eaah-arc to a band, which is declared to
have widthe;.

By an isotopy, we make the intersection of the arc represegntiwith the
union of these bands equal to a closed interval disjoint isimas in the left
hand side of Figure 5.13. (In the figure we have shawmith its endpoint at
a boundary component. If instead its endpoint is at a markéd/puncture,
then the boundary component, depicted as a horizontal fitteedoottom of
the figure, is not in the picture.) Lét= > ¢;i(v;, v) denote the thickness
of this union of bands.
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S
Figure 5.13 The “Hatcher flow” op(S).

The flow is defined as follows. At timé& we push a total band width of
tf in some prechosen direction along the ar¢see the right hand side of
Figure 5.13). The picture gives barycentric coordinatestone new point
in A(S). Attime 1, all of the bands are disjoint from the afi¢ and we are
in the star ofv.

Itis not difficult to check that the flow is continuous and wedifined on the
intersections of simplices. This completes the proof oftiemrem. O

5.3.2 HANITE PRESENTABILITY VIA GROUP ACTIONS ON COMPLEXES

The groupMod(SS) acts by simiplicial automorphisms on the contractible
simplicial complexA(S). In order to use this action to analyaéod(S5),
we need to apply some geometric group theory.

The following theorem is adapted from Scott—Wall [184]. he tstatement
of the theorem, we say that a grogpacts on a CW-compleX without
rotationsif whenever an element € G fixes a cello C X theng fixeso
pointwise. Any action of a group on a CW-complex can be tutinémlan
action without rotations by barycentrically subdividingetcomplex. The
benefit of an action without rotations is that the quotiers &aatural CW-
complex structure coming from the structure of the origic@mnplex.

Proposition 5.6 Let G be a group acting on a contractible CW—compléx
without rotations. Suppose that each of the following ctioids holds.
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1. The quotienfX /G is finite.
2. Each vertex stabilizer is finitely presented.

3. Each edge stabilizer is finitely generated.
Thend is finitely presented.

Proof. Let U be anyK (G, 1) complex. Consider the contractible complex
U x X. Since the action ofs on U is free, the diagonal action @ on

U x X is free. Therefore, af x X is contractible (U x X)/G is another
K (G, 1) complex. This construction of A (G, 1) from a group action on a
complex is called th8orel construction

We will show that(ﬁ x X)/G has the homotopy type of a complex with
finite 2—skeleton. Consider the projection

(U x X)/G — X/G.

If v is a vertex ofX with stabilizerG, in G, then(U x v) /G, is aK (G,, 1)
complex. Moreover, this space maps injectively(td x X)/G and is the
preimage ofv] € X/G. In other words, over each vertex &f/G there is
in (U x X)/G aK(w,1) corresponding to that vertex stabilizer. Similarly,
lying over each higher-dimensional open cell is the prodfca K (7, 1)
complex for that cell stabilizer with that open cell.

As a result, we see thal/ x X)/G has the structure of a “complex of
spaces,” with each vertex spacddG,, 1) for a vertex stabilizeiG,, and
each edge spacel(G., 1) for an edge stabilize&.. That is, the space
(U x X)/G is obtained inductively as follows: we start with the disjoi
union of the K (G,,1) spaces; then, we take th€(G., 1) spaces, cross
them with intervals, and glue them to th&(G,, 1) spaces via any map in
the uniqgue homotopy class of maps determined by the inciuGio— G,.
This process is repeated inductively (and analogously) ighein dimen-
sional skeleta.

We make the following observation: if each space in the cempf spaces

is replaced with another space to which it is homotopy edenta(i.e., an-
other K (m, 1) space), the homotopy type of the resulting complex does not
change. In other words, the “homotopy colimit” is well-defth[86, Prop
4G.1].
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Since the stabilize€,, of each vertex is assumed to be finitely presented,
eachK (G, 1) space can be chosen to have finite 2—skeleton. Since the
stabilizer of each edgeis assumed to be finitely generated, e&ctG., 1)
space can be chosen to have finite 1-skeleton. For the staldily of each
2-cell f, the K(Gy) space can be chosen to have finite O—skeleton, since for
any groupH there is ak'(H, 1) with a single vertex).

There are three ways thatcells arise in the complex of spagééx X)/G:

via 2—cells of K (G,, 1) spaces, 1—cells &k (G., 1) spaces, and 0—cells of
K(Gy,1) spaces. As discussed above, each of these spaces can be chose
to have finite 2—skeleton, 1-skeleton and O—skeleton, céisply. Since the
quotient X/G s finite, the resulting complex of spaces has finitely many
2—cells. Thus, we have createdsd G, 1) with finite 2—skeleton, and s@

is finitely presented. O

We remark that the proof of Proposition 5.6 can be slighthdified to work

in the case wherg is only assumed to be simply connected, as opposed to
contractible. Actually, the complex of curvésgs) is simply connected (but
not contractible) for mos$; see [82, Theorem 3.5] and [104, Theorem 1.3].
The reason we use the arc complex in our application of Piopos.6 is
simply because it is easier to prove th&tS) is contractible than it is to
prove thatC(S) is simply connected.

5.3.3 FROOF THAT THE MAPPING CLASS GROUP IS FINITELY PRESENTED

We are now ready to prove the following theorem.

THEOREM 5.7 If S is a compact surface with finitely many marked points,
then the groupMod(.9) is finitely presented.

Proof. We first reduce the problem to the caseSgf, with n > 0 marked
points. Suppose we can prove the theorem in this case. Wexmaire how

to deduce the theorem in the case thdtas nonempty boundary, and then
the case wher#' is closed.

Let S be a compact surface with > 0 boundary components, and assume

that S is not the diskD?. Also assume by induction that for any compact

surface withn — 1 boundary components, the mapping class group is finitely
presented. We recall Proposition 3.19, which states th#t i the surface
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obtained from a surfac& by capping a boundary componehtith a once-
marked disk, then the following sequence is exact:

1 — (Tj5) — Mod(S) < Mod*(S*) — 1.
whereMod* (S*) is the subgroup oMod(S*) consisting of elements that
fix the marked point coming from the capping operation. Byitidctive
hypothesis, we have thatod(S*) is finitely presented. Sincklod*(S5*)
has finite index iMMod (.S*), itis also finitely presented. Since the extension
of a finitely presented group by a finitely presented grouprigefiy pre-
sented, it follows from Proposition 3.19 thsliod (.5) is finitely presented.

A similar argument to the above, using the Birman exact secgieshows
thatMod(S,,0) is finitely presented iMod(S,,1) is, since the quotient of a
finitely presented group by a finitely generated group isdlgipresented.

We have thus reduced the proof to showing thiatd (.S, ,,) is finitely pre-
sented whem > 0. We may assume thég, n) # (0, 1) because we already
know Mod(Sp,1) = 1. Since a group is finitely presented if and only if any
of its finite index subgroups is finitely presented, it suffide prove that
PMod(S, ) is finitely presented. We make the inductive hypothesis that
PMod (S, ,,/) is finitely presented whegl < g orwheng’ = g andn’ < n.

We would like to apply Proposition 5.6. By Theorem 5.5, the eom-
plex A(S, ) is contractible. Therefore its barycentric subdivisidf{S, ,,),

on which PMod(S,,,) acts without rotations, is also contractible. Note
that vertices ofA’(S,,,) correspond to simplices ofl(S, ). It follows
from the change of coordinates principle that the quotidntS, ,,) by
PMod(S,,») is finite.

Now letv be a vertex ofd’(.S, ,,), and letG,, be its stabilizer iPMod(Sy.,.) |}
In order to apply Proposition 5.6, we need to show if3atis finitely pre-
sented.

As abovep corresponds to a simplex gf(S, ,,), that is, the isotopy class of
a collection of disjoint simple proper aragin S, ,,. If we cutS, ,, along the
«;, we obtain a (possibly disconnected) compact surface waitimtarysS,,,
possibly with marked points in its interior. We may pass fribi@ cut surface
S, to a surface with marked points but no boundary by collapgagh
boundary component to a marked point (or, what will have Hrees effect,
capping each boundary component with a once-marked disghot@ the
connected components of the resulting surfac&hyEachR; has marked
points coming from the marked points 8§ ,, and/or marked points coming
from Ua;. Note that eaclPMod(R;) falls under the inductive hypothesis.
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Let G¥ denote the subgroup @, consisting of elements that fix each iso-
topy clasg«;] with orientation. Note that these elements necessarilyhéx t
R; as well. SinceGY has finite index inG,, it suffices to show that? is
finitely presented. There is a map

n: Gy — [[PMod(Ry).

To see thaty is a well-defined homomorphism, one needs the fact that if
two homeomorphisms of, ,, fixing Ua; are homotopic, then they are ho-
motopic through homeomorphisms that fix;.

The mapn is also surjective. Indeed, given any elemen{ pPMod(R;),

one can choose a representative homeomorphism that is enétydin a
neighborhood of the marked points, and then one can lifttthia repre-
sentative of an element ¢ that is the identity on a neighborhood of the
union of the marked point with the;. It follows from Proposition 3.19 that
the kernel ofy is generated by the Dehn twists about the components of the
boundary of the cut surfacg,. Since eaclPMod(R;) is finitely presented,
their product is as well. As the kernel gfis finitely generated and its cok-
ernel is finitely presented, it follows that) is finitely presented, which is
what we wanted to show.

Two vertices ofA’(S, ) are connected by an edge if and only if the corre-
sponding simplices a#i(S, ) share a containment relation (that is, one is
contained in the other). It follows that the stabilizer ofedge inA'(S,.,,)

is a finite index subgroup of the larger of the two stabilizefrds vertices.
Thus edge stabilizers are finitely presented and in paaidbky are finitely
generated.

We thus have thablod(S,,,) acts on the contractible simplicial complex
A(S) without rotations, with finitely presented vertex stalglig and finitely
generated edge stabilizers. Applying Proposition 5.6itdhbtion gives that
Mod(Sy,,) is finitely presented. O

5.4 HOPF'S FORMULA AND H(Mod(S); Z)

In Section 5.1.2 we computeld; (Mod(S); Z). In this section we compute
Hy(Mod(S);Z). As with first homology, the second homology is a basic
invariant of a groups. For example, ifH,(G; Z) infinitely generated then
G has no finite presentation. The precise connection betwgiir; Z)
and presentations f@¥ is made explicit by Hopf’s formula below. Later we
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will see thatH»(G; Z) is related taH?(G; Z), which in turn classifies cyclic
central extensions af.

THEOREM 5.8 (Harer) Letg > 4. Let S; denote a compact surface of
genusg with one boundary component. Then we have the followingdsom
phisms:

()  Hy(Mod(Sy);Z) ~ Z
(i)  Hy(Mod(S,);Z) =~ Z
(i) Ho(Mod(Sy1);Z) =~ 72

Harer proved Theorem 5.8 by reducing to the case wiiehas boundary
and using the action dflod(.S) on the arc complex associated4oln fact

Harer proved a more general theorem for surfaces with meltypundary
components and arbitrarily many punctures.

Pitsch gave a completely different proof of the “upper bduindTheorem
5.8. Thatis, he showed thﬂg(MOd(S;); Z) is a quotient ofZ. He realized
that one can actually apply Hopf’s formula to Wajnryb’s egplpresenta-
tion of Mod(.S). In this section we present what is essentially Pitsch’efro
from [174], together with the variations on his argumentt thi required
for the cases of, and.S, ;.

5.4.1 THE HOPF FORMULA

Let G be any group with a finite presentatiGh= (F'|R). The groupG can
also be thought of a8'/ K, where K is the normal subgroup generated by
therelators namely, the elements @&. The classicaHopf Formulastates
that

KN [F,F)

HQ(G; Z) =~ [K, F]

So elements offy(G; Z) are cosets represented by relatorgsin-i.e., ele-
ments of K—that are products of commutators in Given a relatork, we
think of any conjugate relatofkf~' as being redundant, and that is why
we take the quotient bjf<, F'|. See Brown’s book [37, Theorem 5.3] for a
proof of Hopf's formula.

The group( KN[F, F))/[K, F] is asubgroup of the abelian grodéfy [ K, F.
Therefore, ad( is normally generated by the finitely many elementdpf
the groupK'/[ K, F] is an abelian group generated by the cosets represented
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by the finitely many elements a®. Hopf's formula thus implies that any
element ofH,(G; Z) can be represented (nonuniquely) as a prodifiet,
whereR = {rq,...ry} andn; € Z.

5.4.2 THE HOPF FORMULA APPLIED TO THE WAJNRYB PRESENTATION

We start with the case cﬂ; with g > 4. We will use Wajnryb’s presentation
for Mod(S}), in particular using the notation from Theorem 5.3. Pitsch’
idea is to plug this presentation into Hopf's formula.

We can rewrite each relation from Theorem 5.3 so that we geird i the
generators folod(S;) that is equal to the identity element bfod(S}),
that is, a relator. We do this by moving all generators to ¢ thand
side of each relation. We will use the following notation tbe relators:

(i) Disjointness relators [a;, aj] denotedD; ;
(i) Braid relators aia;jai(aja;a;)”t  denotedB;
(i)  3—chain relator (arazaz)*(agbp)~t  denoted”
(iv) Lantern relator (agbaby)(arazasbz)~!  denotedL

In the first two relators, only certain paifs j) are allowed, as governed by
the statement of Theorem 5.3. We will not need the precismdanf the
relators here—that is, we will not write out the in terms of thea;—but
rather we will only need the number of times, with sign, eagchppears in
each relator. We will give these numbers as needed, thowghetider can
easily read them off from Theorem 5.3.

Let F' be the free group generated by the and let/X denote the subgroup
of F' normally generated by the above relators. As in the abovaudsson,
any element: of the abelian grougk/[K, F| is a coset represented by an
element of the form

2g—1
x= (H D;j;nj) ( I] B +1> B Cne L (5.1)
i=1
where the exponents are integers. In the remainder of thaf,pre will ig-

nore the distinction between the coset given by such an eleoh&’ /[ K, F]
and the actual element &f /K, F.

According to Hopf's formula,Hy(Mod (S, ); Z) is isomorphic to the sub-
group (K N [F, F))/|K, F] of K/|K, F|. So which elements ok /[ K, F

given by (5.1) are also elements|éf, F']/[ K, F'|? One obvious condition is
that the exponent sum of eaghmust be zero. Actually, we will show that,
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up to multiples, there is at most one element of the form (ha) satisfies
this condition.

5.4.3 COMMUTING RELATORS

We begin by analyzing the simplest relators, namely the cotimg relators
D; ;. We will show that each represents the trivial elemerfipfMod (S, ); Z) |}
and hence these terms can be ignored in (5.1). Choose sorteulaar
D;; = la;,a;]. As an element of” = (a;), this word certainly lives in
K N|[F, F], whereK is the normal subgroup df generated by the relators.
Our goal is to show that it also lies i, K].

In general, ifg andh are two commuting elements dfod(S; ), then|g, A]
is an element of< N [F, F|. Let{g, h} denote the corresponding element
(coset) inHy(Mod(S;); Z).

If g is an element oMod(S;) that commutes with the elemeritsandk of
Mod(S}), then

{9, hk} = {g,h} + {g,k} (5.2)

in Hy(Mod(S}); Z). This follows from the fact that, for any three elements
x, y, andz in the free groupt’, we have

[z, yz] = [z,y][z, 2]¥.
We have also used the fact that conjugation “does nothingfienquotient
(K N[F,F])/|K, F]. Itis also easy to check that

{97 hil} = _{gv h} (53)

Lemma 5.9 Letg > 4. If a andb are disjoint nonseparating simple closed
curves inS}, then{T,, T,} = 0in Hy(Mod(S});Z).

Proof. We cutS& alonga and obtain a compact surfa&s of genusg — 1
with three boundary components. The simple closed clioan be thought
of as a simple closed curve ¢fi, and so the Dehn twist, can be thought
of as an element akMod(S’). Sinceg > 4 we haveg — 1 > 3, so hy
Theorem 5.2Mod(S’) has trivial abelianization, i.e., it is perfect. We can
thus write 7}, as a product of commutato®, = [[[z;,y;], where each;
andy; is an element oMod(S’), and so commutes witf,.
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Using (5.2) and (5.3), we then obtain
{To, Th} = {Tu, ILilzi vil}

= Z{Ta, [z, vil }

= > {Tuzi} + {To i} — {Tu,2i} — {To, i}]

7

= 0.

Lemma 5.9 has a topological interpretation. U&€] € Hy(T%7Z) ~
H»(Z?;7Z) ~ Z denote the fundamental class. Two commuting Dehn twists
g,h € Mod(S) determine an inclusio#? — Mod(S). This homomor-
phism determines (up to homotopy) a based mdpom the classifying
spaceK (Z?,1) ~ T? to the classifying spac& (Mod(S),1). Leti, :
Hs(Z?,7Z) — Hy(Mod(S);Z) be the induced homomorphism. Lemma 5.9
says precisely that, is the zero map.

It follows immediately from Lemma 5.9 that each ; represents the trivial
element ong(Mod(S;); Z). From this fact and (5.1) we now have that any
elementz of (K N [F, F])/[K, F] has the form

2g—1
T = (H B;j;:) ByyCme L. (5.4)
=1

5.4.4 COMPLETING THE PROOF

Letz € (K N [F, F])/[K, F|. We have shown that has the form given in
(5.4). We will now use the exponent sum condition for elersait F, F)
to reduce the possibilities far further.

Each relator on the right hand side of (5.4) is a product ofgbeerators
{a; : 1 < i < 2g} of F. In order thatz lie in [F, F] it must be that the
exponent sum of eaafy occurring inz is 0. The only relator involvinguy,
is Bag— 1,2, IN Which ay, has exponent surh. Thus in the wordB; >,
the total exponent sum af, is ny,—;. Since no other relator contaiasg,,
and since the exponent sumay; in z is 0, it follows thatng,_; is 0. We

can thus delete the relatét,_ o, from the expression (5.4) far.



150 CHAPTER 5

Now note that the only relator left on the right hand side oft{5nvolving
asg—1 1S Bag_224—1. By the same argument as above we conclude that
nog—o = 0. Continuing in this way we obtain that; = 0 for eachi > 6;

we stop atBs ¢ because boths andag appear in other (non-braid) relators.

Sinceag appears inBs ¢ with a total exponent of-1, and since the only
other relator in whichug appears id., where it has an exponent suma@fit
follows thatns ¢ = 0.

At this point we have shown that any element (K N [F, F))/[K, F] has
the form

o no ni no ns n4 nc rnr
x = By By 5By 3By By sCML .

The power of the preceding arguments is that, for arbitgady 4, we have
reduced the problem to understanding just seven relatodstheat these re-
lators only involve the generatots, . . ., as.

Again, in order to get an element K N [F, F)/[ K, F], the exponent sums
of each of theés generators, . . . , a5 must be zero. Since, for examplg,
occurs inBy 5 with exponent sum-1, and inL with exponent sum-1, the
fact that the total exponent af in must be) gives the equatiorns—ny =
0. Continuing in this way, setting each of the exponent sums)of. . , as
equal to0, we obtain the following system of equations.

no

1 0 0 0 0 —2 2 o 0

0O 1 0 0 0 4 —1 1 0

0 -1 1 0 0 4 0 "2t o

0 0 -1 1 0 4 -1 LEI I )
Ny

1 0 0 -1 1 0 0 , 0

0 0 0 0 -1 0 -1 ¢ 0
nr

An elementary calculation gives that the above matrix ha& a and so
the linear mappingZ” — Z° has one-dimensional kernel. So there is at
most one element (up to multiples) that satisfies the givezali equations.

A quick check gives that all solutions are simply integralltipies of the
vector (—18,6,2,8, —10,10). It follows that the only possibilities for the
arbitrary element: € K N [F, F|/[F, K| = HQ(MOd(S;);Z) are integral
powers of the element

_ p-1816 pR2 P8 p—10~710
zo = By, By 9B 3B3 4B, 5 CL™.

In other wordsz, generatest,(Mod(S}); Z). Note that we still do not
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know whether or noty is trivial in Hg(Mod(S;); Z). We will prove below,
by a completely different line of argument, thaf has infinite order.

5.4.5 RTSCH’S PROOF FOR CLOSED SURFACES

To extend Pitch’s proof to the case of a closed surfsiggg > 4), we only
need to show that the hyperelliptic relation from Wajnrypiesentation
does not contribute téf>(Mod(S,);Z). The argument, due to Korkmaz—
Stipcisz [122] is similar to the proof that the disjointngstations do not
contribute.

Recall that the hyperelliptic relation is:
[agg - -ara1 -+ - agg, d] = 1.

One would like to directly apply the proof of Lemma 5.9. Howe\nf we cut
S, along arepresentative dfthe hyperelliptic involutionuy, - - - ajay - - - asgfj
does not induce an element of the pure mapping class grouye a@ut sur-
face (it switches the two sides d). Therefore, we cannot writé as a
product of commutators of elements that commute with

We must therefore proceed with a different argument. Ourdiesm is that

if a andb are isotopy classes of simple closed curveSjwith i(a,b) = 1,
then{T,, (T,T,1,)*} = 0in Hy(Mod (S 1;Z). We proceed in three steps.
Throughout, we apply the formula (5.2) without mention.

Step 1.The classe$T,, (T,T,1,)*} and{T,, (T,T,T,)?} are equal.
Letr be an element dflod(S,) that interchanges andb. We have:
{T,, (T,T,T,)*} = {rTor Y r(T,T,T,)*r 1}
=T}, (L T.Th)*}

={T, (T.T,Ta)*}.

Step 2.The clas{T,, (T,T,T,)?} is trivial.

The braid relation gives thaf,, 7, T, )* = (T,T3)°, and the 2—chain relation
gives that this product is equal to the Dehn twist about thgpka closed
curvec which is the boundary of a regular neighborhood of minimadifon



152 CHAPTER 5
representatives af andb. We then have:
21T, (LT TL)* = {Ta, (LT 1)} = {Ta, Te} = 0
where in the last step we have applied Lemma 5.9.
Step 3.The class3{T,, (T, T,T,)?} is trivial.
To prove this equality, we apply Step 1, which gives:

{Tu, (T.TyTa)?*} = {Tu, (T TyT0)?} + {Tu, (T Ty T0)?} + { T, (T Ty T0)%}
={To, (T.TyT,)*} + {Tp, (T Ty T0)*} + {T0, (T, Ty T,)*}
={T.Ty Ty, (T Ty Ta)}
=0.

Steps 2 and 3 immediately imply the claim. We can now show tiat
hyperelliptic relator contributes zero f,(Mod(S,); Z). In the calculation,
we use the identitfz, y} = {z, z7yz*}, which follows from formula (5.2)
and the fact thafz,z} = 0. Denote the produaiag 1 ---aja - - - agg—1
by A. If az, represents the Dehn twigt, , one can check thal(cy,) =
d?(cag), and soAasy A~! = d?as,d=2. We therefore have:

{d, agg a1t agg} = {d, aggAagg}
= {d, aggAaggAfl}
= {d aggd agg 2}
{d daggd aggd}
{d, (dazgd)*}
0

Here the last equality follows from the claim. This compsetiee proof.

5.5 THE EULER CLASS

In Section 5.4 we proved the “upper bounds” for Theorem 51&atTs, we
showed thatH(Mod(S); Z) is cyclic whenS = S, or S = S, and that
H>(Mod(Sy,1); Z) is generated by at most two elements.

In this section we explicitly construct an infinite orderralent of H2(S, 1; Z)
called the “Euler class.” This will be used, together witk tmiversal coef-
ficients theorem, to provide one of the “lower bounds” for Gteen 5.8.
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The Euler class is not just some element of a cohomology gribusp the
most basic and fundamental invariant of surface bundles.

5.5.1 COCYCLES FROM CENTRAL EXTENSIONS

We first recall how a central extensions of a group give risz-dimensional
cohomology classes. For a more detailed explanation, sexémple [37,
§1V.3]. Let

l1-A—-FE—->G—1 (5.5)

be acentral extensiomf the groupG; in other wordsA is central inE and
the sequence (5.5) is exact. Note thails abelian since it lies in the center
of F.

If the extension (5.5) is split then sincé is central it follows thatE ~

A x G. Even if E does not split, we still have a (non-canonical) bijection
¢ : A x G — E, obtained by simply picking any set-theoretic sectipof
the mapE — G. Moreover, there exists a functioh: G x G — A, called
afactor set so that

d(a1, g1)9(az, g2) = d(araz f(91,92), 9192).

The factor seff measures the failure of the sectigrio be a homomorphism
or, equivalently, the failure o to be an isomorphism.

While ¢, and hencef, depended on the choice of sectipnone can check
that f does represent a well-defined eleméraf H2(G; A). That is, the
element depends only on the extension (5.5), and not on any of theeboi
The sequence (5.5) splits precisely when the cohomologs€les trivial.

5.5.2 THE CLASSICAL EULER CLASS

Before we construct the Euler classhff (Mod(S,.1); Z) we recall the clas-
sical Euler class, which is an element/f (Homeo™ (S1); Z).

Consider the coverin® — S! given by the quotient oR by the groupZ
generated by the translatiotfiz) = = + 1. The set of all lifts of an element
¢ € Homeo™ (S') to Homeo™ (R) is precisely the set of elements of the

~ ~ — +
form +) o t™ for m € 7Z, wherey is any fixed lift of). Let Homeo (S*)
denote the group of all lifts of all elementsbmeo™ (S!). In other words,
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Homeo (S') is the subgroup oflomeo™ (R) consisting of those homeo-
morphisms that commute withi.e. the group of periodic homeomorphisms
of period1. We thus have an exact sequence

—~— + -
1 — Z — Homeo (S') 5 Homeo™ (S') — 1 (5.6)

whereZ is generated by and is thus central. We know that the sequence

(5.6) does not split sincHomeo* (S!) has torsion whild{/or\n?oJr(Sl), be-
ing a subgroup oflomeo™ (R), is torsion free. As explained above, it fol-
lows that the short exact sequence (5.6) gives rise to aimahielement of
H?(Homeo™ (S1)). This element is called the (classic&yler class This
Euler class is the most important invariant in the study afleibundles.

5.5.3 THE EULER CLASS FOR THE MAPPING CLASS GROUP

Letg > 2. We will show that there is a torsion-free grom//fbfd(sg’l) and a
central extension

1 — Z — Mod(S.1) — Mod(Sg1) — 1 (5.7)

SinceMod(S,,1) contains torsion, it follows that the short exact sequence
(5.7) does not split, and so we thus obtain a nontrivial efgroeH?(Mod (S, 1); Z) ]
called theEuler class

We now give two different constructions of the Euler clasgtts, we give
two derivations of the short exact sequence (5.7) definiegghler class.
The first comes directly from the classical Euler class.

5.5.4 THE EULER CLASS VIA LIFTED MAPPING CLASSES

In Section 8.2 (cf. Corollary 8.7) we will prove that an elerhef Mod (.S, 1)[]
gives rise to a homeomorphism of the circle at infinity in hyjqmic space
as follows. Assume that > 2 and regard the puncture 6f, ; as a marked
pointp. If we choose a hyperbolic metric on the closed surfdgeits uni-
versal cover is isometric té2. Let p be some distinguished lift gf to
H?2.

We can represent anf € Mod(S,.1) by a homeomorphism : S, — 5,
such thatp(p) = p. There is a unique lift ofp to a homeomorphisngp :
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H2? — H2 such thatp(p) = p. In Section 8.2 we will prove thap is a
71(S,)—equivariant quasi-isometry @f%, and thatp can be extended in a
unigue way to a homeomorphism

dU G : H2UOH2 — H2 U 9H2

of the closed unit disk. Restricting @H? ~ S!, we obtain an element
6(75 € Homeo™ (S'). SinceS, is compact, homotopies df, move points
by a uniformly bounded amount, and @5 does not depend on the choice
of representative.

We thus have a well-defined map
Mod(Sy.1) — Homeo™(Sh).

This map is clearly a homomorphism. It is injective becatﬂéﬁfifixes each
7El € OH? (using the notation from Section 8.2), it follows that fixes
eachy € m;(Sy), and then, sincé, is a K (G, 1) space, it follows that

is homotopic to the identity. The construction of the mépd(S, ;) —
Homeo " (S!) is due to Nielsen; he used this as a starting point for his-anal
ysis and classification of mapping classes.

We finally define the groum//ﬁﬁ(SQJ) as the pullback ofMod(S, 1) to
— +
Homeo (S%):
1 — Z — Mod(S,1) — Mod(S,1) — 1. (5.8)
+
(S1) that project
Jr
(

Thusl\//IB?l(Sgyl) is the subgroup of elements tomeo

into Mod(S,,1). Because the kernél is central infomeo S1), it is cen-
tral in Mod(Sy,1). As above, the central extension (5.8) has an associated
cocycle, giving an elemert € H?(Mod(S,1;Z). The element is called
the Euler classfor Mod(Sy,1).

e — +
The groupMod (S, 1) is torsion free because it is a subgroufofineo (Sl),l
which we already noted was torsion free. On the other Rdnd(S, 1) has
nontrivial torsion (e.g. take any rotation fixing the marlgdnt). As above,
it follows that (5.8) does not split, sois nontrivial. We will later see that
has infinite order inH?(Mod(S,,1; Z).

Note that the Euler class fddod(S,,1) is the pullback of the classical Euler
class under the map on cohomology induced by the inclusiod(S, ;) —
Homeo™ (S1).
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5.5.5 THE RESTRICTION OF THE EULER CLASS TO THE POINT PUSHING
SUBGROUP

We will next evaluate the Euler classs H?(Mod (S, 1); Z) on a concrete
2—cycle, namely, the one coming from the point pushing sulggr We
will do this by constructing an easy-to-evaluate cohomyplotass and by
proving that this class equals the Euler class.

Let g > 2. Recall from Section 4.2 that the point pushing map is an in-
jective homomorphisnPush : m1(Sy) — Mod(S,.1). We can thus pull
back the Euler class € H?(Mod(S,1);Z) to an elemenfPush*(e) €

—_—~—

H?(7m1(S,); Z) =~ Z. Letm(S,) denote the pullback of; (S,) < Homeo*(Sl)I

—~— +
to Homeo (S'). We have thaPush*(e) is the cocycle associated to the
following central extension:

—_—

1 = Z — m(Sy) — m(Sy) — 1.

Another way to obtain an element &f? (1 (S,); Z) is by considering the
unit tangent bundl&! — UT(S,) — S,. SinceS, is aspherical, the long
exact sequence associated to this fiber bundle gives a stamttsequence

1 =7 —m(UT(Sy)) — m(Sy) — 1.

This is a central extension, and so it has an associatedleatye H%(S,;; Z) ]|
We claim that’ is nontrivial. If e were trivial then there would be a splitting
m1(Sy) — m(UT(S,), and hence a section 6fI'(S;) — S,. The latter
would give a nonvanishing vector field &), which is prohibited by the
Poincaré—Bendixon theorem (fgr> 2). We thus have that is nontrivial.
In fact this argument gives that has infinite order in/?(S,; Z). Indeed,
the extension given bie’ is

1 = kZ — m(UT(Sy)) — m1(Sy) — 1.
If this extension were trivial for some # 0, we would again have a nonva-
nishing vector field orf|,.

Proposition 5.10 The element®ush* (e) ande’ of H?(r1(S,); Z) are equal

Proposition 5.10 implies that the evaluation of the pulkbaa Push* of the
Euler class foMod(S,,1) on the fundamental class af (S,) is the Euler
number of the unit tangent bundle, which is eqeial 2¢ (the Euler number
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of the tangent bundle to a Riemannian manifold is alwaysldqube Euler
characteristic of the manifold). In particular, we havettih@ Euler class for
Mod(S,,1) is nontrivial even when restricted to the point pushing sabp.

Proof. By the five lemma it suffices to exhibit a homomorphisptUT'(S,)) —|

m1(Sy) that makes the following diagram commutative:

| —— 72— m(UT(S,) —=m(S;) —= 1

T T

—_~—

1 Z m(S,) —= m(Sy) —=1

The key is the following claim.

Claim: The image ofr;(S,) in Homeo™(S!) given by the
compositionr (Sy) — Mod(Sy,1) — Homeo™ (S') coincides
with the image of the composition; (S,) — Isom™(H?) —

Homeo™ (S') obtained by identifyingr; (S,) with the group of
deck transformations of the coverititf — S, .

Proof of claim. Fora € (S, p), we have thaPush(«) acts

by conjugation onr;(Sy,p), and so the lift of any represen-
tative of Push(a) fixing p sendsy - p to (aya™!) - p for all

v € m1(Sg,p). On the other hand, the deck transformation cor-
responding tev sendsy - p'to (ay) - p. We can modify this deck
transformation by pushing each poiiaty) - p along the unique
lift of o' starting at that point. This induces an isotopyHsf
moving points a uniformly bounded amount, and hence does
not change the corresponding elemenHofneo™ (S!). At the
end of this isotopy, each poifit-y) - p gets sent tgaya 1) - p.
Since the lift of Push(«) and the (modified) deck transforma-
tion corresponding tex agree on the orbit g, they induce the
same element dflomeo™ (S1). O

Now leta be an element af (UT'(S,)). In order to construct the associated
Jr
(

elementy) € Homeo S1), we need two ingredients:

1. a homeomorphismy € Homeo™ (S*), and
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2. apathr in S! from some basepointy € S* to ().

Indeed, ifz, is some fixed lift ofz( to R, and7 is the unique lift of the path

7 starting atzo, then we can take to be the unique element Blomeo™ (R)
that lifts ¢» and takest to the endpoint of.

After constructing@, we will then need to check that it actually lies in
7T1(Sg).

As in Section 4.2, the element € ;(UT(S,)) gives an elemenf; €

Mod(Sy, (p,v)), the group of isotopy classes of diffeomorphismsSyf
fixing the point-vector pai(p,v). The mapping clasg; is the class of a
diffeomorphism¢; obtained at the end of a smooth isotopy %f push-

ing (p,v) alonga. By taking the unique Iiftgga of ¢4 to Homeo™ (H?)
that fixes the poinfy, we obtain a well-defined homeomorphisfg <
Homeo™ (S!) as before. For example, in the case thas the central ele-
ment of 1 (UT'(S,)), the lift of ¢5 simply rotates a neighborhood of each

lift of p, and the induced element Homeo™ (S1) is trivial.

The homeomorphisnfi;, is the desired element dfomeo™ (S). It remains
to construct the path in S! from some fixed basepoing to f; (o).

If we forget the datum of the vecter, and only remember the poipt then
fa also represent®ush(a), wherea € m1(S,) is the image ofv under the
forgetful mapm (UT(Sy)) — m1(Sg). Thus, it follows from the claim that
as an element dflomeo™ (S') the mapping clasg; agrees with the deck
transformation corresponding ta

Let (p, v) be a fixed lift of(p, v) to UT(H?). Let zy be the point obH? ~
S to which (p,v) points. Becausgy agrees with the deck transformation
a, and since deck transformations are isometries, the liftey <l~5a takes
(p,v) to an element of/ T'(H?) that points tof ; ().

Recall thatp; is a diffeomorphism obtained at the end of a smooth isotopy
of S,. Thus,¢; is a diffeomorphism obtained at the end of a smooth isotopy
of H2. At each point in time during the isotopy &2, the pair(p,v) has a
well-defined image, which in turn points to some point@#i’. Thus, the
isotopy of H? coming froma determines a pathy in 0H? ~ S'. Again, at

the end of the isotopy, the image @f, v) points to the image of(, and so

T4 satisfies the desired properties.

—— +
We have thus obtained the desired elemeifaheo (S!). Since the claim
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implies that f; agrees with a deck transformation, we have in fact con-
structed an element of; (S,). It follows easily from the above discussion

that the resulting map (UT'(S,)) — 7;(\53) is well-defined and that it
satisfies the desired commutativity, and we are done. O

5.5.6 THE EULER CLASS VIA CAPPING THE BOUNDARY

We now give a different construction of the groN(pE?l(Sgyl), and hence a
different derivation of the Euler class fadod(S,,1). Let S, be the genus
g surface with one boundary component. Recall from Propmsii.19 that
there is a short exact sequence

1 — Z — Mod(S}) — Mod(Sg1) — 1 (5.9)

where the kerne¥. is generated by the Dehn twist about the boundary of
S; and is thus central. Since the extension is central it giveslament

¢’ € H*(Mod(S,,1); Z). Corollary 7.3 gives thablod(S}) is torsion free,
and soe” is nontrivial.

We will show below that?(Mod (S, 1;Z) ~ Z*. We will show that this
group is generated by the Euler class and the Meyer signatargcle. We
will also show that the Meyer signature cocycle evaluatesatly on the

subgroupr; (Sy) of Mod(Sy,1). Thus, to show that” is the Euler class, it
suffices to check that these two classes agree on the poimngusubgroup
m1(Sy). As in Section 4.2, the central extension (5.9) restricthéocentral
extension:

1 =7 —m((UT(Sy)) — m(Sy) — 1.

We thus deduce from Proposition 5.10 thatis again the Euler class.

5.5.7 THE BIRMAN EXACT SEQUENCE DOES NOT SPLIT

Let g > 2. The Birman exact sequence (Theorem 4.6) is:
1 — m1(Sg) — Mod(S4,1) — Mod(S,) — 1.

Above, we described an embeddidpd(S, 1) — Homeo™t(S1). Since
finite subgroups oflomeo™ (S') are cyclic, it follows that the same is true
for Mod(S,,1). Itis easy to find finite subgroups dfod(S,) that are not
cyclic (for example the dihedral group of ord2y), and so we have the
following.
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Corollary 5.11 Letg > 2. The Birman exact sequence
1 — m(Sy) — Mod(Sg,1) — Mod(S,) — 1

does not split.

5.6 SURFACE BUNDLES AND THE MEYER SIGNATURE COCYCLE

Our next goal is to construct an elementff(Mod(S,); Z) that is not a
power of the Euler class This element, called the Meyer signature cocycle,
is defined using the theory of surface bundles over surfaces.

We will use some homological algebra to show that the Meygnatiire
cocycle gives rise to nontrivial elements &(Mod(S,)), Hz(Mod(S;)),
andHy(Mod(S,,1), and to then complete the proof of Theorem 5.8.

In order to define the Meyer signature cocycle properly, westhularify
the connection between the mapping class group and theytbésurface
bundles, so this is where we start.

5.6.1 SURFACE BUNDLES

The basic problem in the theory of surface bundles is to ifladsr fixed
(Hausdorff, paracompact) base spagall isomorphism classes of bundles

Sy — E — B.

Recall that abundle isomorphisnis a fiberwise homeomorphism of total
spaces covering the identity map. The reduction of$pebundle classifi-
cation problem to a problem aboMtod(.S,), at least forg > 2, begins with
the following theorem. This theorem is a special case of Témwol.14,
proved by Hamstrom. For the statement, recall thatneo,(S,) denotes
the topological group of homeomorphisms §f that are isotopic to the
identity.

THEOREM 5.12 If g > 2 thenHomeog(.S,) is contractible.

Let BHomeo™ (S,) denote the classifying space of the topological group
Homeo™(S,). The theory of classifying spaces gives a bijective cowasp
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dence as follows.

Isomorphism classes of - Homotopy classes of
orientedS,—bundles ove3 mapsB — BHomeo™ (S,)

This bijection is realized concretely in the following wahere is a bundle
¢ given by

S, — E — BHomeo™ (S,)

with the universal property that arfy,—bundle over any spadg is the pull-
back of¢ via a continuous map (theassifying mapf : B — BHomeo™ (S,) ]
Homotopic classifying maps gives isomorphic bundles. @osely, any
bundle induces such a mgp The bundle¢ is called theuniversal S,—
bundle ThusBHomeo™ (S,) plays the same role for surface bundles as the
(infinite) Grassmann manifold3SO(n) play for vector bundles.

Consider the exact sequence
Homeog(S,;) — Homeo™ (S,) — Mod(S,).

Theorem 5.12 together with Whitehead’s theorem impliesithaneo™ (S,
is homotopy equivalent to the discrete topological gradipd(S,) for g >
2. In other words we have the following.

Proposition 5.13 For g > 2 the spacedBHomeo ™ (S,) is a K (Mod(S,), 1)
space.

A continuous magf : B — K(Mod(S,), 1) induces a representatiof :
m1(B) — Mod(S,). Two such representations, p, are calledconjugate
if there exists arh € Mod(S,) so that

p1(7) = hpa(y)h ™"

for all v € 71 (B). Basic algebraic topology gives that the mAgs de-
termined up to free homotopy by the conjugacy class of theesgmtation
f+, and that every representation is induced by some cont;uamap. In
other words there is a bijection between free homotopy ekas$ mapsf :

B — K(Mod(Sy),1) and conjugacy classes of representatiopn§3) —

Mod(S,). This bijection, together with Proposition 5.13, gives fbkow-

ing bijective correspondence.

Isomorphism classes Conjugacy classes
of orientedS,~bundles , «—— of representations

overB p:mi(B) — Mod(Sy)
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The simplest (but already interesting) instance of this fedhat isomor-
phism classes of,—bundles oves* are in bijection with conjugacy classes
of elements iMod(S,). A more remarkable consequence is that, given any
group extension

1 -m(Sy) = G—Q—1, (5.10)

there exist topological spaces (indeed closed manifaidand B and a fi-
brationS, — E' — B inducing the given group extension. Why is this sur-
prising? Well, if we are given a representatipn w1 (B) — Homeo™ (S,),
it is easy to see how to build a bundt — E — B with monodromy
mop:m(B) — Mod(Sy): just takes the quotient ¢, x B by the obvious
m1(B)—action. However, the data specified by the group exten&drO)
only determines a representatipn 7 (B) — Mod(S,). That is, elements
of the monodromy are specified only up to isotopy, so it is ndliaclear
how to use this data to build a well-defingg-bundle. In fact Morita has
constructed examples where the monodrgmyr(B) — Mod(S,) does
not lift to a representation : 7 (B) — Homeo™(S,) [155]. Yet the bi-
jection above gives a fiber bundl¢, — E — B with B and E closed
manifolds that has monodromy

The above discussion should clarify why the problem of dgisg) conju-
gacy classes of representations of various groupshifiid(.S, ) is an impor-
tant problem.

Another corollary of Proposition 5.13 is that
H*(BHomeo™ (S,); Z) ~ H*(Mod(S,); Z).

This isomorphism is one of the main reasons that we care d@heutoho-
mology ofMod(S,). Itis the reason we think of elementsf@f (Mod (S, ); Z)}
as “characteristic classes of surface bundles,” as we nglaiex

Suppose one wants to associate to evgpybundle a (say integral) coho-
mology class on the base of that bundle, so that this assmtiatnatural,

that is, it is preserved under pullbacks. By applying thitheuniversalS,—
bundle(, we see that each such cohomology class must be the pullthack o
some element off *(BHomeo ™ (S, Z)) ~ H*(Mod(S,); Z). In this sense

the classes i *(Mod(S,); Z) are universal. This is why they are called
“characteristic classes” of surface bundles.

We have already seen that (Mod(S,);Z) = 0if g > 3 (Theorem 5.2). It
follows from the Universal Coefficients Theorem thdt (Mod(S,); Z) =
0. Thus there are no naturétdimensional cohomology invariants for these
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S,~bundles. In Section 5.4 we proved fpr> 4 that H2(Mod(S,); Z) is
cyclic, so that there is at most one natural 2—dimensionariant. This is
the Meyer signature cocycle, constructed below.

Remark on the smooth case. Every aspect of the discussion above holds
with the smooth category replacing the topological catggétere we re-
placeBHomeo™ (S,) with BDiff *(S,), etc. The key fact is the theorem of
Earle—Eells [51] (see also [71]) that the topological gr@iff,(S,) is con-
tractible forg > 2. Following the exact lines of the discussion above, This
gives a bijective correspondence between isomorphisnsetasfsmooth
S,—bundles over a fixed base spa@end conjugacy classes of representa-
tionsp : m(B) — Mod(S,).

5.6.2 DEFINITION OF THE MEYER SIGNATURE COCYCLE

We are now ready to describe the construction of a nonzeroeries €
H?(Mod(S,); Z): theMeyer signature cocycleBelow we will prove thatr
pulls back to a nontrivial class both #i*(Mod (S,,1); Z) and inH*(Mod(S; ); Z) |

For any closedi—manifold M there is a skew-symmetric pairing

H*(M;Z) ® H*(M;Z) — Z
a ® b —  {(aUb, [M])

given by taking the cup product of two classes and evaludtiegesult on
the fundamental class @f/. The signature of the resulting quadratic form
is called thesignatureof M, denoted byig(M ).

We can use signhature to giveacochain
o € C*(BHomeo™ (S,); Z) ~ Hom(Cy(BHomeo™ (S,); Z), Z)

as follows. Suppose we are given a chaig Cy(BHomeo™ (S,);Z). It

follows from general facts about 2—chains in topologicacgs that can
be represented by a mgp: S5, — BHomeo™ (S,), whereS), is a closed
surface of genué > 0. We then letr € C?(BHomeo™ (S,); Z) be defined

by
a(f) = sig(f7¢)
where, as above, denotes the universal,—bundle oveBHomeo™ (Sy).

It follows from work of Meyer that is a well-define®—cocycle [152]. One
key ingredient in this is the fact that the signature of a fitnandle depends
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only on the action of the fundamental group of the base on dinedtogy of
the fiber; another is the so-called “Novikov additivity” afaature.

It is not easy to prove that is a nonzero element df?(BHomeo™ (S); Z).
The hard part is finding a good way to compute signature ingesfrthe
monodromy data. Kodaira, and later Atiyah (see [7]), fourstidace bun-
dle over a surface with nonzero signature. This constraoctian be used
to give such a bundle with fibef, for any g > 4. It follows that the sig-
nature cocycler € H?(BHomeo™ (S);Z) ~ H?(Mod(S,);Z) is nonzero.
Indeed, this kind of argument can be used to prove dhiads infinite order
in H2(Mod(Sy); Z).

5.6.3 MATCHING UPPER AND LOWER BOUNDS ON H2(Mod(S); Z)

In Section 5.4 we used Hopf’s formula to give an upper bounthemum-
ber of generators of the groufi,(Mod(S); Z), wheresS is eitherSy, S 1

or S; and wherg; > 4. So far in this section we have constructed two non-
trivial elements off2(Mod(S); Z), the Euler class and the Meyer signature
cocycle. We will now use homological algebra to compkitg Mod(SS); Z)

on the nose.

The universal coefficients theorem andH2(Mod(S);Z). LetS be a
surface of genus at least 3. In what follows we assume thabaiblogy and
cohomology groups havé coefficients. The universal coefficients theorem
gives the following short exact sequence:

1 — Ext(H;(Mod(S)),Z) — H?*(Mod(S)) — Hom(Hy(Mod(S)),Z) — 1}
(5.11)
Since H; (Mod(S);Z) = 0 (Theorem 5.2), the Ext term in (5.11) is trivial.
Thus
H?(Mod(S); Z) ~ Hom(H,(Mod(S); Z), Z).
In other words we have

H?(Mod(S); Z) ~ Ho(Mod(S); Z)/torsion

Proof that H>(Mod(Sy);Z) ~ Z. In Section 5.4 we proved that
H>(Mod(Sy);Z) is cyclic. Since the Meyer signature cocycle is an in-
finite order element off?(Mod(S,); Z), and sinceH?(Mod(S,);Z) ~
Hy(Mod(S,); Z) /torsion, we have that

Hy(Mod(Sy);Z) = Z,
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as stated in Theorem 5.8. Thus we see that, up to multiplgsatsire is the
only 2—dimensional isomorphism invariant féf—bundles.

A 5—-term exact sequence for homology groupsWe now introduce a tool
that will help us computéd,(Mod(S})) and Hy(Mod(Sg,1)).

Given any short exact sequence of groups
1-K—-G—-0Q—1
there is a 5—term exact sequence of homology groups
H3(G) — H3(Q) — Hi(K)q — H1(G) — H1(Q) — 0

where all coefficient groups af and H, (K ) is the coinvariantsof the
action of@ by conjugation or/; (K’; Z), that is, the quotient off; (K; Z)
by all elements: — ¢ - z wherex € H,(K;Z) andq € Q. The existence of
this 5—term exact sequence is a consequence of the Hopf iisee [37,
page 47]).

Proof that Hz(Mod(S;); Z) = Z. We saw in Section 5.4 thaf,(Mod(Sy); Z)|]
is a cyclic group. Our aim is to prove that it is isomorphiczo

If we apply the 5—-term exact sequence for homology groups¢oshort
exact sequence

1 — m (UT(S,)) — Mod(S,) — Mod(S,) — 1,
we obtain the sequence

Hy(Mod(Sy)) — Hz(Mod(Sg)) — Hi(m1(UT(Sg)))Mod(s,)

— Hi(Mod(S,)) — Hi(Mod(S,)) — 0,
or, by Theorem 5.2,
H>(Mod(S;)) — Z — Hi(mi(UT(S¢)))Mod(s,) — 0 — 0 — 0.
We now determine the coinvariants in this sequence.

Claim: Hl(ﬂ-l(UT(Sg)))Mod(Sg) ~ Z/(2g - Q)Z
Proof of claim. We start with the presentation

g
m(UT(Sy)) = (a1,by,. .., ag,bg, 2| [ [lai, bi] = 2729, = central)
=1
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wherez is the generator of thg! fiber. It follows that
Hi(UT(S,);Z) =~ 7?9 © Z) (29 — 2)Z ~ H1(S,; Z) © 7./ (29 — 2)Z.

What is more, the action dflod(S,) on H,(UT'(S,); Z) is given by the
standard action olMod(S,) on H(S,; Z) together with the trivial action
onZ/(2g — 2)Z. Thus, we have

Hi(m1(UT(Sg)))Mod(s,) = Hi(Sg; Z)moacs,) ® Z/(29 — 2)Z

and so it now remains to show that the coinvariafts(Sy; Z)noq(s,) iS
trivial.

By the change of coordinates principl®lod(S,) identifies all primitive
elements off; (S,; Z) with each other. In particular, each primitive element
is identified with its inverse. Thus$/1(Sy; Z)\odcs,) IS @ quotient ofZ /27Z.

On the other hand, one can find iy (S,; Z) three primitive elements that
sum to zero. It follows thatl (Sg; Z)mod(s,) IS trivial. O

Our 5—term sequence is now reduced to
Hy(Mod(Sy)) — Z — Z/(2g — 2)Z — 0.

It follows that the kernel of the mad — Hi(m1(UT(Sy)))mod(s,) IS 1SO-

morphic toZ. By exactness of the sequence, we see hdod(S}); Z)
contains an infinite cyclic subgroup. On the other hand, wesaadly showed
that Hy(Mod(S}); Z) is a quotient ofZ, and so follows that» (Mod(S, ); Z) ~}
Z, as desired.

Actually, we have proven a little more. We have shown thatgli®an exact
sequence

HQ(MOd(S;)) —_— HQ(MOd(Sg)) _— H1(7T1(UT(SQ)))MOd(5g) —0
&Q &Q %
7 7 7)(2g — 2)Z

So we see that the map froffi,(Mod(S;) ~ Z to Hy(Mod(S,)) ~ Z is
multiplication by2g — 2.

Proof that Ha(Mod(Sy,1);Z) ~ Z2. We start by showing that the
groupHy(Mod(Sy1); Z) is generated by at most two elements. Recall from
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Proposition 3.19 that we have a short exact sequence
1 — (T,) — Mod(S;) — Mod(Sg,1) — 1

whereq is the isotopy class of the boundary componenﬁpf The associ-
ated 5-term exact sequence of homology groups is

HQ(MOd(S;)) - HQ(MOd(Sg,l)) - H1(<Ta>)Mod(Sg,1)

— Hy(Mod(S,)) — H1(Mod(Sg1)) — 0.

We just proved thaHQ(Mod(S;)) ~ 7. Also by Theorem 5.2 the groups
Hi(Mod(S;)) andH1(Mod(S,,1)) are trivial. Finally, sincgT,) is central
in Mod(S,), the coinvariantsH ((Tw))nod(s, ;) iS isomorphic toZ. We
can thus rewrite the 5—-term exact sequence as:

7 — Hy(Mod(Sg1)) = Z — 0 — 0 — 0.
It follows that H2(Mod(S,,1); Z) is a quotient ofZ?, as desired.

We obtain one element of H(S, 1;7Z) by passing the Euler class e
H?(Mod(S,,1); Z) through the universal coefficients theorem, as above.

We obtain another element &f5(.S, 1; Z) from the Meyer signature cocy-
cleoc € H?*(Mod(S,);Z) as follows. The universal coefficients theorem
identifieso with an element™ of Hy(Mod(S,); Z). Then, we consider the
Birman exact sequence

1 — m1(Sg) — Mod(S4,1) — Mod(S,) — 1.
The associated 5-term exact sequence in homology is

H3(Mod(Sy,1)) — Ha(Mod(Sg)) — H1(Sg)mod(s,)

— Hi(Mod(Sy,1)) — Hi1(Mod(Sy)) — 0.

Above, we showed that'; (S;)noq(s,) IS trivial, and so the mafls(Mod(Sy,1)) —|
H>(Mod(S,)) is surjective. Thus (abusing notation) there is an element
o* € Hy(Mod(Sy,1)) mapping toc* € Hy(Mod(S,)). Applying the
universal coefficients theorem one more time, we obtain amehtos ¢
H?(Mod(S,1))-

We now show that* andc* are distinct elements aff;(Mod(S,.1); Z),
even up to multiples. By the universal coefficients theordrsuffices to
show thate ando are distinct elements d?(Mod (S, 1); Z).
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By Proposition 5.10 the Euler classevaluates nontrivially on th—cycle
given by the fundamental class of the “point pushing subgitaty (S,).
On the other hand, since;(S,) is the kernel of the maplod(S,;) —
Mod(S,) (Theorem 4.6), we have that the fundamental class95,)
pushes forward to zero ififo(Mod(S,)). As the signature cocycle <
H?(Mod(S,.1)) is the pullback ofc € H?(Mod(S,);Z), it follows that
o € H*(Mod(S, 1)) evaluates trivially on the fundamental classmfS,).
We thus have thati?(Mod(S,,1); Z) ~ Z* and hence

Hy(Mod(Sy1); Z) ~ Z2.

This completes the proof of Theorem 5.8.



Chapter Six

The symplectic representation and the Torelli

group

One of the fundamental aspects Mid(S,) is its action onH;(Sy;Z).
The representatio® : Mod(S,;) — Aut(H;(S,;Z)) is like a “first linear
approximation” toMod(S,), and we can try to transfer our knowledge of
the linear groupAut(H1(S,; Z)) to the groupMod(S,).

As we show in§6.1, the algebraic intersection number Ha(S,; R) gives
this vector space a symplectic structure. This sympledtigctire is pre-
served by the image oF, and so¥ can be thought of as a representation

U : Mod(Sy) — Sp(2¢9,Z)

into the integral symplectic group. The homomorphigns called thesym-
plectic representationf Mod(.S,). The bulk of this chapter is an exposition
of the basic properties and applicationsdof A 