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Preface

Our goal in this book is to explain as many important theorems, examples,
and techniques as possible, as quickly and directly as possible, while at the
same time giving (nearly) full details and keeping the text (nearly) self-
contained. This book contains some simplifications of knownapproaches
and proofs, the exposition of some results that are not readily available,
and some new material as well. We have tried to incorporate many of the
“greatest hits” of the subject, as well as its small quirks and gems.

There are a number of other references that cover various of the topics we
cover here (and more). We would especially like to mention the books by
Abikoff [1], Birman [23], Casson–Bleiler [43], Fathi–Laudenbach–Poénaru
[59], and Hubbard [92], as well as the survey papers by Harer [81] and
Ivanov [103]. The works of Bers [13, 14] on Teichmüller’s theorems and on
the Nielsen–Thurston classification theorem have had a particularly strong
influence on this book.

The first author learned much of what he knows about these topics from
his advisor Bill Thurston, his teacher Curt McMullen, and his collabora-
tors Lee Mosher and Howard Masur. The second author’s perspective on
this subject was greatly influenced by his advisor Benson Farb, his mentors
Mladen Bestvina and Joan Birman, and his collaborator ChrisLeininger.
This book in particular owes a debt to notes the first author took from a
course given by McMullen at Berkeley in 1991.

Benson Farb and Dan Margalit
Chicago and Atlanta, January 2011
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Chapter

Overview

In this book we will consider two fundamental objects attached to a surface
S: a group and a space. We will study these two objects and how they relate
to each other.

The group. The group is themapping class groupof S, denoted by
Mod(S). It is defined to be the group of isotopy classes of orientation-
preserving diffeomorphisms ofS (that restrict to the identity on∂S if ∂S 6=
∅):

Mod(S) = Diff+(S, ∂S)/Diff0(S, ∂S).

HereDiff0(S, ∂S) is the subgroup ofDiff+(S, ∂S) consisting of elements
that are isotopic to the identity. We will study the algebraic structure of
the groupMod(S), the detailed structure of its individual elements, and the
beautiful interplay between them.

The space. The space is theTeichm̈uller spaceof S. Whenχ(S) < 0 this
is the space of hyperbolic metrics onS up to isotopy:

Teich(S) = HypMet(S)/Diff0(S).

The spaceTeich(S) is a metric space homeomorphic to an open ball. The
groupDiff+(S) acts on HypMet(S) by pullback. This action descends to
an action ofMod(S) on Teich(S). A fundamental result in the theory is
that this action is properly discontinuous. The quotient space

M(S) = Teich(S)/Mod(S)

is themoduli space of Riemann surfaceshomeomorphic toS. The space
M(S) is one of the fundamental objects of mathematics. Since (as we will
prove)M(S) is finitely covered by a closed aspherical manifold, the group
Mod(S) encodes most of the topological features ofM(S). Conversely, in-
variants such as the cohomology ofMod(S) are determined by the topology
ofM(S).
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The appearance ofMod(S), Teich(S), andM(S) in mathematics is ubiq-
uitous: from hyperbolic geometry to algebraic geometry to combinatorial
group theory to symplectic geometry to3–manifold theory to dynamics. In
this book we will relate the algebraic structure ofMod(S), the geometry of
Teich(S), and the topology ofM(S). Underlying the connections between
these structures is the combinatorial topology of the surfaceS. Indeed, one
leitmotif of this book is the interplay of the “local” study of the geometry
and topology of a single surfaceS and the “global” properties of the spaces
Teich(S) andM(S). It is a beautiful thing to see how each informs the
other.

The classification. The third player in our story is the Nielsen–Thurston
classification theorem, which gives a particularly nice representative for
each element ofMod(S). This is a nonlinear analogue of the Jordan canon-
ical form for matrices; as such it is a cornerstone of the theory. It is in
Bers’ proof of this theorem where the first two characters play off of each
other: the key is to understand how elements ofMod(S) act onTeich(S)
via isometries of the Teichmüller metric. Much of the usefulness of the
Nielsen–Thurston classification comes from the fact that the typical ele-
mentMod(S) has a pseudo-Anosov representative. Pseudo-Anosov home-
omorphisms have very specific descriptions and exhibit manyremarkable
properties.

In light of the above discussion this book is divided into three parts. We
now outline these, emphasizing what we consider to be some ofthe more
important results, and focussing for simplicity on the caseof the closed
surfaceSg of genusg.

Part I

Part I covers what might be called the core theory of mapping class groups.
The central theme is the relationship between the algebraicstructure in
Mod(S) and the combinatorial topology inS.

Chapter 1. Just as one understands a linear transformation by its action on
vectors, so one understands an element ofMod(Sg) by its action on simple
closed curves inS. Chapter 1 explains the basics of working with simple
closed curves. This is more difficult than it might sound, as the typical
simple closed curve can be rather complicated (see Figure 1).

Wheng ≥ 2, hyperbolic geometry enters as a useful tool since each ho-
motopy class of simple closed curves has a unique geodesic representative.
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Figure 1 Thurston’s “typical curve.”

Following the linear algebra analogy we introduce the geometric intersec-
tion number. This is the analogue of an inner product on a vector space, and
is a basic tool for working with simple closed curves inSg. The chapter
ends with the “change of coordinates principle.” This principle plays the
same role that change of basis plays for matrices, so it is notsurprising that
it is applied with great frequency.

Chapter 2. After defining the mapping class groupMod(S) we compute
the examples that can be explicitly determined “by hand.” Wethen intro-
duce what we call “the Alexander method,” which gives an algorithm for
determining whether or not two elements ofMod(S) are equal. In particu-
lar this method is used for showing an element ofMod(S) is nontrivial, or
for verifying relations inMod(S). One of the computations we perform is
the following classical, fundamental theorem of Dehn.

Theorem 2.5 Mod(T 2) ≈ SL(2,Z).

Chapter 3. Dehn twists are the simplest infinite order elements ofMod(S).
They play the role of elementary matrices in linear algebra,so it is not sur-
prising that they appear in much of what follows. We present an in-depth
study of Dehn twists and their action on simple closed curves. As one appli-
cation of this study, we prove that if two simple closed curves inSg have ge-
ometric intersection number greater than 1 then the associated Dehn twists
generate a free group of rank 2 inMod(S). We also apply our knowledge
of Dehn twists in order to prove the following basic theorem.

Theorem 3.10 For g ≥ 3 the center ofMod(Sg) is trivial.

Chapter 4. At this point we have developed the nuts and bolts of the
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theory and we start to expose some of the most basic algebraicstructure of
Mod(S). The following fundamental theorem of Dehn, proved in 1922,is
analogous to the fact thatSL(n,Z) is generated by elementary matrices.

Theorem 4.1 Mod(Sg) is generated by finitely many Dehn twists.

Theorem 4.1 is proved by induction on genus, and the Birman exact se-
quence is introduced as the key step for the induction. The key to the in-
ductive step is to prove that the complex of curvesC(Sg) is connected when
g ≥ 2. The simplicial complexC(Sg) is a useful combinatorial object that
encodes intersection patterns of simple closed curves inSg. More detailed
structure ofC(Sg) is then used to find various explicit generating sets for
Mod(Sg), including those due to Lickorish and to Humphries.

A natural problem now arises: given a finite product of Dehn twists, is there
an algorithm to determine whether the resulting element ofMod(Sg) is triv-
ial or not? The next theorem says that the answer is “yes.”

Theorem 4.2 Mod(Sg) has solvable word problem.

Chapter 5. After proving that a groupG is finitely generated the next
invariant one wants to compute is the abelianization ofG, or what is the
same thing its first homologyH1(G; Z). Chapter 5 begins with a simple
proof, due to Harer, of the following theorem of Mumford, Birman, and
Powell.

Theorem 5.2If g ≥ 3, thenH1(Mod(Sg); Z) = 1.

The key ingredient in the proof of Theorem 5.2 is Theorem 4.1 together with
the so-called “lantern relation,” a beautiful relation between seven Dehn
twists that was discovered by Dehn in the 1920’s. We then apply a method
from geometric group theory to prove the following theorem.

Theorem 5.7Mod(Sg) is finitely presentable.

The geometric group theory technique converts the statement of Theorem 5.7
to a problem about the topology of a certain “arc complex” andan associ-
ated mapping class group action on it. The key in this case is ashockingly
simple and beautiful proof of Hatcher that the arc complex iscontractible.
We also give explicit presentations ofMod(Sg), including those of Birman–
Wajnryb and Gervais.

Hopf gave a formula for computingH2(G; Z) for any groupG from a fi-
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nite presentation forG. While this computation is usually too difficult
to perform in practice, Pitsch discovered that one can use the Birman–
Wajnryb presentation ofMod(Sg) to give an upper bound on the rank of
H2(Mod(Sg; Z)). We use this method in proving the following deep theo-
rem, originally due to Harer.

Theorem 5.8 If g ≥ 4, thenH2(Mod(Sg); Z) ∼= Z.

The lower bound in Theorem 5.8 is given by explicitly constructing non-
trivial classes. We give a detailed construction of the the Euler class, the
most basic invariant for surface bundles, as a 2–cocycle forthe mapping
class group of a punctured surface. At this point homological algebra, in
the form of (a degenerate form of) the Hochschild–Serre spectral sequence,
is used to deduce Theorem 5.8. The Meyer signature cocycle isalso ex-
plained, as is the important connection of this circle of ideas with the theory
of Sg–bundles. Indeed, understandingSg–bundles and their invariants is a
major motivation for computingH2(Mod(Sg); Z). The strong connection
betweenMod(Sg) andSg–bundles comes from the following bijection:





Isomorphism classes
of orientedSg–bundles

overB



←→





Conjugacy classes
of representations

ρ : π1(B)→ Mod(Sg)





for each fixedg ≥ 2 and each fixed baseB.

Chapter 6. Algebraic intersection number gives aMod(Sg)–invariant sym-
plectic form onH1(Sg; Z), thus inducing a representation

Ψ : Mod(Sg)→ Sp(2g,Z)

with target the integral symplectic group. This so-calledsymplectic repre-
sentationof Mod(Sg) can be viewed as a kind of “linear approximation” to
Mod(Sg). We present three different proofs of the surjectivity ofΨ, each
illustrating a different theme. The usefulness of the symplectic represen-
tation is then illustrated by two applications to understanding the algebraic
structure ofMod(S). First, we explain how Serre used this representation
to prove the following.

Theorem 6.9 Mod(Sg) has a torsion-free subgroup of finite index.

The actual statement of Theorem 6.9 given below provides explicit torsion-
free subgroups ofMod(Sg) that come from congruence subgroups ofSp(2g,Z).
We then use the symplectic representation to prove, following Ivanov, the
following theorem of Grossman.
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Theorem 6.11 Mod(Sg) is residually finite.

The symplectic representation has a kernel, called theTorelli group, de-
notedI(Sg). This is an important but still poorly understood subgroup of
Mod(Sg). The Torelli group supports a rich and beautiful theory withim-
portant connections to other parts of mathematics. We continue Chapter 6
by explaining some of the pioneering work of Dennis Johnson on I(Sg). In
particular we construct the so-called “Johnson homomorphism”

τ : I(S1
g)→ ∧3H

whereS1
g is Sg minus an open disk andH = H1(S

1
g ; Z). We then explain a

few of the many applications ofτ .

Chapter 7. What are the finite groups of topological symmetries ofS;
that is, what are the finite subgroups ofMod(S)? A deep theorem of Ker-
ckhoff states that each finite subgroup ofMod(S) comes from a group of
orientation-preserving isometries for some hyperbolic metric on S. Such
groups are highly constrained: using the Riemann–Hurwitz formula and
basic facts about2–dimensional orbifolds, we prove Hurwitz’s “84(g − 1)
theorem,” a nineteenth century classic.

Theorem 7.4 (84(g − 1) theorem) If X be a hyperbolic surface homeo-
morphic toSg, whereg ≥ 2, then

| Isom+(X)| ≤ 84(g − 1).

We also prove a corresponding “4g + 2 theorem” for cyclic subgroups of
Mod(Sg). Later in the book we prove Kerckhoff’s theorem for cyclic groups
(i.e. “cyclic Nielsen realization”) by using the action ofMod(Sg) onTeich(Sg).

The basic orbifold theory that we develop to prove Theorem 7.4 is then
applied to prove thatMod(S) has only finitely many conjugacy classes of
finite subgroups. On the other hand, we prove that there is enough torsion in
Mod(S) to generate it with finitely many torsion elements, and indeed we
can take these elements to have order2.

Chapter 8. This chapter is an exposition of one of the most beautiful
connections between topology and algebra in dimension two:the Dehn–
Nielsen–Baer theorem. LetOut(π1(S)) denote the group of outer auto-
morphisms ofπ1(S), and letMod±(S) denote theextended mapping class
group, which is the group of isotopy classes of all homeomorphismsof S
(including the orientation preserving ones).
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Theorem 8.1 (Dehn–Nielsen–Baer theorem)For g ≥ 1 we have

Mod±(Sg) ∼= Out(π1(Sg)).

Theorem 8.1 equates a topologically defined group,Mod(Sg), with an alge-
braically defined group,Out(π1(Sg)). What is more, Dehn’s original proof
uses hyperbolic geometry! Both the theorem and the ideas in the proof fore-
shadow the Mostow rigidity theorem, nearly fifty years in advance.

Chapter 9. Part I ends with a brief introduction to braid groupsBn. The
groupBn is isomorphic to the mapping class group of a disk withnmarked
points. Since disks are planar the braid groups lend themselves to special
pictorial representations. This gives the theory of braid groups its own spe-
cial flavor within the theory of mapping class groups.

After presenting some classical facts about the algebraic structure of the
braid group, we give a new proof of the Birman–Hilden theorem, which
relates the braid groups to the mapping class groups of closed surfaces.
Let SMod(S1

g) denote subgroup ofMod(S1
g ) consisting of elements with

representative homeomrphisms that commute with some fixed hyperelliptic
involution.

Theorem 8.1 (Birman–Hilden theorem)Letg ≥ 1. Then

SMod(S1
g ) ≈ B2g+1.

Part II

Part II of the book is a concise introduction to Teichmüllertheory and the
moduli space of Riemann surfaces. We concentrate on those aspects of the
theory that are most directly applicable to understandingMod(Sg). Part II
has a decidedly more analytic and geometric flavor than Part I.

Chapter 10. We introduce Teichmüller spaceTeich(Sg) as the space of
hyperbolic structures onSg. After putting a natural topology onTeich(Sg)
and giving two heuristic counts of its dimension, we prove the following
classical result, due to Fricke and Klein in 1897.

Theorem 10.6 For g ≥ 2 we haveTeich(Sg) ∼= R6g−6.
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We prove Theorem 10.6 by giving explicit coordinates onTeich(Sg) com-
ing from certain length and twist parameters for curves in a pants decom-
position ofSg; these are the “Fenchel–Nielsen coordinates” onTeich(Sg).
It is worth emphasizing how miraculous it is that the quotient Teich(Sg) =
HypMet(Sg)/Diff0(Sg) of an infinite-dimensional space by an infinite-dimensional
group action gives a finite-dimensional manifold. The kind of “rigidity” be-
hind this is in some sense contained in hyperbolic trigonometry, as can be
seen in the proof of Theorem 10.6. The chapter ends with the following
fundamental theorem about hyperbolic metrics on surfaces.

Theorem 10.7Let g ≥ 2. There are9g − 9 specific homotopy classes of
simple closed curves onSg with the property that any hyperbolic metric
on Sg is determined up to isotopy by the lengths of the geodesics inthese
homotopy classes.

The key to the proof of Theorem 10.7 is a convexity result for the function
“length of a” (wherea is an isotopy class of simple closed curves) consid-
ered as a function onTeich(Sg).

Chapter 11. After determining the topology ofTeich(Sg), we turn to its
metric geometry. In order to do this we first explain how one can think of
Teich(Sg) as the space of complex structures onSg.

Given a pair of pointsX,Y ∈ Teich(Sg) one associates a pair of Riemann
surfacesX,Y and a homeomorphismf : X → Y , well-defined up to ho-
motopy. Whilef is in general not conformal,f can always be chosen to
be quasiconformal. This means thatf distorts angles by at most a fixed
bounded amountK(f).

A natural extremal mapping problem then arises:

Given a homeomorphism of Riemann surfacesf : X → Y , is
there a quasiconformal mapX → Y that minimizes quasicon-
formal dilatation among all maps homotopic tof?

Teichmüller answered this question by finding a concrete, explicit mapping,
now called the Teichmüller map. Away from a finite number of points a
Teichmüller mapping locally looks like the linear map(x, y) 7→ (Kx, 1

K y)

for someK. In 1939 Teichmüller proved1 that his maps solve the above

1Actually, Ahlfors is usually credited with the first complete, understandable proof of this
fact.
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extremal problem. What is more, he proved that his maps give the unique
solution.

Theorems 11.8 and 11.9 (Teichm̈uller’s existence and uniqueness theo-
rems) Let g ≥ 2 and letX,Y ∈ Teich(Sg). Letf : X → Y be the associ-
ated homeomorphism of Riemann surfaces. Then there exists a Teichm̈uller
mappingh : X → Y that is homotopic tof . The maph uniquely minimizes
the quasiconformal dilatation among all homeomorphisms homotopic tof .

The proof of Theorem 11.8 illustrates how the “global” pointof view in-
forms the “local.” Namely, in the course of proving the existence state-
ment for a singleY ∈ Teich(Sg) we actually are led to proving the exis-
tence statement for all possible targetsY ∈ Teich(Sg) at the same time.
Specifically this is accomplished by proving the surjectivity of a certain
map QD(X) → Teich(Sg), whereQD(X) is the space of holomorphic
quadratic differentials on a Riemann surfaceX. To prove this surjectivity
we use the global topology ofTeich(Sg), via an application of the invari-
ance of domain theorem. This proof is an example of the so-called “method
of continuity.”

The solution to the extremal problem can be used to define a metric on
Teich(Sg), called the Teichmüller metric. Leth : X → Y be the Te-
ichmüller map associated toX,Y ∈ Teich(Sg), and letK(h) be its dilata-
tion. We prove that

dTeich(Sg)(X,Y) =
1

2
log(K(h))

defines a complete metric onTeich(Sg). This is called theTeichm̈uller met-
ric. In order to describe the geodesics in this metric we explainthe funda-
mental connection between Teichmüller’s theorems, holomorphic quadratic
differentials, and measured foliations. This descriptionis a crucial ingredi-
ent in the proof of the Nielsen–Thurston classification theorem that we give
later in the book.

Chapter 12. Let g ≥ 2. The moduli spaceM(Sg) of genusg Riemann
surfaces is defined to be

M(Sg) = Teich(Sg)/Mod(Sg).

The spaceM(Sg) parameterizes many different kinds of structures onSg.
It can be viewed as any one of the following sets:
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1. Isometry classes of constant curvature metrics onSg

2. Conformal classes of Riemannian metrics onSg

3. Biholomorphism classes of complex structures onSg

4. Isomorphism classes of smooth, complex algebraic structures onSg

The natural bijective correspondences between these sets are derived from
deep theorems, namely the uniformization theorem and the Kodaira embed-
ding theorem. As such, the bijections between the sets aboveare very diffi-
cult to access explicitly. The interplay between these different incarnations
is one reason the study ofM(Sg) is rich and often difficult.

The groupMod(Sg) and the spaceM(Sg) are tied together closely because
of the following theorem, due to Fricke.

Theorem 12.2 Mod(Sg) acts properly discontinuously onTeich(Sg).

In order to prove Theorem 12.2 we consider the “raw length spectrum ”
rls(X) of a hyperbolic surfaceX ≈ Sg. The setrls(X) is defined to be
the set of lengths of all closed geodesics inX. The crucial property is that
rls(X) is a discrete subset ofR≥0. The “Wolpert lemma” then tells us that
nearby points inTeich(Sg) have nearly-equal length spectra. From these
two facts the Theorem 12.2 follows easily.

SinceMod(Sg) acts properly discontinuously onTeich(Sg), the quotient
spaceM(Sg) is an orbifold. By Theorem 6.9,M(Sg) is finitely covered by
a manifold. SinceTeich(Sg) is contractible (Theorem 10.6), we have the
following.

Theorem 12.3For g ≥ 1, the spaceM(Sg) is an aspherical orbifold, and
is finitely covered by an aspherical manifold.

It is not hard to see thatM(Sg) is not compact. Understanding this non-
compactness is a central issue. The most basic theorem in this direction is
the Mumford compactness criterion, which we think of as a generalization
of the Mahler compactness criterion for lattices inRn. For a hyperbolic sur-
faceX we denote byℓ(X) the length of the shortest essential closed curve
in X.

Theorem 12.6(Mumford’s compactness criterion).Let g ≥ 1. For each
ǫ > 0 the space

Mǫ(Sg) = {X ∈M(Sg) : ℓ(X) ≥ ǫ}
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is compact.

Since the setsMǫ(Sg) exhaustM(Sg), Theorem 12.6 tells us that the only
way to leave every compact set inM(Sg) is to decrease the length of some
closed geodesic. Mumford’s compactness criterion leads usto study the
topology ofM(Sg) at infinity. Combining a number of ingredients, includ-
ing connectedness ofC(Sg) for g ≥ 2, we prove the following.

Corollaries 12.11 and 12.12Letg ≥ 2. ThenM(Sg) has one end, and ev-
ery loop inM(Sg) can be homotoped outside every compact set inM(Sg).

We end the chapter by explaining one more of the (many) reasons for the
importance ofM(Sg) in mathematics:M(Sg) is very close to being a clas-
sifying space forSg–bundles. By “very close” we mean that an analogous
statement holds for any finite manifold cover ofM(Sg). In particular we
prove that the rational cohomology of the spaceM(Sg) is isomorphic to the
rational cohomology of the groupMod(Sg).

Part III

Chapter 13. The main goal of Part III is to understand what individual
elements ofMod(Sg) look like, in the same way that the Jordan canonical
form of a matrix gives us a geometric picture of what a linear transformation
looks like. The precise statement is the following.

Theorem 13.2 (Nielsen–Thurston classification)Let g ≥ 2. Eachf ∈
Mod(Sg) has a representativeφ ∈ Homeo+(Sg) of one of the following
types.

1. Periodic:φm = Id for somem > 0.

2. Reducible:φ leaves invariant a finite collection of pairwise disjoint
simple closed curves inSg.

3. Pseudo-Anosov: there are transverse measured foliations (Fs, µs)
and(Fu, µu) onSg, and a real numberλ > 1 so that

φ · (Fu, µu) = (Fu, λµu) and φ · (Fs, µs) = (Fs, λ−1µs).

Case (3) is exclusive from cases (1) and (2). The numberλ associated to a
pseudo-Anosov homeomorphismφ is called the stretch factor ofφ. Away
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from a finite number of points a pseudo-Anosov homeomorphismlocally
looks like the linear map(x, y) 7→ (

√
λx, 1√

λ
y), just like a Teichmüller

mapping.

Type 1 mapping classes are relatively easy to understand. For type 2 we
can cut along the invariant collection of curves and re-apply the theorem to
each component of the cut surface. By doing this we obtain a “canonical
form” for mapping classes: any mapping class can be reduced into finite
order and pseudo-Anosov pieces. Thus the more we know about pseudo-
Anosov homeomorphisms, the more we know about arbitrary homeomor-
phisms. Chapter 14 is completely devoted to studying properties of pseudo-
Anosov homeomorphisms.

We present Bers’ proof of Theorem 13.2. The proof uses many ofthe ideas
and results proved earlier in the book, such as the proper discontinuity of
the action ofMod(Sg) on Teich(Sg), the Mumford compactness criterion,
and the structure of Teichmüller geodesics. The main idea is to prove that
if a mapping classf is not of type 1 or type 2, then there is anf–invariant
Teichmüller geodesic, which one then interprets, using Teichmüller’s theo-
rems, to show thatf is pseudo-Anosov.

Chapter 14. In this chapter we begin the study of pseudo-Anosov homeo-
morphisms in earnest. Although in some sense the “typical” mapping class
is pseudo-Anosov, it is actually rather nontrivial to construct explicit exam-
ples. We begin by presenting five constructions of pseudo-Anosov homeo-
morphisms.

The simplest invariant of a pseudo-Anosov mapping class is its stretch fac-
tor λ, which is analogous to the largest eigenvalue of a linear map. The
next theorem tells us that the set of pseudo-Anosov stretch factors is quite
constrained.

Theorem 14.8Letg ≥ 2. Letλ be the stretch factor associated to a pseudo-
Anosov element ofMod(Sg). Thenλ is an algebraic integer with degree
bounded above by6g − 6.

Each pseudo-Anosov mapping class has an invariant axis inTeich(S), and
thus gives a geodesic loop inM(S). The length of this loop is the logarithm
of the corresponding stretch factor. Thus the set of logarithms of stretch fac-
tors of pseudo-Anosov elements ofMod(S) can be thought of as the length
spectrum ofM(S). The following theorem of Arnoux–Yoccoz and Ivanov
can thus be interpreted as implying that the length spectrumofM(S) is a
discrete subset ofR.
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Theorem 14.9. Letg ≥ 2. For anyC ≥ 1 there are only finitely many con-
jugacy classes inMod(Sg) of pseudo-Anosov mapping classes with stretch
factor at mostC.

Pseudo-Anosov homeomorphism have a number of remarkable dynamical
properties. Among them, we prove:

• Every pseudo-Anosov homeomorphism has a dense orbit.

• The periodic points of a pseudo-Anosov homeomorphism are dense.

• A pseudo-Anosov homeomorphism has the minimum number of pe-
riodic points, for each period, in its homotopy class.

In analogy with the behavior of the lengths of vectors under iteration of a
linear transformation with a dominant eigenvalue, we also prove the follow-
ing.

Theorem 14.23Let g ≥ 2. Let f ∈ Mod(Sg) be pseudo-Anosov with
stretch factorλ. If ρ is any Riemannian metric onSg, and ifa is any isotopy
class of simple closed curves inSg, then

lim
n→∞

n

√
ℓρ(fn(a)) = λ.

Chapter 15. The final chapter begins with a description of Thurston’s
original path of discovery to the Nielsen–Thurston classification theorem.
As Thurston wrote in his famous paper [202]:

The nicest aspects of this theory I have been trying to sketch
are not formal, but intuitive. If you draw pictures of a pseudo-
Anosov diffeomorphism, you can understand geometrically what
it does, something which has puzzled me for several years. . . . it
is pleasant to see something of this abstract origin made very
concrete.

We begin by illustrating Thurston’s approach via a beautiful and fundamen-
tal example. Thurston’s first idea is that one can understandf ∈ Mod(Sg)
by iteratingf on an isotopy class of essential simple closed curvesc. In gen-
eral the sequencefn(c) gets very complicated very quickly. This is where
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the next idea comes in: one can encode a very complicated simple closed
curve in a surface with a small amount of data, called a “traintrack.” A train
track inSg is an embedded graph with some extra data attached, for exam-
ple each edge is labelled by a nonnegative integer. Under certain conditions
f preserves a train track (up to a certain equivalence) and acts linearly on
its labels. Whenf is pseudo-Anosov the corresponding matrix is a Perron–
Frobenius matrix, and all of the information attached tof (stretch factor,
stable foliation, etc.) can be easily determined by linear algebra.

Thus in this example the combinatorial device of train tracks converts the
nonlinear problem of understanding a homeomorphism of a surface to a
simple linear algebra problem. Thurston’s remarkable discovery is that this
linearization process works for all pseudo-Anosov homeomorphisms, and
in fact it can be used to prove the Nielsen–Thurston classification.

We give a sketch of how all of this works in general, and how Thurston
proves the Nielsen–Thurston classification in this way. Theidea is that the
spacePMF(Sg) of all projective classes of measured foliations onSg can
be used to give a compactification ofTeich(Sg) that is homeomorphic to a
closed ball. Each element ofMod(Sg) induces a homeomorphism on this
ball, and so the Brouwer fixed point theorem can be applied. Analyzing
the various possibilities for fixed points leads to the various cases of the
classification theorem. As Thurston says [202]:

And there is a great deal of natural geometric structure onPMF ,
relating to the structure onS, beautiful to contemplate.
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Mapping class groups





Chapter One

Curves, surfaces, and hyperbolic geometry

A linear transformation of a vector space is determined by, and is best un-
derstood by, its action on vectors. In analogy with this, we shall see that an
element of the mapping class group of a surfaceS is determined by, and is
best understood by, its action on homotopy classes of simpleclosed curves
in S. We therefore begin our study of the mapping class group by obtaining
a good understanding of simple closed curves on surfaces.

Simple closed curves can most easily be studied via their geodesic repre-
sentatives, and so we begin with the fact that every surface may be endowed
with a constant curvature Riemannian metric, and we study the relation be-
tween curves, fundamental group, and geodesics. We then introduce the
geometric intersection number, which we think of as an “inner product” for
simple closed curves. A second fundamental tool is the change of coordi-
nates principle, which is analogous to understanding change of basis in a
vector space. After explaining these tools, we conclude this chapter with
a discussion of some foundational technical issues in the theory of surface
topology, such as “homeomorphism versus diffeomorphism,”and “homo-
topy versus isotopy.”

1.1 SURFACES AND HYPERBOLIC GEOMETRY

We begin by recalling some basic results about surfaces and hyperbolic ge-
ometry that we will use throughout the book. This is meant to be a brief
review; see [203] or [115] for a more thorough discussion.
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1.1.1 SURFACES

A surfaceis a 2–dimensional manifold. The following fundamental result
about surfaces, often attributed to Möbius, was known in the mid-nineteenth
century in the case of surfaces that admit a triangulation. Radò later proved,
however, that every compact surface admits a triangulation. For proofs of
both theorems, see, e.g., [199].

THEOREM 1.1 (Classification of surfaces)Any closed, connected, orientable
surface is homeomorphic to the connect sum of a 2–dimensional sphere with
g ≥ 0 tori. Any compact, connected, orientable surface is obtained from a
closed surface by removingb ≥ 0 open disks with disjoint closures. The set
of homeomorphism types of compact surfaces is in bijective correspondence
with the set{(g, b) : g, b ≥ 0}.

The g in Theorem 1.1 is thegenusof the surface; theb is the number of
boundary components. One way to obtain a noncompact surface from a
compact surfaceS is to removen points from the interior ofS; in this case
we say that the resulting surface hasn punctures.

Unless otherwise specified, when we say “surface” in this book, we will
mean a compact, connected, oriented surface that is possibly punctured (of
course, after we puncture a compact surface, it ceases to be compact). We
can therefore specify our surfaces by the triple(g, b, n). We will denote by
Sg,n a surface of genusg with n punctures and empty boundary; such a sur-
face is homeomorphic to the interior of a compact surface with n boundary
components. Also, for a closed surface of genusg, we will abbreviateSg,0
asSg. We will denote by∂S the (possibly disconnected) boundary ofS.

Recall that theEuler characteristicof a surfaceS is

χ(S) = 2− 2g − (b+ n).

It is a fact thatχ(S) is also equal to the alternating sum of the Betti numbers
of S. Sinceχ(S) is an invariant of the homeomorphism class ofS, it follows
that a surfaceS is determined up to homeomorphism by any three of the four
numbersg, b, n, andχ(S).

Occasionally it will be convenient for us to think of punctures asmarked
points. That is, instead of deleting the points, we can make them distin-
guished. Marked points and punctures carry the same topological informa-
tion, so we can go back and forth between punctures and markedpoints as
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is convenient. On the other hand, all surfaces will be assumed to be without
marked points, unless explicitly stated otherwise.

If χ(S) ≤ 0 and∂S = ∅, then the universal cover̃S is homeomorphic to
R2 (see, e.g., [194,§1.4]). We will see that, whenχ(S) < 0, we can take
advantage of a hyperbolic structure onS̃.

1.1.2 THE HYPERBOLIC PLANE

Let H2 denote the hyperbolic plane. One model forH2 is theupper half-
plane model; namely, the subset ofC with positive imaginary part (y > 0),
endowed with the Riemannian metric

ds2 =
dx2 + dy2

y2
,

wheredx2 + dy2 denotes the Euclidean metric onC. In this model, the
geodesics are semicircles and half-lines perpendicular tothe real axis.

It is a fact from Riemannian geometry that any complete, simply connected
Riemannian manifold with constant sectional curvature−1 is isometric to
H2.

For thePoincaŕe disk modelof H2, we take the open unit disk inC with the
Riemannian metric

ds2 = 4
dx2 + dy2

(1− r2)2 .

In this model the geodesics are circles and lines perpendicular to the unit
circle in C (intersected with the open unit disk).

Any Möbius transformation from the upper half-plane to theunit disk is
an isometry between the upper half-plane model forH2 and the Poincaré
disk model ofH2. The group of orientation-preserving isometries ofH2 is
(in either model) the group of Möbius transformations taking H2 to itself.
This group, denotedIsom+(H2), is isomorphic toPSL(2,R). In the upper
half-plane model, this isomorphism is given by the following map:

±
(
a b
c d

)
7→
(
z 7→ az + b

cz + d

)
.

The boundary of the hyperbolic plane. One of the central objects in the
study of hyperbolic geometry is theboundary at infinityof H2, denoted by
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∂H2. A point of∂H2 is an equivalence class[γ] of unit speed geodesic rays,
where two raysγ1, γ2 : [0,∞) → H2 are equivalent if they stay a bounded
distance from each other; that is, there existsD > 0 so that

dH2(γ1(t), γ2(t)) ≤ D for all t ≥ 0.

Actually, if γ1 and γ2 are equivalent, then they can be given unit speed
parameterizations so that

lim
t→∞

dH2(γ1(t), γ2(t)) = 0.

We denote the unionH2 ∪ ∂H2 by H2; The setH2 is topologized via the
following basis. We take the usual open sets ofH2, plus one open setUP
for each open half-planeP in H2. A point of H2 lies inUP if it lies in P ,
and a point of∂H2 lies inUP if every representative rayγ(t) eventually lies
in P , i.e., if there existsT ≥ 0 so thatγ(t) ∈ P for all t ≥ T .

In this topology∂H2 is homeomorphic toS1 and the unionH2 is homeo-
morphic to the closed unit disk. The spaceH2 is a compactification ofH2,
called the compactification ofH2. In the Poincaré disk model ofH2, the
boundary∂H2 corresponds to the unit circle inC, andH2 is identified with
the closed unit disk inC.

Any isometryf ∈ Isom(H2) takes geodesic rays to geodesic rays, clearly
preserving equivalence classes. Also,f takes half-planes to half-planes.
It follows that f extends uniquely to a mapf : H2 → H2. As any pair
of distinct points in∂H2 are the endpoints of a unique geodesic inH2, it
follows thatf maps distinct points to distinct points. It is easy to check that
in fact f is a homeomorphism.

Classification of isometries ofH2. We can use the above setup to clas-
sify nontrivial elements ofIsom+(H2). Suppose we are given an arbitrary
nontrivial elementf ∈ Isom+(H2). Sincef is a self-homeomorphism of a
closed disk, the Brouwer fixed point theorem gives thatf has a fixed point
in H2. By considering the number of fixed points off in H2, we obtain a
classification of isometries ofH2, as follows.

Elliptic. If f fixes a pointp ∈ H2 thenf is calledelliptic, and it is a rotation
aboutp. Elliptic isometries have no fixed points on∂H2. They correspond
to elements ofPSL(2,R) whose trace has absolute value less than 2.

Parabolic. If f has exactly one fixed point in∂H2, thenf is calledparabolic,
In the upper half-plane model,f is conjugate inIsom+(H2) to z 7→ z ± 1.
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Parabolic isometries correspond to those nonidentity elements ofPSL(2,R)
with trace±2.

Hyperbolic. If f has two fixed points in∂H2, thenf is calledhyperbolic,
or loxodromic. In this case there is anf–invariant geodesicaxisγ; that is,
anf–invariant geodesic inH2 on whichf acts by translation. On∂H2, the
fixed points act like a source and a sink, respectively. Hyperbolic isometries
correspond to elements ofPSL(2,R) whose trace has absolute value greater
than 2.

It follows from the above classification that iff has at least three fixed points
in H2 thenf is the identity.

Also, since commuting elements ofIsom+(H2) must preserve each other’s
fixed sets inH2, we see that two nontrivial elements ofIsom+(H2) com-
mute if and only if they have the same fixed points inH2.

1.1.3 HYPERBOLIC SURFACES

The following theorem gives a link between the topology of surfaces and
their geometry. It will be used throughout the book to convert topological
problems to geometric ones, which have more structure and soare often
easier to solve.

We say that a surfaceS admits a hyperbolic metricif there exists a com-
plete, finite-area Riemannian metric onS of constant curvature−1 where
the boundary ofS (if nonempty) is totally geodesic (this means that the
geodesics in∂S are geodesics inS). Similarly, we say thatS admits a Eu-
clidean metric, or flat metric if there is a complete, finite-area Riemannian
metric onS with constant curvature 0 and totally geodesic boundary.

If S has empty boundary and has a hyperbolic metric, then its universal
coverS̃ is a simply-connected Riemannian manifold of constant curvature
−1. It follows thatS̃ is isometric toH2 and soS is isometric to the quotient
of H2 by a free, properly discontinuous isometric action ofπ1(S). If S has
nonempty boundary and has a hyperbolic metric, thenS̃ is isometric to a
totally geodesic subspace ofH2. Similarly, if S has a Euclidean metric,
thenS̃ is isometric to a totally geodesic subspace of the EuclideanplaneE2.

THEOREM 1.2 Let S be any surface (perhaps with punctures or bound-
ary). If χ(S) < 0 thenS admits a hyperbolic metric. Ifχ(S) = 0 thenS
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admits a Euclidean metric.

A surface endowed with a fixed hyperbolic metric will be called a hyper-
bolic surface. A surface with a Euclidean metric will be called aEuclidean
surfaceor flat surface.

Note that Theorem 1.2 is consistent with the Gauss–Bonnet theorem which,
in the case of a compact surfaceS with totally geodesic boundary, states
that the integral of the curvature overS is equal to2πχ(S).

One way to get a hyperbolic metric on a closed surfaceSg is to construct
a free, properly discontinuous isometric action ofπ1(Sg) on H2 (as above,
this requiresg ≥ 2). By covering space theory and the classification of
surfaces, the quotient will be homeomorphic toSg. Since the action was by
isometries, this quotient comes equipped with a hyperbolicmetric. Another
way to get a hyperbolic metric onSg, for g ≥ 2, is to take a geodesic4g–
gon in H2 with interior angle sum2π, and identify opposite sides (such a
4g–gon always exists; see§10.4 below). The result is a surface of genusg
with a hyperbolic metric and, according to Theorem 1.2, its universal cover
is H2.

We remark that while the torusT 2 admits a Euclidean metric, the once-
punctured torusS1,1 admits a hyperbolic metric.

Loops in hyperbolic surfaces. Let S be a hyperbolic surface. Aneigh-
borhood of a punctureis a closed subset ofS homeomorphic to a once-
punctured disk. Also, by afree homotopyof loops inS we simply mean an
unbased homotopy. If a nontrivial element ofπ1(S) is represented by a loop
that can be freely homotoped into the neighborhood of a puncture, then it
follows that the loop can be made arbitrarily short; otherwise, we would find
an embedded annulus whose length is infinite (by completeness), and where
the length of each circular cross-section is bounded from below, giving in-
finite area. The deck transformation corresponding to such an element of
π1(S) is a parabolic isometry of the universal coverH2. This makes sense
because for any parabolic isometry ofH2, there is no positive lower bound
to the distance between a point inH2 and its image. All other nontrivial ele-
ments ofπ1(S) correspond to hyperbolic isometries ofH2, and hence have
associated axes inH2.

We have the following fact, which will be used several times throughout this
book:
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If S admits a hyperbolic metric then the centralizer of any non-
trivial element ofπ1(S) is cyclic. In particular,π1(S) has triv-
ial center.

To prove this we identifyπ1(S) with the deck transformation group ofS
for some covering mapH2 → S. Whenever two nontrivial isometries of
H2 commute, it follows from the classification of isometries ofH2 that they
have the same fixed points in∂H2 as this central element. So ifα ∈ π1(S)
is centralized byβ, it follows thatα andβ have the same fixed points in
∂H2. By the discreteness of the action ofπ1(S), we would then have that
the centralizer ofα in π1(S) is infinite cyclic. Ifπ1(S) had nontrivial center,
it would then follow thatπ1(S) ≈ Z. But thenS would necessarily have
infinite volume, a contradiction.

1.2 SIMPLE CLOSED CURVES

Our study of simple closed curves in a surfaceS begins with the study of all
closed curves inS, and the usefulness of geometry in understanding them.

1.2.1 CLOSED CURVES AND GEODESICS

By a closed curvein a surfaceS we will mean a continuous mapS1 → S.
We will usually identify a closed curve with its image inS. A closed curve
is calledessentialif it is not homotopic to a point, a puncture, or a boundary
component.

Closed curves and fundamental groups.Given an oriented closed curve
α ∈ S we can identifyα with an element ofπ1(S) by choosing a path from
the basepoint forπ1(S) to some point onα. The resulting element ofπ1(S)
is only well-defined up to conjugacy. By a slight abuse of notation we will
denote this element ofπ1(S) by α as well.

There is a bijective correspondence:




Nontrivial
conjugacy classes

in π1(S)



←→





Nontrivial free
homotopy classes of oriented

closed curves inS





An elementg of a groupG is primitive if there does not exist anyh ∈ G so
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thatg = hk where|k| > 1. The property of being primitive is a conjugacy
class invariant. In particular, it makes sense to say that a closed curve in a
surface is primitive.

A closed curve inS is amultiple if it is a mapS1 → S that factors through

the mapS1 ×n−→ S1 for n > 1. In other words, a curve is a multiple if
it “runs around” another curve multiple times. If a closed curve in S is a
multiple then no element of the corresponding conjugacy class inπ1(S) is
primitive.

Let p : S̃ → S be any covering space. By alift of a closed curveα to S̃
we will always mean the image of a liftR → S̃ of the mapα ◦ π, where
π : R → S1 is the usual covering map. For example ifS is a surface with
χ(S) ≤ 0, then a lift of an essential simple closed curve inS to the universal
cover is a copy ofR. Note that a lift is different from a “path lift,” which is
typically a proper subset of a lift.

Now suppose that̃S is the universal cover andα is a simple closed curve in
S that is not a nontrivial multiple of another closed curve. Inthis case the
lifts of α to S̃ are in natural bijection with the cosets inπ1(S) of the infinite
cyclic subgroup〈α〉. (Any nontrivial multiple ofα has the same set of lifts
asα, but more cosets.) The groupπ1(S) acts on the set of lifts ofα by deck
transformations, and this action agrees with the usual leftaction ofπ1(S) on
the cosets of〈α〉. The stabilizer of the lift corresponding to the cosetγ〈α〉
is the cyclic group〈γαγ−1〉.

WhenS admits a hyperbolic metric andα is a primitive element ofπ1(S),
we have a bijective correspondence:

{
Elements of the conjugacy

class ofα in π1(S)

}
←→

{
Lifts to S̃ of the
closed curveα

}

More precisely, the lift of the curveα given by the cosetγ〈α〉 corresponds
to the elementγαγ−1 of the conjugacy class[α]. That this is a bijective
correspondence is a consequence of the fact that, for a hyperbolic surfaceS,
the centralizer of any element ofπ1(S) is cyclic.

If α is any multiple, then we still have a bijective correspondence between
elements of the conjugacy class ofα and the lifts ofα. However, ifα is
not primitive and not a multiple, then there are more lifts ofα than there are
conjugates. Indeed, ifα = βk, thenβ〈α〉 6= 〈α〉 while βαβ−1 = α.

Note that the above correspondence does not hold for the torus T 2. This is
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so because each closed curve has infinitely many lifts, whileeach element
of π1(T

2) ≈ Z2 is its own conjugacy class. Of courseπ1(T
2) is its own

center, and so the centralizer of each element is the whole group.

Geodesic representatives. A priori the combinatorial topology of closed
curves on surfaces has nothing to do with geometry. It was already real-
ized in the nineteenth century, however, that the mere existence of constant
curvature Riemannian metrics on surfaces has strong implications for the
topology of the surface and of simple closed curves in it. Forexample, it
is easy to prove that any closed curveα on a flat torus is homotopic to a
geodesic: one simply liftsα to R2 and performs a straight-line homotopy.
Note that the corresponding geodesic is not unique.

For compact hyperbolic surfaces we have a similar picture, and in fact the
free homotopy class of any closed curve contains a unique geodesic. The
existence is indeed true for any compact Riemannian manifold. Here we
give a more hands-on proof of existence and uniqueness for any hyperbolic
surface.

Proposition 1.3 LetS be a hyperbolic surface. Ifα is a closed curve inS
that is not homotopic into a neighborhood of a puncture, thenα is homo-
topic to a unique geodesic closed curveγ.

Proof. Choose a lift̃α of α to H2. As above,̃α is stabilized by some element
of the conjugacy class ofπ1(S) corresponding toα; letφ be the correspond-
ing isometry ofH2. By the assumption onα, we have thatφ is a hyperbolic
isometry, and so has an axis of translationA; see Figure 1.1.

Consider the projection ofA to S, and letγ0 be a geodesic closed curve
that travels around this projection once. Any equivariant homotopy fromα̃
to A projects to a homotopy betweenα and a multiple ofγ0, which is the
desiredγ. One way to get such a homotopy is to simply take the homotopy
that moves each point of̃α along a geodesic segment to its closest-point
projection inA. This completes the proof of existence ofγ. Note that we
do not need to worry that the resulting parameterization ofγ is geodesic
since any two parameterizations of the same closed curve arehomotopic as
parameterized maps.

To prove uniqueness, suppose we are given a homotopyS1 × I → S from
α to a multipleγ′ of some simple closed geodesicγ′0. By compactness of
S1 × I there exists a constantC ≥ 0 such that no point ofα is moved a
distance greater thanC by the homotopy. In the universal coverH2, the
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A

α̃

x

φ(x)

φ2(x)

Figure 1.1 A lift eα of a closed curveα and the axisA for the corresponding isometryφ.

homotopy lifts to a homotopy from the lift̃α of α to a geodesic lift̃γ′0 of γ′0,
and points of̃α are moved a distance at mostC. It follows that the endpoints
of α̃ in ∂H2 are the same as those ofγ̃′0. Since a geodesic inH2 is uniquely
determined by its endpoints in∂H2, this proves that the geodesic closed
curveγ′0 is the same asγ0 up to sign. The closed curveγ′ is then speci-
fied by which multiple ofγ0 it is. But different multiples ofγ0 correspond
to conjugacy classes inIsom+(H2) that have different translation lengths
and/or translation directions. Conjugacy classes with differing translation
lengths are distinct, and so distinct multiples ofγ0 do not lie in the same
free homotopy class. 2

It follows from Proposition 1.3 that for a compact hyperbolic surface we
have a bijective correspondence:

{
Conjugacy classes

in π1(S)

}
←→

{
Oriented geodesic
closed curves inS

}

1.2.2 SIMPLE CLOSED CURVES

A closed curve inS is simpleif it is embedded, that is, if the mapS1 → S is
injective. Among the reasons for the particular importanceof simple closed
curves is that we can easily classify them up to homeomorphism of S (see
§1.3), we can cut along them (see§1.3), and we can twist along them (see
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§3.1). As mentioned above, we will study homeomorphisms of surfaces via
their actions on simple closed curves.

Any closed curveα can be approximated by a smooth closed curve, and a
close-enough approximationα′ of α is homotopic toα. What is more, ifα
is simple, thenα′ be chosen to be simple. Smooth curves are advantageous
for many reasons. For instance, smoothness allows us to employ the notion
of transversality (general position). When convenient, wewill assume that
our curves are smooth, sometimes without mention.

Simple closed curves are also natural to study because they represent prim-
itive elements ofπ1(S).

Proposition 1.4 If α is a non-nullhomotopic simple closed curve in a sur-
faceS, then each element of the corresponding conjugacy class inπ1(S) is
primitive.

Proof. We give the proof for the case whenS is hyperbolic. Fix a covering
mapH2 → S and letφ ∈ Isom+(H2) be the hyperbolic isometry corre-
sponding to some element of the conjugacy class ofα. The primitivity of
the elements of the conjugacy class ofα is equivalent to the primitivity ofφ
in the deck transformation group.

Assume thatφ = ψn, whereψ is another element of the deck transformation
group andn ∈ Z. In any group, powers of the same element commute, and
soφ commutes withψ. Thus,φ andψ have the same set of fixed points in
∂H2.

Let α̃ be the lift of the closed curveα that has the same endpoints in∂H2

as the axis forφ. We claim thatψ(α̃) = α̃. We know thatψ(α̃) is some lift
of α. Sinceα is simple, all of its lifts are disjoint and no two lifts ofα have
the same endpoints in∂H2. Thus,ψ(α̃) andα̃ are disjoint and have distinct
endpoints. Now, we know thatψn−1(ψ(α̃)) = φ(α̃) = α̃. Since the fixed
points in∂H2 of ψn−1 are the same as the endpoints ofα̃, the only way
ψn−1(ψ(α̃)) can have the same endpoints at infinity asα̃ is if ψ(α̃) does.
This is to say thatψ(α̃) = α̃, and the claim is proven.

Thus, the restriction ofψ to α̃ is a translation. Asφ = ψn, the closed curve
α travelsn times around the closed curve inS given byα̃/〈ψ〉. Sinceα is
simple, we haven = ±1, which is what we wanted to show. 2

Simple closed curves in the torus.We can classify the set of homotopy
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classes of simple closed curves in the torusT 2 as follows. LetR2 → T 2 be
the usual covering map, where the deck transformation groupis generated
by the translations by(1, 0) and(0, 1). We know thatπ1(T

2) ≈ Z2, and, if
we baseπ1(T

2) at the image of the origin, one way to get a representative
for (p, q) as a loop inT 2 is to take the straight line from(0, 0) to (p, q) in
R2 and project it toT 2.

Let γ be any oriented simple closed curve inT 2. Up to homotopy, we can
assume thatγ passes through the image inT 2 of (0, 0) in R2. Any path
lifting of γ to R2 based at the origin terminates at some integral point(p, q).
There is then a homotopy fromγ to the standard straight-line representative
of (p, q) ∈ π1(T

2); indeed, the straight-line homotopy from the lift ofγ to
the straight line through(0, 0) and(p, q) is equivariant with respect to the
group of deck transformations and thus descends to the desired homotopy.

Now, if a closed curve inT 2 is simple then its straight-line representative is
simple. Thus, we have the following fact.

Proposition 1.5 The nontrivial homotopy classes of oriented simple closed
curves inT 2 are in bijective correspondence with the set of primitive ele-
ments ofπ1(T

2) ≈ Z2.

An element(p, q) of Z2 is primitive if and only if(p, q) = (0,±1), (p, q) =
(±1, 0), or gcd(p, q) = 1.

We can classify homotopy classes of essential simple closedcurves in other
surfaces. For example, inS2, S0,1, S0,2, andS0,3 there are no essential
simple closed curves. The homotopy classes of simple closedcurves inS1,1

are in bijective correspondence with those inT 2. In Section 2.2 below we
will show that there is a natural bijection between the homotopy classes of
essential simple closed curves inS0,4 and the homotopy classes inT 2.

Closed geodesics.For hyperbolic surfaces, geodesics are the natural rep-
resentatives of each free homotopy class, in the following sense.

Proposition 1.6 LetS be a hyperbolic surface. Letα be a closed curve in
S, not homotopic into a neighborhood of a puncture. Letγ be the unique
geodesic in the free homotopy class ofα, guaranteed by Proposition 1.3. If
α is simple thenγ is simple.
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Proof. We begin by applying the following fact.

A closed curveβ in a hyperbolic surfaceS is simple if and only
if the following properties hold:

1. Each lift ofβ to H2 is simple.

2. No two lifts ofβ intersect.

3. β is not a nontrivial multiple of another closed curve.

Thus if α is simple, then no two of its lifts toH2 intersect. It follows that
for any two such lifts, their endpoints are not linked in∂H2. But each lift
of γ shares both endpoints with some lift ofα. Thus no two lifts ofγ have
endpoints that are linked in∂H2. Since these lifts are geodesics, it follows
that they do not intersect. Further, by Proposition 1.4, anyelement ofπ1(S)
corresponding toα is primitive. The same is then true forγ and soγ cannot
be a multiple. Since geodesics inH2 are always simple, we conclude thatγ
is simple. 2

1.2.3 INTERSECTION NUMBERS

There are two natural ways to count the number of intersection points be-
tween two simple closed curves in a surface: signed and unsigned. These
correspond to the algebraic intersection number and geometric intersection
number, respectively.

Let α andβ be a pair of transverse, oriented, simple closed curves inS.
Recall that thealgebraic intersection number̂i(α, β) is defined as the sum
of the indices of the intersection points ofα andβ, where an intersection
point is of index+1 when the orientation of the intersection agrees with
the orientation ofS, and is−1 otherwise. Recall that̂i(α, β) depends only
on the homology classes ofα andβ. In particular it makes sense to write
î(a, b) for a andb the free homotopy classes (or homology classes) of closed
curvesα andβ.

The most naive way to count intersections between homotopy classes of
closed curves is to simply count the minimal number of unsigned intersec-
tions. This idea is encoded in the concept of geometric intersection number.
Thegeometric intersection numberbetween free homotopy classesa andb
of simple closed curves in a surfaceS is defined to be the minimal number
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of intersection points between a representative curve in the classa and a
representative curve in the classb:

i(a, b) = min{|α ∩ β| : α ∈ a, β ∈ b}.

We sometimes employ a slight abuse of notation by writingi(α, β) for the
intersection number between the homotopy classes of simpleclosed curves
α andβ.

We note that geometric intersection number is symmetric, while algebraic
intersection number is skew-symmetric:i(a, b) = i(b, a) while î(a, b) =
−î(b, a). While algebraic intersection number is well-defined on homology
classes, geometric intersection number is only well-defined on free homo-
topy classes. Geometric intersection number is a useful invariant but, as
we will see, it is more difficult to compute than the algebraicintersection
number.

Observe thati(a, a) = 0 for any homotopy class of simple closed curvesa.
If α separatesS into two components, then for anyβ we havêi(α, β) = 0
andi(α, β) is even. In generali andî have the same parity.

Intersection numbers on the torus. As noted above, the nontrivial free
homotopy classes of oriented simple closed curves inT 2 are in bijective cor-
respondence with primitive elements ofZ2. For two such homotopy classes
(p, q) and(p′, q′), we have

î((p, q), (p′, q′)) = pq′ − p′q

and

i((p, q), (p′, q′)) = |pq′ − p′q|.

To verify these formulas, one should first check the case where (p, q) =
(1, 0) (exercise). For the general case, we note that if(p, q) represents
an essential oriented simple closed curve, i.e., if it is primitive, then there
is a matrixA ∈ SL(2,Z) with A((p, q)) = (1, 0). SinceA is a linear,
orientation-preserving homeomorphism ofR2 preservingZ2, it induces an
orientation-preserving homeomorphism of the torusT 2 = R2/Z2 whose
action onπ1(T

2) ≈ Z2 is given byA. Since orientation-preserving homeo-
morphisms preserve both algebraic and geometric intersection numbers, the
general case of each formula follows.

Minimal position. In practice, one computes the geometric intersection
number between two homotopy classesa andb by finding representativesα
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andβ that realize the minimal intersection in their homotopy classes, so that
i(a, b) = |α ∩ β|. When this is the case we say thatα andβ are inminimal
position.

Two basic questions now arise.

1. Given two simple closed curvesα andβ, how can we tell if they are
in minimal position?

2. Given two simple closed curvesα andβ, how do we find homotopic
simple closed curves that are in minimal position?

While the first question isa priori a minimization problem over an infinite
dimensional space, we will see that the question can be reduced to a finite
check—the bigon criterion given below. For the second question, we will
see that geodesic representatives of simple closed curves are always in min-
imal position.

1.2.4 THE BIGON CRITERION

We say that two transverse simple closed curvesα andβ in a surfaceS form
a bigon if there is an embedded disk inS (the “bigon”) whose boundary is
the union of an arc ofα and an arc ofβ intersecting in exactly two points;
see Figure 1.2.

Figure 1.2 A bigon.

The following proposition gives a simple, combinatorial condition for de-
ciding whether or not two simple closed curves are in minimalposition. It
therefore gives a method for determining the geometric intersection number
of two simple closed curves.

Proposition 1.7 (The bigon criterion) Two transverse simple closed curves
in a surfaceS are in minimal position if and only if they do not form a bigon.

One immediate and useful consequence of the bigon criterionis the follow-
ing:
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Any two transverse simple closed curves that intersect exactly once are in
minimal position.

Before proving the Proposition 1.7 we need a lemma.

Lemma 1.8 If transverse simple closed curvesα andβ in a surfaceS do
not form any bigons, then, in the universal cover ofS, any pair of liftsα̃
and β̃ of α andβ intersect in at most one point.

Proof. Assumeχ(S) ≤ 0, so the universal cover̃S is homeomorphic toR2

(the case ofχ(S) > 0 is an exercise). Letp : S̃ → S be the covering map.

Suppose the lifts̃α and β̃ of α andβ intersect in at least two points. It
follows that there is an embedded diskD0 in S̃ bounded by one subarc ofα̃
and one subarc of̃β.

By compactness and transversality, the intersection(p−1(α)∪p−1(β))∩D0

is a finite graph, if we think of the intersection points as vertices. Thus
there is aninnermost disk; that is, an embedded diskD in S̃ bounded by
one arc ofp−1(α) and one arc ofp−1(β), and with no arcs ofp−1(α) or
p−1(β) passing through the interior of theD (see Figure 1.3). Denote the
two “vertices” ofD by v1 andv2, and the two “edges” ofD by α̃1 andβ̃1.
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Figure 1.3 An innermost disk between two lifts.

We first claim that the restriction ofp to ∂D is an embedding. The points
v1 andv2 certainly map to distinct points inS sinceα̃ andβ̃ intersect with
opposite orientations at these points. If a point ofα̃1 and a point of̃β1 have
the same image inS, then both points would be an intersection ofp−1(α)
with p−1(β), violating the assumption thatD is innermost. If two points of
α̃1 (or two points ofβ̃1) map to the same point inS, then there is a lift of
p(v1) between these two points, also contradicting the assumption thatD is
innermost.
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We can now argue thatD projects to an embedded disk inS. Indeed, ifx
andy in D project to the same point inS, thenx = φ(y) for some deck
transformationφ. Since∂D embeds under the covering map,φ(∂D) ∩ ∂D
is either empty or all of∂D (in the case thatφ is the identity). By the Jordan
curve theorem, we then see that eitherφ(D) or φ−1(D) must be contained
in D. Now, by the Brouwer fixed point theorem,φ has a fixed point, which
is a contradiction, unlessφ is the identity. 2

We give two proofs of the bigon criterion. One proof uses hyperbolic ge-
ometry and one proof uses only topology. We give both proofs since each
of the techniques will be important later in this book.

First proof of Proposition 1.7.First suppose that two curvesα andβ form
a bigon. It should be intuitive that there is a homotopy ofα that reduces
its intersection withβ by two, but we provide here a formal proof. We can
choose a small closed neighborhood of this bigon that is homeomorphic to
a disk, and so the intersection ofα ∪ β with this disk looks like Figure 1.2.
More precisely, the intersection ofα∪β with this closed disk consists of one
subarcα′ of α and one subarcβ′ of β, intersecting in precisely two points.
Since the disk is simply connected, and since the endpoints of α′ lie on the
same side ofβ′, we may modifyα by a homotopy in the closed disk so that,
inside this disk,α andβ are disjoint. This implies that the original curves
were not in minimal position.

For the other direction, we treat only the caseχ(S) < 0. The caseχ(S) = 0
is similar, and the caseχ(S) > 0 is easy. Assume that simple closed curves
α andβ form no bigons. Let̃α and β̃ be nondisjoint lifts ofα andβ. By
Lemma 1.8,̃α intersects̃β in exactly one pointx.

It cannot be that the axes of the hyperbolic isometries corresponding toα̃
and β̃ share exactly one endpoint at∂H2, because this would violate dis-
creteness of the action ofπ1(S) on H2; indeed, in this case the commutator
of these isometries is parabolic and the conjugates of this parabolic isometry
by either of the original hyperbolic isometries have arbitrarily small transla-
tion length. Further, these axes cannot share two endpointson∂H2, for then
the corresponding hyperbolic isometries would have the same axis, and so
they would have to have a common powerφ (otherwise the action ofπ1(S)
on this axis would be nondiscrete). But thenφn(x) would be an intersection
point betweeñα andβ̃ for eachn.

We conclude that any lift ofα intersects any lift ofβ at most once, and any
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such lifts have distinct endpoints on∂H2. But we can now see that there
is no homotopy that reduces intersection. Indeed, ifα̃ is a particular lift of
α, then each “fundamental domain” of̃α intersects the set of lifts ofβ in
|α∩β| points. Now, any homotopy ofβ changes thisπ1–equivariant picture
in an equivariant way, so since the lifts ofα andβ are already intersecting
minimally in H2, there is no homotopy that reduces intersection. 2

Second proof of Proposition 1.7.We give a different proof that two curves
not in minimal position must form a bigon. Letα andβ be two simple closed
curves inS that are not in minimal position, and letH : S1×[0, 1]→ S be a
homotopy ofα that reduces intersection withβ (that this is possible follows
from Proposition 1.11 below). We may assume without loss of generality
thatα andβ are transverse and thatH is transverse toβ (in particular, all
maps are assumed to be smooth). Thus, the preimageH−1(β) in the annulus
S1 × [0, 1] is a 1–submanifold.

There are various possibilities for a connected component of H−1(β): it
could be a closed curve, an arc connecting distinct boundarycomponents,
or an arc connecting one boundary component to itself. SinceH reduces the
intersection ofα with β, there must be at least one componentδ connecting
S1 × {0} to itself. Together with an arcδ′ in S1 × {0}, the arcδ bounds a
disk∆ in S1× [0, 1]. Now,H(δ∪δ′) is a closed curve inS that lies inα∪β.
This closed curve is nullhomotopic—indeedH(∆) is the nullhomotopy. It
follows thatH(δ ∪ δ′) lifts to a closed curve in the universal coverS̃; what
is more, this lift has one arc in a lift ofα and one arc in a lift ofβ. Thus,
these lifts intersect twice, and so Lemma 1.8 implies thatα andβ form a
bigon. 2

Geodesics are in minimal position. Note that if two geodesic segments
on a hyperbolic surfaceS together bounded a bigon then, since the bigon is
simply connected, one could lift this bigon to the universalcoverH2 of S.
But this would contradict the fact that the geodesic betweenany two points
of H2 is unique. Hence by Proposition 1.7 we have the following.

Corollary 1.9 Distinct simple closed geodesics in a hyperbolic surface are
in minimal position.

The bigon criterion gives an algorithmic answer to the question of how to
find representatives in minimal position: given any pair of transverse simple
closed curves, we can remove bigons one by one, until none remain, and
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the resulting curves are in minimal position. Corollary 1.9, together with
Proposition 1.3, gives a qualitative answer to the question.

Multicurves. A multicurvein S is the union of a finite collection of dis-
joint simple closed curves inS. The notion of intersection number extends
directly to multicurves. A slight variation of the proof of the bigon criterion
(Proposition 1.7) gives a version of the bigon criterion formulticurves: two
multicurves are in minimal position if and only if no two component curves
form a bigon.

Proposition 1.3 and Corollary 1.9 together have the consequence that, given
any number of distinct homotopy classes of essential simpleclosed curves in
S, we can choose a single representative from each class (e.g.the geodesic)
so that each pair of curves is in minimal position.

1.2.5 HOMOTOPY VERSUS ISOTOPY FOR SIMPLE CLOSED CURVES

Two simple closed curvesα andβ areisotopicif there is a homotopy

H : S1 × [0, 1]→ S

from α to β, with the property that the closed curveH(S1 × {t}) is simple
for eacht ∈ [0, 1].

In our study of mapping class groups, it will often be convenient to think
about isotopy classes of simple closed curves instead of homotopy classes.
One way to explain this is as follows. IfH : S1 × I → S is an isotopy of
simple closed curves, then the pair(S,H(S1 × {t})) “looks the same” for
all t (cf. Section 1.3).

When we appeal to algebraic topology for the existence of a homotopy,
the result is in general not an isotopy. We therefore want a method for
converting homotopies to isotopies whenever possible.

We already knowi(a, b) is realized by geodesic representatives ofa andb.
Thus, in order to apply the above results on geometric intersection numbers
to isotopy classes of curves, it suffices to prove the following fact, originally
due to Baer.

Proposition 1.10 Let α and β be two essential simple closed curves in a
surfaceS. Thenα is isotopic toβ if and only ifα is homotopic toβ.
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Proof. One direction is vacuous, since an isotopy is a homotopy. So suppose
that α is homotopic toβ. We immediately have thati(α, β) = 0. By
performing an isotopy ofα, we may assume thatα is transverse toβ. If
α andβ are not disjoint then by the bigon criterion they form a bigon. A
bigon prescribes an isotopy that reduces intersection. Thus, we may remove
bigons one by one by isotopy untilα andβ are disjoint.

In the remainder of the proof, we assumeχ(S) < 0; the caseχ(S) = 0

is similar, and the caseχ(S) > 0 is easy. Choose lifts̃α and β̃ of α and
β that have the same endpoints in∂H2. There is a hyperbolic isometry
φ that leavesα andβ invariant, and acts by translation on these lifts. As
α̃ and β̃ are disjoint, we may consider the regionR between them. The
quotientR′ = R/〈φ〉 is an annulus; indeed it is a surface with two boundary
components with infinite cyclic fundamental group.A priori, the imageR′′

of R in S is a further quotient ofR′. However, since the covering map
R′ → R′′ is single sheeted on the boundary, it follows thatR′ ≈ R′′. The
annulusR′′ betweenα andβ gives the desired isotopy. 2

1.2.6 EXTENSION OF ISOTOPIES

An isotopyof a surfaceS is a homotopyH : S × I → S so that, for each
t ∈ [0, 1], the mapH(S, t) : S × {t} → S is a homeomorphism. Given
an isotopy between two simple closed curves inS, it will often be useful to
promote this to an isotopy ofS, which we call anambient isotopyof S.

Proposition 1.11 Let S be any surface. IfF : S1 × I → S is a smooth
isotopy of simple closed curves, then there is an isotopyH : S × I → S so
thatH|S×0 is the identity andH|F (S1×0)×I = F .

Proposition 1.11 is a standard fact from differential topology. Suppose that
the two curves are disjoint. To construct the isotopy, one starts by finding
a smooth vector field that is supported on a neighborhood of the closed
annulus between the two curves, and that carries one curve tothe other. One
then obtains the isotopy of the surfaceS by extending this vector field toS
and then integrating it. For details of this argument see, e.g., [90, Chapter 8,
Theorem 1.3].
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1.2.7 ARCS

In studying surfaces via their simple closed curves, we willoften be forced
to think about arcs. For instance, many of our inductive arguments involve
cutting a surface along some simple closed curve in order to obtain a “sim-
pler” surface. Simple closed curves in the original surfaceeither become
simple closed curves or collections of arcs in the cut surface. Much of the
discussion about curves carries over to arcs, so here we takea moment to
highlight the necessary modifications.

We first pin down the definition of an arc. This is one place where marked
points are more convenient than punctures. So assumeS is a compact sur-
face, possibly with boundary, and possibly with finitely many marked points
in the interior. Denote the set of marked points byP.

A proper arcin S is a mapα : [0, 1]→ S such thatα−1(P ∪ ∂S) = {0, 1}.
As with curves, we usually identify an arc with its image; in particular this
makes an arc an unoriented object. The arcα is simple if it is an embed-
ding on its interior. The homotopy class of a proper arc is taken to be the
homotopy class within the class of proper arcs. Thus points on ∂S cannot
move off the boundary during the homotopy; all arcs would be homotopic
to a point otherwise. But there is still a choice to be made: a homotopy (or
isotopy) of an arc is said to berelative to the boundaryif its endpoints stay
fixed throughout the homotopy. An arc in a surfaceS is essentialif it is
neither homotopic into a boundary component ofS nor a marked point of
S.
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Figure 1.4 The shaded region is a “half-bigon.”

The bigon criterion (Proposition 1.7) holds for arcs, except with one extra
subtlety, illustrated in Figure 1.4. If we are considering isotopies relative to
the boundary, then the arcs in the picture are in minimal position, but if we
are considering general isotopies, then the “half-bigon” shows that they are
not in minimal position.
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Corollary 1.9 (geodesics are in minimal position) and Proposition 1.3 (exis-
tence and uniqueness of geodesic representatives) work forarcs in surfaces
with punctures and/or boundary. Here, we switch back from marked points
to punctures to take advantage of hyperbolic geometry. Proposition 1.10
(homotopy vs. isotopy for curves) and Theorem 1.13 (extension of iso-
topies) also work for arcs.

1.3 THE CHANGE OF COORDINATES PRINCIPLE

We now describe a basic technique that is used quite frequently in the theory
of mapping class groups, often without mention. We call thistechnique
thechange of coordinates principle. One example of this principle is that,
in order to prove a topological statement about an arbitrarynonseparating
simple closed curve, we can prove it for any specific simple closed curve.
We will see below that this idea applies to any configuration of simple closed
curves that is given by toplogical data.

1.3.1 CLASSIFICATION OF SIMPLE CLOSED CURVES

As a prelude to our explanation of the change of coordinates principle, we
present a “classification of simple closed curves in a surface.”

We first need to introduce an essential concept. Given a simple closed curve
α in a surfaceS, the surface obtained bycutting S alongα is a compact
surfaceSα equipped with a homeomorphismh between two of its boundary
components so that:

1. The quotientSα/(x ∼ h(x)) is homeomorphic toS, and

2. the image of these distinguished boundary components under this
quotient map isα.

It also makes sense to cut a surface with boundary or marked points along a
simple proper arc; the definition is analogous. Similarly, one can cut along a
finite collection of curves and arcs. There are several distinct situations for
cutting along a single arc, depending on whether the endpoints of the arc lie
on a boundary component or a puncture; for instance, and the cut surface is
allowed to have marked points on its boundary.
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We remark that the cutting procedure is one place where it is convenient
to assume that all curves under consideration are smooth. Indeed, ifγ is a
smooth simple closed curve in a surfaceS, then the pair(S, γ) is locally
diffeomorphic to(R2,R), and one can immediately conclude that the sur-
face obtained fromS by cutting alongγ is again a surface, now with two
additional boundary components. Hence the classification of surfaces can
be applied to the cut surface.

We say that a simple closed curveα in the surfaceS is nonseparatingif the
cut surfaceSα is connected. We claim the following.

If α andβ are any two nonseparating simple closed curves in a surfaceS,
then there is a homeomorphismφ : S → S with φ(α) = β.

In other words, up to homeomorphism, there is only one nonseparating sim-
ple closed curve inS. This statement follows from the classification of
surfaces, as follows. The cut surfacesSα andSβ each have two bound-
ary components corresponding toα andβ, respectively. SinceSα andSβ
have the same Euler characteristic, number of boundary components, and
number of punctures, it follows thatSα is homeomorphic toSβ. We can
choose a homeomorphismSα → Sβ that respects the equivalence relations
on the distinguished boundary components. Such a homeomorphism gives
the desired homeomorphism ofS takingα to β. If we want an orientation-
preserving homeomorphism, we can ensure this by postcomposing by an
orientation-reversing homeomorphism fixingβ if necessary.

A simple closed curveβ is separatingin S if the cut surfaceSβ is not
connected. Note that whenS is closed,β is separating if and only if it is the
boundary of some subsurface ofS. This is equivalent to the vanishing of
the homology class ofβ in H1(S,Z). By the “classification of disconnected
surfaces,” we see that there are finitely many separating simple closed curves
in S up to homeomorphism.

The above arguments give the following general classification of simple
closed curves on a surface:

There is an orientation-preserving homeomorphism of a surface taking one
simple closed curve to another if and only if the corresponding cut surfaces
(which may be disconnected) are homeomorphic.

The existence of such a homeomorphism is clearly an equivalence relation.
The equivalence class of a simple closed curve or a collection of simple
closed curves is called itstopological type. For example, a separating sim-
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ple closed curve in the closed surfaceSg dividesSg into two disjoint sub-
surfaces of, say, genusk andg−k. The minimum of{k, g−k} is called the
genusof the separating simple closed curve. By the above, the genus of a
curve determines and is determined by its topological type.Note that there
are⌊g2⌋ topological types of essential separating simple closed curves in a
closed surface.

The uninitiated may have trouble visualizing separating simple closed curves
that are not the “obvious” ones. We present a few in Figure 1.5, and we en-
courage the reader to draw even more complicated separatingsimple closed
curves.

Figure 1.5 Some nonobvious separating simple closed curves.

1.3.2 THE CHANGE OF COORDINATES PRINCIPLE

The change of coordinates principle is a kind of “change of basis” for curves
in a surfaceS. It roughly states that any two collections of simple closed
curves inS with the same intersection pattern can be taken to each other
via an orientation-preserving homeomorphism ofS. In this way an arbi-
trary configuration can be transformed into a “standard configuration.” The
classification of simple closed curves in surfaces given above is the simplest
example.

We illustrate the principle with two sample questions. Supposeα is any
nonseparating simple closed curveα on a surfaceS.

1. Is there a simple closed curveγ in S so thatα andγ fill S; that is,α
andγ are in minimal position and the complement ofα∪ γ is a union
of topological disks?

2. Is there a simple closed curveδ in S with i(α, δ) = 0? i(α, δ) = 1?
i(α, δ) = k?
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α

Figure 1.6 A simple closed curve on a genus 2 surface.

Even for the genus2 surfaceS2, it is not immediately obvious how to an-
swer either question for the nonseparating simple closed curve α shown in
Figure 1.6. However, we claim that the picture in Figure 1.7 gives a proof
that the answer to the first question is “yes” in this case, as we now show.
The curvesβ andγ in Figure 1.7 fill the surface (check this!). By the clas-
sification of simple closed curves in a surface, there is a homeomorphism
φ : S2 → S2 with φ(β) = α. Since filling is a topological property, it
follows that φ(γ) is the curve we are looking for, since it together with
α = φ(β) fills S2.

β

γ

Figure 1.7 Two simple closed curves that fill a genus 2 surface.

We think ofφ as “changing coordinates” so that the complicated curveα
becomes the easy-to-see curveβ. The second question can be answered
similarly.

1.3.3 EXAMPLES OF THE CHANGE OF COORDINATES PRINCIPLE

The change of coordinates principle applies to more generalsituations. We
give several examples here. Most of the proofs are minor variations of the
above arguments, and so are left to the reader.

1. Pairs of simple closed curves that intersect once.Suppose thatα1 andβ1

form such a pair in a surfaceS. Let Sα1
be the surface obtained by cutting

S alongα1. There are two boundary components ofSα1
, corresponding to
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the two sides ofα1. The image ofβ1 in Sα1
is a simple arc connecting these

boundary components to each other. We can cutSα1
along this arc to obtain

a surface(Sα1
)β1

. The latter is a surface with one boundary component
that is naturally subdivided into four arcs—two coming fromα1 and two
coming fromβ1. The equivalence relation coming from the definition of a
cut surface identifies these arcs in order to recover the surfaceS with its
curvesα1 andβ1.

If α2 andβ2 are another such pair, there is an analogous cut surface(Sα2
)β2

.
By the classification of surfaces,(Sα2

)β2
is homeomorphic to(Sα1

)β1
, and

moreover there is a homeomorphism that preserves equivalence classes on
the boundary. Any such homeomorphism descends to a homeomorphism of
S taking the pair{α1, β1} to the pair{α2, β2}.

2. Bounding pairs of a given genus.A bounding pairis a pair of disjoint,
homologous, nonseparating simple closed curves in a closedsurface. Fig-
ure 1.8 shows one example, but we again encourage the reader to find more
complicated examples. The genus of a bounding pair in a closed surface is
defined similarly to the genus of a separating simple closed curve.

Figure 1.8 A genus one bounding pair.

3. Pairs (ork–tuples) of disjoint simple closed curves whose union does not
separate.

4. Pairs of simple closed curves{α, β} with i(α, β) = |α ∩ β| = 2 and
î(α, β) = 0, and whose union does not separate.

5. Nonseparating simple proper arcs in a surfaceS that meet the same
number of components of∂S.

6. Chains of simple closed curves.A chain of simple closed curves in a
surfaceS is a sequenceα1, . . . , αk with the properties thati(αi, αi+1) = 1
for eachi andi(αi, αj) = 0 whenever|i− j| > 1. A chain isnonseparating
if the union of the curves does not separate the surface. Any two nonsepa-
rating chains of simple closed curves, with the same number of curves, are
topologically equivalent.
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This can be proved by induction. The starting point is the case of nonsep-
arating simple closed curves, and the inductive step is Example 5: cutting
along the first few arcs, the next arc becomes a nonseparatingarc on the cut
surface. Note that Example 1 is the casek = 2. One can also prove by in-
duction that every chain inSg of even length is nonseparating, and so such
chains must be topologically equivalent.

We remark that the homeomorphism representing the change ofcoordinates
in each of the six examples above can be taken to be orientation preserving.

1.4 THREE FACTS ABOUT HOMEOMORPHISMS

In this subsection we collect three useful facts from surface topology. Each
allows us to replace one kind of map with a better one: a homotopy of home-
omorphisms can be improved to an isotopy; a homeomorphism ofa surface
can be promoted to a diffeomorphism; andHomeo0(S) is contractible, so
in particular any isotopy from the identity homeomorphism to itself is ho-
motopic to the constant isotopy.

1.4.1 HOMOTOPY VERSUS ISOTOPY FOR HOMEOMORPHISMS

When are two homotopic homeomorphisms isotopic? Let us lookat two
of the simplest examples: the closed diskD and the closed annulusA. On
D, any orientation-reversing homeomorphismf induces a degree−1 map
on S1 = ∂D, and from this follows thatf is not isotopic to the identity.
However, the straight-line homotopy gives a homotopy between f and the
identity. OnA = S1 × I, the orientation-reversing map that fixes theS1

factor and reflects theI factor is homotopic but not isotopic to the identity.

It turns out that these two examples are the only examples of homotopic
homeomorphisms that are not isotopic. This was proved in the1920’s by
Baer, using Proposition 1.10 (see [8, 9], and also [54]).

THEOREM 1.12 LetS be any compact surface, and letf andg be homo-
topic homeomorphisms ofS. Thenf andg are isotopic unless they are one
of the two examples described above (onS = D andS = A). In particular,
if f andg are orientation-preserving then they are isotopic.
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In fact a stronger, relative result holds: if two homeomorphisms are homo-
topic relative to∂S then they are isotopic relative to∂S. Theorem 1.12 can
be proven using ideas from the proof of Proposition 2.8.

Theorem 1.12 also holds whenS has finitely many marked points. In that
case, we need to expand our list of counterexamples to include a sphere with
one or two marked points.

1.4.2 HOMEOMORPHISMS VERSUS DIFFEOMORPHISMS

It is sometimes convenient to work with homeomorphisms and sometimes
convenient to work with diffeomorphisms. For example it is easier to con-
struct the former but we can apply differential topology to the latter. The
following theorem will allow us to pass back and forth between homeomor-
phisms and diffeomorphisms of surfaces.

THEOREM 1.13 LetS be a compact surface. Then every homeomorphism
of S is isotopic to a diffeomorphism ofS.

It is a general fact that any homeomorphism of a smooth manifold can be
approximated arbitrarily well by a smooth map. By taking a close enough
approximation, the resulting smooth map is homotopic to theoriginal home-
omorphism. However, this general fact, which is easy to prove, is much
weaker than Theorem 1.13, because the resulting smooth map might not be
smoothly invertible; indeed, it might not be invertible at all.

Theorem 1.13 was proven in the 1950’s by Munkres [162, Theorem 6.3],
Smale, and Whitehead [208, Corollary 1.18]. In part, this work was prompted
by Milnor’s discovery of the “exotic” (non-diffeomorphic)smooth struc-
tures onS7.

Theorem 1.13 gives us a way to replace homeomorphisms with diffeomor-
phisms. We can also replace isotopies with smooth isotopies. In other
words, if two diffeomorphisms are isotopic, then they are smoothly isotopic;
see, e.g., [29].

In this book, we will switch between the topological settingand the smooth
setting as convenient. For example, when defining a map of a surface to
itself (either by equations or by pictures) it is often easier to write down a
homeomorphism than a smooth map. On the other hand, when we need to
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appeal to transversality, extension of isotopy, etc., we will need to assume
we have a diffeomorphism.

One point to make is that we will actually be forced to consider self-maps
of a surface that are not smooth; pseudo-Anosov homeomorphisms, which
are central to the theory, are special maps of a surface that are never smooth
(cf. Chapter 13).

1.4.3 CONTRACTIBILITY OF COMPONENTS OF Homeo(S)

The following theorem was proven by Hamstrom in a series of papers [75,
76, 77] in the 1960’s. In the statement,Homeo0(S) is the connected com-
ponent of the identity in the space of homeomorphisms of a surfaceS.

THEOREM 1.14 LetS be a compact surface, possibly minus a finite num-
ber of points from the interior. Assume thatS is not homeomorphic to
S2, R2, D2, T 2, the closed annulus, the once-punctured disk, or the once-
punctured plane. Then the spaceHomeo0(S) is contractible.

The fact thatHomeo0(S) is simply connected is of course an immediate
consequence of Theorem 1.14. This fact will be used, among other places,
in Section 4.2, in the proof of the Birman exact sequence. There is a smooth
version of Theorem 1.14; see [71] or [51].



Chapter Two

Mapping class group basics

In this chapter we begin our study of the mapping class group of a surface.
After giving the definition, we compute the mapping class group in essen-
tially all of the cases where it can be computed directly. This includes the
case of the disk, the annulus, the torus, and the pair of pants. An important
method, which we call the “Alexander method,” emerges as a tool for such
computations. It answers the fundamental question: how canone prove that
a homeomorphism is or is not homotopically trivial? Equivalently: how can
one decide when two homeomorphisms are homotopic or not?

2.1 DEFINITION AND FIRST EXAMPLES

Let S be a surface. As in Chapter 1, we assume thatS is the connect
sum ofg ≥ 0 tori, with b ≥ 0 disjoint open disks removed, andn ≥ 0
points removed from the interior. LetHomeo+(S, ∂S) denote the group of
orientation-preserving homeomorphisms ofS that restrict to the identity on
∂S. We endow this group with the compact-open topology.

Themapping class groupof S, denotedMod(S), is the group

Mod(S) = π0(Homeo+(S, ∂S)).

In other words,Mod(S) is the group of isotopy classes of elements of
Homeo+(S, ∂S), where isotopies are required to fix the boundary point-
wise. If Homeo0(S, ∂S) denotes the connected component of the identity
in Homeo+(S, ∂S), then we can equivalently write

Mod(S) = Homeo+(S, ∂S)/Homeo0(S, ∂S).

There are several possible variations in the definition ofMod(S). For ex-
ample we could consider diffeomorphisms instead of homeomorphisms, or
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homotopy classes instead of isotopy classes. By the theorems in Section 1.4,
these definitions would result in isomorphic groups. To summarize, we
have:

Mod(S) = π0(Homeo+(S, ∂S))
≈ Homeo+(S, ∂S) /homotopy
≈ π0(Diff+(S, ∂S))
≈ Diff+(S, ∂S) / ∼

whereDiff+(S, ∂S) is the group of orientation-preserving diffeomorphisms
of S that are the identity on the boundary and∼ can be taken to be either
smooth homotopy relative to the boundary or smooth isotopy relative to the
boundary.

The terminologyMod(S) is meant to stand for “modular group.” Fricke
called the mapping class group the “automorphic modular group” since, as
we will later see, it can be viewed as a generalization of the classical modu-
lar groupSL(2,Z) of 2× 2 integral matrices with determinant1.

Elements ofMod(S) are calledmapping classes. We use the convention of
functional notation, namely:

Elements of the mapping class group are applied right to left.

Other definitions and notations. In the literature, there are various other
notations for the mapping class group, for instance: MCG(S), Map(S),
M(S), andΓg,n. As a general rule, “mapping class group” refers to the
group of homotopy classes of homeomorphisms of a surface, but there are
plenty of variations: one can consider homeomorphisms thatdo not neces-
sarily preserve the orientation of the surface, or that do not act as the identity
on the boundary, or that fix each puncture individually, etc.

Punctures versus marked points. If S is a surface with punctures, then it
is sometimes more convenient to think of (some of) the punctures as marked
points onS. Then,Mod(S) is the group of homeomorphisms ofS that leave
the set of marked points invariant, modulo isotopies that leave the set of
marked points invariant. Here, one has to be careful when using homotopies
instead of isotopies: a homotopy of surfaces with marked points must not
only send marked points to marked points at all times, but must also send
non-marked points to non-marked points at all times.

Punctures versus boundary. One difference between a surface with punc-
tures and a surface with boundary is that, as an artifact of our definitions, a
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Figure 2.1 An order5 element ofMod(S5).

mapping class is allowed to permute punctures on a surface, but it must pre-
serve the individual boundary components pointwise. Also,isotopies must
fix each boundary component pointwise, while on the other hand isotopies
can rotate a neighborhood of a puncture.

Exceptional surfaces. Recall from Section 1.4 that there are four surfaces
for which homotopy is not the same as isotopy: the diskD2, the annulusA,
the once-punctured sphereS0,1, and the twice-punctured sphereS0,2. Also
recall that in these cases, homotopy is the same as isotopy for orientation-
preserving homeomorphisms. Thus, even in these cases, the various defini-
tions ofMod(S) are still equivalent.

2.1.1 FIRST EXAMPLES OF MAPPING CLASSES

As a first example of a nontrivial element ofMod(Sg), one can take the
order g homeomorphismφ of Sg indicated in Figure 2.1 forg = 5. The
mapping class represented byφ also has orderg. To see this, look for a sim-
ple closed curveα in Sg so thatα, φ(α), φ2(α), . . . , φg−1(α) are pairwise
nonisotopic.

If we representSg as a(4g + 2)–gon with opposite sides identified (Fig-
ure 2.2 shows the caseg = 2), we can get elements ofMod(Sg) by rotating
the (4g + 2)–gon by any number of “clicks.” For example, if we rotate by
an angleπ (that is,2g+1 clicks) we get an important example of a mapping
class, called a “hyperelliptic involution” (see Sections 7.4 and 9.4 for further
discussion of hyperelliptic involutions).
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Figure 2.2 Rotation by2π/10 gives an order 10 element ofMod(S2).

...

Figure 2.3 The rotation byπ about the indicated axis is a hyperelliptic involution.

It is possible to realize a hyperelliptic involution as a rigid rotation ofSg in
R3, namely, the rotation byπ about the axis indicated in Figure 2.3 (it is
not obvious that this is indeed a hyperelliptic involution). Other elements of
Mod(Sg) obtained by rotating a(4g+ 2)–gon are less easy to visualize; for
example, what does an order five symmetry ofS2 look like with respect to
the standard picture ofS2 embedded inR3?

Unlike the preceding examples, most elements of the mappingclass group
have infinite order. The simplest such elements are Dehn twists, which are
defined and studied in detail in Chapter 3.

2.2 COMPUTATIONS OF THE SIMPLEST MAPPING CLASS GROUPS

In this section we give complete descriptions of the mappingclass groups
of the simplest surfaces, working directly from the definitions.
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2.2.1 THE ALEXANDER LEMMA

Our first computation is the mapping class groupMod(D2) of the closed
diskD2. This simple result underlies most computations of mappingclass
groups.

Lemma 2.1 (Alexander lemma)The groupMod(D2) is trivial.

In other words, Lemma 2.1 states that given any homeomorphism φ of D2

that is the identity on the boundary∂D2, there is an isotopy ofφ to the
identity through homeomorphisms that are the identity on∂D2.

Proof. IdentifyD2 with the closed unit disk inR2. Letφ : D2 → D2 be a
homeomorphism withφ|∂D2 equal to the identity. We define

F (x, t) =

{
(1− t)φ

(
x

1−t

)
0 ≤ |x| < 1− t

x 1− t ≤ |x| ≤ 1.

for 0 ≤ t < 1, and we defineF (x, 1) to be the identity map ofD2. The
result is an isotopyF from φ to the identity. 2

We can think of combining the{F (x, t)} from the proof into a level-preserving
homeomorphism of a cylinder with support a cone; see Figure 2.4. The in-
dividualF (⋆, t) homeomorphisms appear at horizontal slices.

Figure 2.4 The picture for the Alexander trick.

The isotopy given by the proof can be thought of as follows: attime t, do
the original mapφ on the disk of radius1 − t, and apply the identity map
outside of this disk. This clever proof is called the “Alexander trick.”
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The reader will notice that the Alexander trick works in all dimensions.
However, this is one place where it is convenient to think about homeomor-
phisms instead of diffeomorphisms. The smooth version of the Alexander
lemma in dimension 2 is not nearly as simple, although in thiscase Smale
proved the stronger statement thatDiff(D2, ∂D2) is contractible [192]. In
higher dimensions, the situation is worse: it is not known ifDiff(D4, ∂D4)
is connected, and for infinitely manyn we have thatDiff(Dn, ∂Dn) is not
connected.

The proof of Lemma 2.1 also holds withD2 replaced by a once-punctured
disk (take the puncture/marked point to lie at the origin) and hence we also
have the following:

The mapping class group of a once-punctured disk is trivial.

The sphere and the once-punctured sphere.There are two other mapping
class groupsMod(Sg,n) that are trivial, namelyMod(S0,1) andMod(S2).
For the former, we can identifyS0,1 with R2 and use that fact that every
orientation-preserving homeomorphism ofR2 is homotopic to the identity
via the straight-line homotopy. ForS2, any homeomorphism can be mod-
ified by isotopy so that it fixes a point, and so we can apply the previous
example.

2.2.2 THE MAPPING CLASS GROUP OF THE THRICE -PUNCTURED SPHERE

Our next example, the mapping class group ofS0,3, illustrates an impor-
tant idea in the theory of mapping class groups. The way we will compute
Mod(S0,3) is to understand its action on some fixed arc inS0,3. The surface
obtained by cuttingS0,3 along this arc is a punctured disk, and so we will
be able to apply the Alexander lemma. This is in general how weuse the
cutting procedure for surfaces in order to perform inductive arguments.

In this section it will be convenient to think ofS0,3 as a sphere with three
marked points (instead of three punctures). In order to determineMod(S0,3)
we first need to understand simple proper arcs inS0,3.

Proposition 2.2 Any two essential simple proper arcs inS0,3 with the same
endpoints are isotopic. Any two essential arcs that both start and end at the
same marked point ofS0,3 are isotopic.
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Proof. Let α andβ be two simple proper arcs inS0,3 connecting the same
two distinct marked points. We can modifyα by isotopy so that it has gen-
eral position intersections withβ. By thinking of the third marked point as
being the point at infinity, we can think ofα andβ as arcs in the plane. As
in the proof of Lemma 1.8, ifα andβ are not disjoint, then we can find
an innermost disk bounded by an arc ofα and an arc ofβ. Pushingα by
isotopy across such disks, we may reduce intersection untilα andβ have
disjoint interiors. At this point, we can cutS0,3 alongα∪β. By the classifi-
cation of surfaces, the resulting surface is the disjoint union of a disk (with
two marked points on the boundary) and a once-marked disk (with two ad-
ditional marked points on the boundary). Thusα andβ bound an embedded
disk inS0,3, and so they are isotopic.

The case whereα andβ are essential simple proper arcs where all four
endpoints lie on the same marked point ofS0,3 is similar. 2

We are now ready computeMod(S0,3). Let Σ3 denote the group of permu-
tations of 3 elements.

Proposition 2.3 The natural map

Mod(S0,3)→ Σ3

given by the action ofMod(S0,3) on the set of marked points ofS0,3 is an
isomorphism.

Proof. The map in the statement is obviously a surjective homomorphism.
Thus it suffices to show that if a homeomorphismφ of S0,3 fixes the three
marked points—call themp, q, andr—thenφ is homotopic to the iden-
tity. Choose an arcα in S0,3 with distinct endpoints, sayp andq. Since
φ fixes the marked pointsp, q, andr, the endpoints ofφ(α) are againp
andq. By Proposition 2.2, we have thatφ(α) is isotopic toα. It follows
that φ is isotopic to a map (which we also callφ) that fixesα pointwise
(Proposition 1.11).

We can cutS0,3 alongα so as to obtain a disk with one marked point (the
boundary comes fromα, and the marked point comes fromr). Sinceφ
preserves the orientations ofS0,3 and ofα, it follows thatφ induces a home-
omorphismφ of this disk which is the identity on the boundary (the mapφ is
the unique set map on the cut-open surface inducingφ). By Lemma 2.1 the
mapping class group of a once-marked disk is trivial, and soφ is homotopic
to the identity. The homotopy induces a homotopy fromφ to the identity.2
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Pairs of pants. The surfaceS0,3 is homeomorphic to the interior of apair
of pants1 P , which is the compact surface obtained fromS2 by removing
three open disks with embedded, disjoint closures. Pairs ofpants are impor-
tant because all compact hyperbolic surfaces can be built from pairs of pants
(cf. Section 10.5). In Section 3.6 we will apply Proposition2.3 to show that
Mod(P ) ≈ Z3.

The twice-punctured sphere. There is a homomorphismMod(S0,2) →
Z/2Z given by the action on the two marked points. An analogous proof to
that of Proposition 2.3 gives thatMod(S0,2) ≈ Z/2Z.

2.2.3 THE MAPPING CLASS GROUP OF THE ANNULUS

We now come to the simplest infinite order mapping class group, that of the
annulusA. The basic procedure we use to computeMod(A) is similar to
the one we used forS0,3. That is, we find an arc inA so that when we cut
A along that arc, we obtain a closed disk. If we can understand the action
of a homeomorphism on the arc, then we can completely understand the
homeomorphism up to homotopy.

Proposition 2.4 Mod(A) ≈ Z.

Proof. First we construct a mapρ : Mod(A) → Z. Let f ∈ Mod(A),
and letφ : A → A be any homeomorphism representingf . The universal
cover ofA is the infinite stripÃ ≈ R × [0, 1], andφ has a preferred lift
φ̃ : Ã→ Ã fixing the origin. Letφ̃1 : R→ R denote the restriction of̃φ to
R × {1}, which is canonically identified withR. Sinceφ̃1 is a lift to R of
the identity map on one of the boundary components ofA, it is an integer
translation. We defineρ(f) to beφ̃1(0). If we identify Z with the group of
integer translations ofR, then the map̃φ1 itself is an element ofZ, and we
can writeρ(f) = φ̃1 ∈ Z. From this point of view, it is clear thatρ is a
homomorphism, since compositions of maps ofA get sent to compositions
of translations ofR.

We can give an equivalent definition ofρ as follows. Letδ be an oriented
simple proper arc that connects the two boundary componentsof A. Given
f andφ as above, the concatenationφ(δ) ∗ δ−1 is a loop based atδ(0), and

1Möbius used the term “trinion” for a pair of pants (he calledan annulus a “binion” and
a disk a “union”).
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ρ(f) equals[φ(δ) ∗ δ−1] ∈ π1(A, δ(0)) ≈ Z. Yet another equivalent way to
defineρ is to let δ̃ be the unique lift ofδ to Ã based at the origin, and to set
ρ(f) to be the endpoint of̃φ(δ̃) in R× {1} ≈ R.

We now show thatρ is surjective. The linear transformation ofR2 given by
the matrix

M =

(
1 n
0 1

)

preservesR × [0, 1] and is equivariant with respect to the group of deck
transformations. Thus, the restriction of the linear mapM to R × [0, 1]
descends to a homeomorphismφ of A. The action of this homeomorphism
on δ is depicted in Figure 2.5 for the casen = −1. It follows from the
definition ofρ thatρ([φ]) = n.

δ φ

φ(δ)

Figure 2.5 A generator forMod(A).

It remains to show thatρ is injective. Letf ∈ Mod(A) be an element of the
kernel ofρ, and say thatf is represented by a homeomorphismφ. Let φ̃ be
the preferred lift ofφ. Sinceρ(f) = 0, we have that̃φ acts as the identity
on∂Ã. We claim that the straight line homotopy from̃φ to the identity map
of Ã is equivariant. For this, it suffices to show that

φ̃(τ · x) = τ · φ̃(x)

for any deck transformationτ and for anyx ∈ Ã. It follows from general
covering space theory that

φ̃(τ · x) = φ∗(τ) · φ̃(x).

But becauseφ fixes∂A pointwise it follows thatφ∗ is the identity automor-
phism ofπ1(A) ≈ Z, and soφ∗(τ) = τ , and the claim is proven.

We have that the straight line homotopy from̃φ to the identity is equivariant,
and it fixes the boundary of̃A, so it descends to a homotopy betweenφ and
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the identity map ofA that fixes the boundary ofA pointwise. Thusf is the
identity and soρ is injective. 2

We remark that in the proof of Proposition 2.4 we took advantage of the fact
that we can conflate homotopy with isotopy.

The homeomorphism ofA induced by the matrix
(

1 −1
0 1

)

is called a “Dehn twist.” Since any surface contains an annulus, we can
perform a Dehn twist in any surface. Dehn twists are important elements of
the mapping class group. In fact, the next chapter is entirely devoted to their
study.

2.2.4 THE MAPPING CLASS GROUP OF THE TORUS

The torusT 2 acts as a guidepost in the study of mapping class groups. While
it has an explicit description as a group of integral matrices, and while it
is much easier to understand than mapping class groups of higher genus
surfaces, it still exhibits enough richness to give us a hintof what to expect
in the higher genus case. This is a recurring theme in this book.

THEOREM 2.5 The homomorphism

σ : Mod(T 2) −→ SL(2,Z)

given by the action onH1(T ; Z) ≈ Z2 is an isomorphism.

Proof. Any homeomorphismφ of T 2 induces a mapφ∗ : H1(T
2; Z) →

H1(T
2; Z). Sinceφ is invertible,φ∗ is an automorphism ofH1(T

2; Z) ≈
Z2. Homotopic maps induce the same map on homology, and so the map
φ 7→ φ∗ induces a mapσ : Mod(T 2) → Aut(Z2) ≈ GL(2,Z) (the exact
identification ofσ(f) with a2× 2 matrix depends on the particular identifi-
cation ofH1(T

2; Z) with Z2). The fact thatσ(f) is an element ofSL(2,Z)
can be seen directly from the fact that the algebraic intersection numbers
in T 2 correspond to determinants (see§1.2) and that fact that orientation-
preserving homeomorphisms preserve algebraic intersection number.
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We next prove thatσ is surjective. Any elementM of SL(2,Z) induces an
orientation-preserving linear homeomorphism ofR2 that is equivariant with
respect to the deck transformation groupZ2, and thus descends to a linear
homeomorphismφM of the torusT 2 = R2/Z2. Because of our identifi-
cation of primitive vectors inZ2 with homotopy classes of oriented simple
closed curves inT 2, it follows thatσ([φM ]) = M , and soσ is surjective.

Finally, we prove thatσ is injective. SinceT 2 is aK(G, 1) space, there is a
correspondence:

{
Homotopy classes of
based mapsT 2 → T 2

}
←→

{
Homomorphisms

Z2 → Z2

}

(see [86, Proposition 1B.9]). What is more, any elementf of Mod(T 2) has
a representativeφ that fixes a basepoint forT 2. Thus, iff ∈ ker(σ), then
φ is homotopic (as a based map) to the identity, soσ is injective. Actually,
we can construct the homotopy ofφ to the identity explicitly. As in the case
of the annulus, the straight-line homotopy between the identity map ofR2

and any lift ofφ is equivariant, and hence descends to a homotopy between
φ and the identity. 2

The annulus versus the torus. The reader will notice that our proof of the
injectivity of σ : Mod(T 2) → SL(2,Z) was actually easier than our proof
of the injectivity ofρ : Mod(A)→ Z. The reason for this is that if we apply
K(G, 1) theory to two homeomorphisms ofA that induce the same map on
π1(A), then we only get that they are homotopic via a homotopy that does
not necessarily fix the boundary. That is why we needed to construct the
homotopy by hand in the case of the annulus.

Hands-on proof of Theorem 2.5. We can give another, more hands-on
proof of the injectivity ofσ : Mod(T 2) → SL(2,Z). Suppose thatσ(f) is
the identity matrix inSL(2,Z), and letφ be a representative off . If α andβ
are simple closed curves corresponding to the elements(1, 0) and(0, 1) of
π1(T

2), then it follows thatφ(α) is homotopic toα andφ(β) is homotopic
to β. We proceed in two steps to show thatφ is isotopic to the identity.

1. By Proposition 1.10, we know thatφ(α) is isotopic toα (as a map),
and by Proposition 1.11 any such isotopy can be extended to aniso-
topy ofT 2. Thus, up to isotopy, we may assume thatφ fixesα point-
wise. Asφ is orientation-preserving, we also know thatφ preserves
the two sides ofα.
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2. LetA be the annulus obtained fromT 2 by cutting alongα. Given that
φ fixesα pointwise and thatφ preserves the two sides ofα, we have
thatφ induces a homeomorphismφ of A which represents an element
f of Mod(A). We can think ofβ andφ(β) as arcs inA. Sinceφ(β)
is isotopic toβ in T 2, we see thatρ(f) = 0, whereρ : Mod(A)→ Z
is the map from Proposition 2.4.

3. At this point, we can simply quote Proposition 2.4, which gives that
f = 1. This means thatφ isotopic to the identity map ofA via an
isotopy fixing∂A pointwise. But thenφ is also isotopic to the identity.

In the last step, instead of quoting Proposition 2.4 one can continue the line
of thought to give a hands-on proof of that proposition. As weshall see
in Section 2.3, these hands-on proofs lead to a method for understanding
mapping classes of arbitrary surfaces.

The once-punctured torus. For the once-punctured torusS1,1, we have
H1(S1,1; Z) ≈ H1(T

2; Z) ≈ Z2. Therefore, as in the case ofT 2, there is a
homomorphismσ : Mod(S1,1) → SL(2,Z). The mapσ is surjective since
any element ofSL(2,Z) can be realized as a map ofR2 that is equivari-
ant with respect toZ2 and that fixes the origin; such a map descends to a
homeomorphism ofS1,1 with the desired action on homology.

To prove thatσ is injective we can apply a version of the “hands-on” proof
we used in the case of the torus, as follows. Letα andβ be simple closed
curves inS1,1 that intersect in one point. Iff ∈ ker(σ) is represented by
φ, thenφ(α) andφ(β) are isotopic toα andβ. We can then modifyφ by
isotopy so that it fixesα andβ pointwise. If we cutS1,1 alongα ∪ β, we
obtain a once-punctured disk, andφ induces a homeomorphism of this disk
fixing the boundary. By the Alexander trick, this homeomorphism of the
punctured disk is homotopic to the identity by a homotopy that fixes the
boundary. It follows thatφ is homotopic to the identity, as desired.

2.2.5 THE MAPPING CLASS GROUP OF THE FOUR -TIMES PUNCTURED SPHERE

In the theory of mapping class groups, there is a strong relationship between
the torus and the sphere with four punctures. Recall that if we think of the
torus as a square (or hexagon) with opposite sides identified, then the hy-
perelliptic involutionι is the map that rotates about the center of the square
(or hexagon) by an angle ofπ. The mapι has four fixed points, and so
the quotient, which is topologically a sphere, has four distinguished points.



58 CHAPTER 2

We identify this quotient withS0,4. Since every linear map ofT 2 (fixing
the image of the origin inR2) commutes withι, each element ofMod(T 2)
induces an element ofMod(S0,4). We will now exploit this relationship in
order to computeMod(S0,4).

We begin by classifying simple closed curves inS0,4 up to homotopy.

Proposition 2.6 The hyperelliptic involution induces a bijection between
the set of homotopy classes of essential simple closed curves inT 2 and the
set of homotopy classes of essential simple closed curves inS0,4.

Proof. Proposition 1.5 gives a bijection between the set of homotopy classes
of essential simple closed curves inT 2 and the set of primitive elements of
Z2. Given a primitive element ofZ2, we obtained a(p, q)–curve by taking
a line of slopeq/p to T 2.

We will give a different construction of(p, q)–curves inT 2, and we will
give a construction of a(p, q)–curves inS0,4, and then we will observe that
the lift of a (p, q)–curve inS0,4 to T 2 is a(p, q)–curve inT 2.

Let α andβ be two simple closed curves inT 2 that intersect each other in
one point. We identifyα with (1, 0) ∈ Z2 andβ with (0, 1) ∈ Z2. Let (p, q)
be a primitive element ofZ2. A simple closed curveγ in T 2 is a (p, q)–
curve if (up to sign) we have(̂i(γ, β), î(γ, α)) = ±(p, q). To construct the
(p, q)–curve, we start by takingp parallel copies ofα and we modify this
collection by a2π/q twist alongβ.

Up to homotopy inT 2, we may assume thatα andβ project viaι to simple
closed curves̄α andβ̄ in S0,4 that intersect in two points, as in Figure 2.6.
We can then perform an analogous construction of a(p, q)–curve inS0,4.
We takep parallel copies of̄α and twist alonḡβ by π/q.

We need to check that every homotopy class of essential simple closed
curves inS0,4 comes from our construction. Letγ be an arbitrary essen-
tial simple closed curve inS0,4. Up to homotopy, we may assume thatγ is
in minimal position with respect toα. If we cutS0,4 alongβ we obtain two
twice-punctured disks, andγ andα both give collections of disjoint arcs on
each. By the assumptions on minimal position, these arcs areall essential.
By Proposition 2.2, the arcs coming fromα and the arcs coming fromγ are
freely homotopic. It follows that the homotopy class ofγ comes from our
construction.
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The preimage of a(p, q)–curve inS0,4 in T 2 is a “(2p, 2q)–curve,” that is
to say, two parallel copies of a(p, q)–curve inT 2. That is to say that the
identification of(p, q)–curves in the two surfaces is induced byι. 2

Proposition 2.7 Mod(S0,4) ≈ PSL(2,Z) ⋉ (Z/2Z × Z/2Z).

Proof. We first construct a homomorphismσ : Mod(S0,4) → PSL(2,Z)
together with a right inverse. Then we will show that the kernel is isomor-
phic toZ/2Z× Z/2Z.

Let φ be a homeomorphism representing a givenf ∈ Mod(S0,4). There are
two lifts of φ to Homeo+(T 2), sayφ̃ andιφ̃. We defineσ(f) to be the ele-
ment ofPSL(2,Z) represented by the matrixσ([φ̃]), whereσ : Mod(T 2)→
SL(2,Z) is the homomorphism from Theorem 2.5. This is well-defined
since the two lifts ofφ differ by ι, andσ(ι) = −I.

Next we construct the right inverse ofσ. An element ofPSL(2,Z) induces
an orientation-preserving, linear homeomorphism ofT 2 that is well-defined
up to multiplication byι. Any such map ofT 2 commutes withι, and hence
induces an orientation-preserving homeomorphism ofS0,4. In this way we
have defined a mapPSL(2,Z) → Mod(S0,4); it is a right inverse ofσ by
construction.
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Figure 2.6 The hyperelliptic involutions ofS0,4.

The order two homeomorphisms ofS0,4 indicated in Figure 2.6 are called
hyperelliptic involutionsof S0,4. The corresponding mapping classesι1 and
ι2 generate a subgroup ofMod(S0,4) isomorphic toZ2 × Z2. The hyper-
elliptic involutions each lift to a homeomorphism ofT 2 ≈ S1 × S1 that
rotates one of the factors byπ. Hence,〈ι1, ι2〉 is contained in the kernel of
σ.
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We will show that〈ι1, ι2〉 is the entire kernel ofσ. Let f ∈ ker(σ). By defi-
nition of σ, any lift of a representative off to Homeo+(T 2) acts by±id on
H1(T

2; Z), and hence acts trivially on the set of homotopy classes of sim-
ple closed curves inT 2. By the natural bijection given by Proposition 2.6, it
follows thatf acts trivially on the set of homotopy classes of simple closed
curves inS0,4. In particularf fixes the homotopy classes ofα andβ. It
follows that we can precomposef with an element ofk ∈ 〈ι1, ι2〉 so that
fk fixes the four marked points ofS0,4.

Our goal now is to show thatfk is the identity. Say thatfk is represented
by a homeomorphismφ. As in the proof of Theorem 2.5, we can modifyφ
so that it fixesα andβ. Sinceφ fixes the four marked points, we have thatφ
induces relative homeomorphisms of the four once-marked disks obtained
when we cutS0,4 alongα andβ. At this point, we can once again apply to
Alexander lemma to show thatfk is the identity. 2

Two splittings of Mod±(S0,4). Let Mod±(S0,4) denote group of ho-
motopy classes of all homeomorphisms ofS0,4, including the orientation-
reversing ones (see Chapter 8 for more about this group). It follows from
Theorem 2.5 and the argument of Proposition 2.7 that

Mod±(S0,4) ≈ PGL(2,Z) ⋉ (Z/2Z × Z/2Z).

We can give another description ofMod±(S0,4) as a semidirect product.
There is a short exact sequence

1→ PMod±(S0,4)→ Mod±(S0,4)→ Σ4 → 1,

whereΣ4 is the symmetric group on the four punctures, the mapMod±(S0,4)→
Σ4 is given by the action on the punctures, andPMod±(S0,4) is the sub-
group ofMod±(S0,4) consisting of those elements fixing each of the punc-
tures (one is tempted to write a sequence withMod(S0,4) surjecting onto the
alternating groupA4, but the image ofMod(S0,4) is all of Σ4). Thinking of
S0,4 as the 2–skeleton of a tetrahedron minus its vertices, we seethat there is
a sectionΣ4 → Mod±(S0,4), and so the groupMod±(S0,4) is isomorphic
to the semidirect productPMod±(S0,4) ⋊ Σ4. It follows from the results in
Section 4.2 below thatPMod±(S0,4) ≈ F2 ⋊ Z/2Z, and so

Mod±(S0,4) ≈ (F2 ⋊ Z/2Z) ⋊ Σ4.
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2.3 THE ALEXANDER METHOD

Our computations of the mapping class groups ofS0,3, S0,2, A, T 2, S1,1,
andS0,4 all follow the same general scheme: find a collection of curves
and/or arcs that cut the surface into disks, and apply the Alexander lemma
in order to say that the action of the mapping class group on the surface is
completely determined by the action on the isotopy classes of these curves
and arcs.

It turns out that this basic setup works for a general surface. The Alexander
method (given below) states that, for anyS, an element ofMod(S) is often
determined by its action on a well-chosen collection of curves and arcs in
S. Thus, there is a concrete way to determine when two homeomorphisms
f, g ∈ Homeo+(S) represent the same element ofMod(S).

Before we give the precise statement, we point out that the situation is more
subtle than one might think at first. It is simply not true in general that if a
homeomorphism of a surfaceS fixes a collection of curves and arcs that cut
S into disks, then it represents the trivial mapping class. For instance, the
hyperelliptic involution ofSg fixes the2g + 1 simple closed curves shown
in Figure 2.7; on the other hand, we know that the hyperelliptic involution
represents a nontrivial mapping class since it acts nontrivially onH1(Sg; Z).
Even worse, the hyperelliptic involutions inMod(T 2) andMod(S2) fix ev-
ery isotopy class of simple closed curves (cf. Section 3.4). What is hap-
pening in the case of the hyperelliptic involution, and whatcan happen in
general, is that a homeomorphism of a surface can fix a collection of curves
while still permuting or rotating the complementary disks.

...

Figure 2.7 A collection of simple closed curves that is fixed by the hyperelliptic involution.

In view of the example of the hyperelliptic involution, one is tempted to sim-
ply add the hypothesis that the curves and arcs are fixed with their orienta-
tions. But this is still not right: the hyperelliptic involution inMod(S2) fixes
the orientation of every isotopy class of separating simpleclosed curves in
S2, and certainly there are enough of these curves to cutS2 into disks; see
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Figure 2.8 for such a configuration.

Figure 2.8 The hyperelliptic involution fixes the isotopy class of every simple closed curve
in S2, and even fixes the orientation of each separating isotopy class. However,
it is a nontrivial mapping class.

We finally arrive at the following statement, which we call the Alexander
method. To simplify the discussion we consider only compact surfaces,
possibly with finitely many marked points in the interior. Again, for all
intents and purposes, marked points play the same role as punctures in the
theory of mapping class groups. For a surfaceS with marked points, we say
that a collection{γi} of curves and arcsfills S if the surface obtained from
S by cutting along allγi is a disjoint union of disks and once-marked disks.

Proposition 2.8 (Alexander method)Let S be a compact surface, possi-
bly with marked points, and letφ ∈ Homeo+(S, ∂S). Let γ1, . . . , γn be
a collection of essential simple closed curves and simple proper arcs inS
with the following properties.

1. Theγi are pairwise in minimal position.

2. Theγi are pairwise nonisotopic.

3. For distincti, j, k, at least one ofγi ∩ γj , γi ∩ γk, or γj ∩ γk is empty.

(1) If there is a permutationσ of {1, . . . , n} so thatφ(γi) is isotopic toγσ(i)

relative to∂S for eachi, thenφ(∪γi) is isotopic to∪γi relative to∂S.

If we regard∪γi as a (possibly disconnected) graphΓ in S, with vertices at
the intersection points and at the endpoints of arcs, then the composition of
φ with this isotopy gives an automorphismφ∗ of Γ.

(2) Suppose now that{γi} fills S. If φ∗ fixes each vertex and each edge of
Γ, with orientations, thenφ is isotopic to the identity. Otherwise,φ has a
nontrivial power that is isotopic to the identity.
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The power of the Alexander method is that it converts the computation of
a mapping class into a finite combinatorial problem. We will use this fre-
quently, for example:

1. to compute the center of the mapping class group (see§3.3)

2. to prove the Dehn–Nielsen–Baer theorem (see Chapter 8)

3. to show thatMod(S) has solvable word problem (see Chapter 4)

4. to verify that certain relations hold inMod(S) (see, e.g., Prop. 5.1)

We leave it as an exercise to check that every compact surfaceS has a col-
lection{γi} as in the statement of Proposition 2.8.

A priori the Alexander method only allows us to determine a mapping class
up to a finite power. However, on almost every surface, it is possible to
choose the{γi} so that mapping classes are determined uniquely by their
action on the{γi}; that is, on almost every surface one can choose theγi so
that whenever a homeomorphismφ fixes eachγi up to homotopy, then the
induced mapφ∗ of the graphΓ is necessarily the identity. One example of
such a collection is used in the proof of Theorem 3.10.

One would like to strengthen statement (2) of the Alexander method to say
that φ is isotopic to a nontrivial finite order homeomorphism. Indeed, it
is a general fact that if a homeomorphism of a surface has a power that is
isotopic to the identity then the homeomorphism itself is isotopic to a finite
order homeomorphism. This fact is stated precisely in Chapter 7 and is
proven in Section 13.2.

The condition on triples in the statement of the Alexander method is cru-
cial. This is because there is not, in general, a canonical minimal position
configuration for a triple of curves that intersect pairwise. Therefore, there
is no canonical way to construct the graphΓ. Consider for instance the con-
figuration shown in Figure 2.9; the three arcs are individually isotopic, but
there is no isotopy from the first union of arcs to the second.

We point out the following slight (but useful) improvement of the Alexander
method. Consider the graph2

Γ′ = (∪γi) ∪ ∂S ∪ {marked points}.

2Technically, if some component of∂S does not meet∪γi, then we need to add a marked
point on that component in order to obtain a graph.
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SinceΓ′ is in general larger thanΓ, it gives more information. For instance,
sayΓ is a chain of three simple closed curvesγ1, γ2, andγ3 in S1,2. By the
Alexander method, iff ∈ Mod(S) fixes the isotopy classes of eachγi, then
one can deduce thatf is either the identity or the hyperelliptic involution
(see Figure 3.8 below). If we know thatf also fixes the two marked points
of S1,2, then it is immediate from the action off onΓ′ thatf = 1.

Figure 2.9 There is no canonical way to arrange these three arcs without creating a triple
point.

Statement (1) of the Alexander method is an immediate consequence of the
following lemma which, in addition to being slightly more general, is also
notationally simpler.

Lemma 2.9 LetS be a compact surface, possibly with marked points, and
let γ1, . . . , γn be a collection of essential simple closed curves and simple
proper arcs inS that satisfy the three properties from Proposition 2.8. If
γ′1, . . . , γ

′
n is another such collection so thatγ′i is isotopic toγi relative to

∂S for eachi, then there is an isotopy ofS relative to∂S that takesγ′i to γi
for all i simultaneously, and hence takes∪γi to∪γ′i.

Our proof of this lemma was greatly simplified by Allen Hatcher.

Proof. We will work by induction onn; that is, we assume that we can
construct an isotopy ofS that takesγ′i to γi for i = 1, . . . , k−1, and we will
construct a relative homotopy ofS that fixes the set∆k−1 = γ1∪· · ·∪γk−1

throughout the isotopy and takesγ′k to γk. We can take the base case to be
k = 0, which is vacuous.

First we perform a relative isotopy ofS that fixes∆k−1 and perturbsγ′k to
have general position intersections withγk as follows. By the hypothesis
on triples{γ′i, γ′j , γ′k}, and that fact that∆k−1 is equal toγ′1 ∪ · · · ∪ γ′k−1,
we have thatγ′k is disjoint from the vertices of the graph∆k−1. Thus, there
is a relative isotopy ofS that fixes∆k−1 and makesγ′k disjoint from γk
along the edges of∆k−1. Finally, we perform a relative isotopy ofS that
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γk

γ′k

∆k−1

Figure 2.10 The intersection of∆k−1 with a bigon formed byγk andγ′
k.

is the identity in a neighborhood of∆k−1 and perturbsγ′k to intersectγk
transversely in the complement of∆k−1.

Next we perform a relative isotopy ofS that fixes∆k−1, and takesγ′k to be
disjoint from γk. If γk andγ′k are not already disjoint, then by the bigon
criterion they form a bigon (sinceγk andγ′k are isotopic relative to∂S, they
have the same endpoints, and hence they cannot form any half-bigons). By
the hypothesis on triples, the intersection of∆k−1 with this bigon is a col-
lection of disjoint arcs. By the assumption on minimal position, each such
arc connects one boundary arc of the bigon to the other; see Figure 2.10.
It follows that there is an isotopy ofS that fixes∆k−1 as a set, and pushes
γ′k across this bigon, thus reducing its intersection withγk. Repeating this
process a finite number of times, we obtain the desired isotopy.

Finally, we are in the situation thatγ′k is disjoint fromγk. As in the proof
of Proposition 1.10, the region betweenγk andγ′k is either an annulus or a
disk, depending on whetherγk andγ′k are simple closed curves or simple
proper arcs. The intersection of∆k−1 with this region, if nonempty, is again
a collection of disjoint arcs, each connectingγk to γ′k. Thus, as above, there
is a relative isotopy ofS that fixes∆k−1 and takesγ′k to γk. 2

We can now complete the proof of the Alexander method.

Proof of Proposition 2.8.Let {γ1, . . . , γn} be as in the statement (1), and
for eachi let γ′i be the simple closed curveφ(γσ−1(i)). Applying Lemma 2.9
to the collections{γi} and{γ′i}, we can construct an isotopy ofS that takes
γ′i to γi for eachi, and hence takes∪γ′i to∪γi. This proves statement (1). It
now follows, as in the statement of the proposition, thatφ induces an auto-
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morphismφ∗ of Γ = ∪γi. Since the automorphism group of a finite graph is
necessarily finite, we may choose a powerr so thatφr∗ is the identity auto-
morphism, that is, it fixes each vertex, and fixes each edge with orientation.
Sinceφ is orientation-preserving, it follows thatφ also preserves the sides
in S of each edge ofΓ. It follows thatφr, after possibly modifying it by an
isotopy, fixesΓ pointwise and sends each complementary region into itself;
indeed, a complementary region is completely determined bythe oriented
edges ofΓ that make up its boundary.

Now assume that theγi fill S, as in statement (2). In other words, the surface
obtained by cuttingS alongΓ is a collection of closed disks, each possibly
with one marked point. By applying the Alexander lemma (Lemma 2.1) to
each of these disks we see thatφr is isotopic to the identity homeomorphism
of S. Obviously in the caser = 1 we have thatφ is isotopic to the identity.
In the caser > 1, we have only obtained thatφr is isotopic to the identity.
This proves statement (2). 2



Chapter Three

Dehn twists

In this chapter we study a particular type of mapping class called a Dehn
twist. Dehn twists are the simplest infinite order mapping classes in the
sense that they have representatives with the “smallest” possible supports.
Dehn twists play the role for mapping class groups that elementary matri-
ces play for linear groups. We begin by defining twists inS and proving
that they have infinite order inMod(S). We determine many of the basic
properties of Dehn twists by studying their action on simpleclosed curves.
As one consequence, we compute the center ofMod(S). At the end of the
chapter we determine all relations that can occur between two Dehn twists.

3.1 DEFINITION AND NONTRIVIALITY

In this section we define Dehn twists and prove they are nontrivial elements
of the mapping class group.

3.1.1 DEHN TWISTS AND THEIR ACTION ON CURVES

Consider the annulusA = S1×[0, 1]. To orientAwe embed it in the(θ, r)–
plane via the map(θ, t) 7→ (θ, t + 1), and take the orientation induced by
the standard orientation of the plane.

Figure 3.1 Two views of a Dehn twist.
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Let T : A→ A be the “twist map” ofA given by the formula

T (θ, t) = (θ + 2πt, t).

The mapT is an orientation-preserving homeomorphism that fixes∂A point-
wise. Note that instead of usingθ + 2πt we could have usedθ − 2πt. Our
choice is a “left twist,” while the other is a “right twist.”

Figure 3.1 gives two pictorial descriptions of the twist mapT . We have
seen the picture on the left-hand side before, in our proof ofProposition 2.4.
Indeed, the twist mapT here is the same as the map used to show that
Mod(A) surjects ontoZ.

Now let S be an arbitrary (oriented) surface and letα be a simple closed
curve inS. LetN be a regular neighborhood ofα, and choose an orientation-
preserving homeomorphismφ : A → N . We obtain a homeomorphism
Tα : S → S, called aDehn twist aboutα, as follows:

Tα(x) =

{
φ ◦ T ◦ φ−1(x) if x ∈ N
x if x ∈ S \N.

In other words, the instructions forTα are: “perform the twist mapT on the
annulusN , and fix every point outside ofN .”

The Dehn twistTα depends on the choice ofN and the homeomorphism
φ. However, by the uniqueness of regular neighborhoods the isotopy class
of Tα does not depend on either of these choices. What is more,Tα does
not depend on the choice of the simple closed curveα within its isotopy
class. Thus, ifa denotes the isotopy class ofα, thenTa is well-defined as
an element ofMod(S), called theDehn twist abouta. We will sometimes
abuse notation slightly and writeTα for the mapping classTa.

The Dehn twist was introduced by Max Dehn. He originally usedthe term
“Schraubungen,” which can be translated as “screw map” [48,§2b].

Dehn twists on the torus.Via the isomorphism of Theorem 2.5, the Dehn
twists about the(1, 0)–curve and the(0, 1)–curve inT 2 map to the matrices

(
1 −1
0 1

)
and

(
1 0
1 1

)

Thus, these two Dehn twists generateMod(T 2) ≈ SL(2,Z). We will see in
Chapter 4 that in fact for everyg ≥ 0 the groupMod(Sg) is generated by a
finite number of Dehn twists.
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Figure 3.2 A Dehn twist via cutting and gluing.

Dehn twists via cutting and gluing.Here is another way to think about the
Dehn twistTα. We can cutS alongα, twist a neighborhood of one boundary
component through an angle of2π, and then reglue; see Figure 3.2. This
procedure gives a well-defined homeomorphism ofS which is equivalent to
Tα. If α is a separating simple closed curve, these instructions donot say
to cut alongα, twist one of the two pieces of the cut surface by2π, and
then reglue; this would give the identity homeomorphism ofS. The key is
to twist just the neighborhood of one boundary component.

Dehn twists via the inclusion homomorphism.In general, ifS1 is a closed
subsurface of a surfaceS2, there is an induced homomorphismMod(S1)→
Mod(S2); see Theorem 3.18 below. Given any inclusion of the annulusA
into a surfaceS, we obtain a homomorphismMod(A) → Mod(S). The
image of a generator ofMod(A) is a Dehn twist inMod(S).

Action on simple closed curves.We can understandTa by examining its
action on the isotopy classes of simple closed curves onS. If b is an isotopy
class withi(a, b) = 0 thenTa(b) = b. In the case thati(a, b) 6= 0 the
isotopy classTa(b) is determined by the following rule: given particular
representativesβ andα of b anda, respectively, each segment ofβ crossing
α is replaced with a segment that “turns left, followsα all the way around,
and then turns right.” This is true no matter which way we orient β; the
reason that we can distinguish left from right is that the mapφ used in the
definition ofTa is taken to be orientation preserving.

Left versus right. We emphasize that, once an orientation ofS is fixed, the
direction of a twistTa does not depend on any sort of orientation ona. This
is because “turning left” is well-defined on an oriented surface. (Similarly, a
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left-handed screw is still a left-handed screw when it is turned upside-down.)
The inverse mapT−1

a is simply the twist abouta in the other direction; it is
defined similarly toTa, with the twist mapT replaced by its inverseT−1.

The action on curves via surgery. If i(a, b) is large (say, more than two),
it can be difficult to draw a picture ofTa(b) using the “turn left–turn right”
procedure given above. It is hard to plan ahead and leave enough room for
all of the strands ofTa(b) that run arounda. A convenient way to draw
Ta(b) in practice is as follows. Start with one curveβ in the classb and
i(a, b) parallel curvesαi, each in the classa, each in minimal position with
β (one can also take theαi to not have minimal position withβ, but then
one must take|αi ∩ β| parallel curvesαi). Of course, the result is not a
simple closed curve. At each intersection point betweenβ and someαi,
we do surgery as in Figure 3.3. The rule for the surgery is to resolve the
intersection in the unique way so that if we follow an arc ofβ towards the
intersection, the surgered arc turns left at the intersection. Again, this does
not rely on any orientation ofαi or of β, but rather the orientation of the
surface. After performing this surgery at each intersection, the result is a
simple closed curve in the classTa(b).

αi

β

Figure 3.3 Dehn twists via surgery.

3.1.2 NONTRIVIALITY OF DEHN TWISTS

If a is the isotopy class of a simple closed curve that is homotopic to a point
or a puncture, thenTa is trivial in Mod(S)—whatever twisting is done on
the annulus can be undone by untwisting the disk or once-punctured disk
inside. We can use the action of a Dehn twist on simple closed curves to
prove that all other Dehn twists are nontrivial.

Proposition 3.1 Let a be the isotopy class of a simple closed curveα in a
surfaceS. If α is not homotopic to a point or a puncture ofS, then the Dehn
twistTa is a nontrivial element ofMod(S).
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Proof. If α is a nonseparating simple closed curve, then by change of coor-
dinates, we can find a simple closed curveβ with i(α, β) = 1. Denote the
isotopy class ofβ by b. As in Figure 3.2, one can draw a representative of
Ta(b) that intersectsβ once transversely. By the bigon criterion,i(Ta(b), b)
is actually equal to 1 (a bigon requires two intersections).ThereforeTa(b)
is not the same asb and soTa is nontrivial inMod(S).

Perhaps a simpler way to phrase the proof in the case thata is nonseparating
is to check thatTa acts nontrivially onH1(S; Z); see Chapter 6 for more on
this homology action. Ifα is a separating essential simple closed curve,
then the action ofTa onH1(S; Z) is trivial, and so we are forced to use the
more subtle machinery of the change of coordinates principle and the bigon
criterion.

By the change of coordinates principle, an essential separating curveα is as
depicted in Figure 3.4 (possibly with different genera and different numbers
of punctures/boundary on the two sides ofα). We can thus choose an isotopy
classb with i(a, b) = 2, and we consider the isotopy classTa(b). We claim
thatTa(b) 6= b, from which it follows thatTa is nontrivial.

We now prove the claim. In the right hand side of Figure 3.4, weshow
representativesβ andβ′ of b andTa(b); the given representatives intersect
four times. We will use the bigon criterion to check that all intersections are
essential and soi(Ta(b), b) = 4, from which it follows thatTa(b) 6= b. To
do this, note thatβ cutsβ′ into four arcs,β′1, β′2, β′3, andβ′4, and similarly
β′ cutsβ into four arcsβ1, β2, β3, andβ4. For eachβi there is a uniqueβ′j
that has the same pair of endpoints onβ ∩β′. This gives four candidates for
bigons. But each of these four “candidate bigons”βi∪β′j is a nonseparating
simple closed curve, and so none is an actual bigon. This proves the claim,
and soTa is nontrivial.

The remaining case is thatα is homotopic to a boundary component ofS and
thatα is neither homotopic to a point or a puncture. It follows thatS is some
surface with boundary other than the disk or the once-punctured disk. LetS
denote thedoubleof S, obtained by taking two copies ofS and identifying
corresponding boundary components. InS, the curveα becomes essential.
By our definition of the mapping class group for a surface withboundary, if
Ta were trivial inMod(S), it would be trivial inMod(S), contradicting the
previous cases. 2
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α

β

β′

Figure 3.4 Checking that a Dehn twist about a separating simple closed curve is nontrivial.

3.2 DEHN TWISTS AND INTERSECTION NUMBERS

We have already seen the effectiveness of analyzing Dehn twists (and other
mapping classes) via their actions on simple closed curves.We now give
two explicit formulas for this action.

Proposition 3.2 Leta andb be arbitrary isotopy classes of essential simple
closed curves in a surface, and letk be an arbitrary integer. We have

i(T ka (b), b) = |k|i(a, b)2.

We remark that, as an important consequence of Proposition 3.2, we have
the following:

Dehn twists have infinite order.

The only observation needed to prove this fact is that given an isotopy class
a of essential simple closed curves, one can find an isotopy class b with
i(a, b) > 0. As in the proof of Proposition 3.1, this is accomplished with
the change of coordinates principle. Thus, Proposition 3.2is a generaliza-
tion of Proposition 3.1. What is more, the proof of Proposition 3.2 is a
generalization of the proof of Proposition 3.1.

Proof. We choose representative simple closed curvesα andβ in minimal
position and form a simple closed curveβ′ in the class ofTa(b) using the
surgical recipe given above. More specifically, we takek i(a, b) parallel
copies ofα lying to one side ofα and one copy ofβ lying parallel toβ, and
then we surger as in Figure 3.3; see the left-hand side of Figure 3.5 for a
picture in the case ofi(a, b) = 3 andk = 1.



DEHN TWISTS 73

ααα

β

β′
γ1 γ2

Figure 3.5 The simple closed curves in the proof of Proposition 3.2.

Simply by counting we see that

|β ∩ β′| = |k|i(a, b)2.

Thus it suffices to show thatβ andβ′ are in minimal position. By the bigon
criterion we only need to check that they do not form any bigons.

We cutβ andβ′ at the points ofβ ∩ β′ and call the resulting closed arcs
{βi} and{β′i}. We see that there are two types of “candidate bigons,” that
is, simple closed curves that can be formed from one arcβi and one arc
β′j : either the orientations of the two intersection points arethe same, as
for the curveγ1 on the right hand side of Figure 3.5, or the orientations of
the intersection points are different, as forγ2 in the same picture. In a true
bigon, the orientations at the two intersection points are different, and so
the simple closed curveγ1 in the first case cannot be a bigon. In the second
case, ifγ2 were a bigon, then since the vertical arcs ofβ′ are parallel to arcs
of α we see thatα andβ form a bigon, contrary to assumption. 2

Proposition 3.4 below is a useful generalization of Proposition 3.2. In order
to prove it, we require the following lemma.

Lemma 3.3 Letα andβ be simple closed curves in a surface. Suppose that
α andβ are in minimal position. Given a third simple closed curveγ, there
exists a simple closed curveγ′ that is homotopic toγ and that is in minimal
position with respect to bothα andβ.

Proof. By perturbingγ by isotopy if necessary, we may assume thatγ is
transverse to bothα andβ. If γ is not in minimal position withα, say,
then by the bigon criterionα andγ form a bigon. We can take this bigon
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to be innermost with respect toα andγ. By the assumption thatα andβ
are in minimal position, any arc of intersection ofβ with this bigon either
connects theα–side of the bigon to theγ–side, or theγ–side to itself. In the
latter case, we have a bigon formed byβ andγ that is contained inside the
original bigon.

Continuing in this way, we can find either a bigon formed byα andγ or a
bigon formed byβ andγ that is innermost among all such bigons. Say the
innermost bigon is formed byα andγ. As above, any intersection ofβ with
this bigon is an arc connecting one side to the other. Thus, wecan pushγ by
homotopy across the bigon, reducing the number of intersection points with
α by two and preserving the number of intersection points withβ. We can
repeat this process until all bigons are eliminated, and thelemma is proved.
2

Another approach to Lemma 3.3 is the following: one can show that there
exists a hyperbolic metric on the surface so that the curvesα andβ are
geodesics [59, Exposé 3, Proposition 10]. Then the curveγ′ can be taken to
be the geodesic in the free homotopy class ofγ.

Proposition 3.4 Let a1, . . . , an be a collection of pairwise disjoint isotopy
classes of simple closed curves in a surfaceS, and letM =

∏n
i=1 T

ei
ai

.
Suppose thatei > 0 for all i or ei < 0 for all i. If b and c are arbitrary
isotopy classes of simple closed curves inS, then

∣∣∣∣∣i(M(b), c) −
n∑

i=1

|ei|i(ai, b)i(ai, c)
∣∣∣∣∣ ≤ i(b, c).

Settingn = 1, e1 = k, andc = b gives Proposition 3.2 as a special case.
There is a version of Proposition 3.4 where theei are allowed to have ar-
bitrary signs, but the proof is not as straightforward; we refer the reader to
[102, Lemma 4.2].

Proof. We start by forming a representativeβ′ of M(b) as in the proof of
Proposition 3.2. As in that proof, it follows from the bigon criterion thatβ
andβ′ are in minimal position. This uses the fact that all of the twists are
in the same direction, that is, theei all have the same sign. By Lemma 3.3,
there is a representativeγ of c that is in minimal position with bothβ andβ′.
By perturbingγ if necessary, we can assume that it does not pass through
β ∩ β′.
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There is a continuous map of the disjoint union of
∑ |ei|i(ai, b) copies of

S1 into S with imageβ ∪ β′, and where the images of|ei| copies ofS1 lie
in the classai. Each copy ofai intersectsγ in at leasti(ai, c) points, by the
definition of geometric intersection number. Sinceγ is in minimal position
with β andβ′, we obtain:

∑
|ei|i(ai, b)i(ai, c) ≤ |(β ∪ β′) ∩ γ| = i(M(b), c) + i(b, c)

It remains to prove that

i(M(b), c) ≤
∑
|ei|i(ai, b)i(ai, c) + i(b, c).

For this it suffices to find representatives ofM(b) andc whose intersection
consists of

∑ |ei|i(ai, b)i(ai, c) + i(b, c) points. The most natural repre-
sentatives satisfy this property. Precisely, forM(b) we can choose a curve
that lies in the union of the curveβ and small regular neighborhoods of
disjoint representativesαi of theai. Then, forc, we take a curve that cuts
across eachαi-annulus ini(ai, c) arcs, and intersectsβ in i(b, c) points not
contained in theαi–annuli. 2

Pairs of filling curves. We now give one useful consequence of Proposi-
tion 3.4. Say that a pair of isotopy classes{a, b} of simple closed curves in
a surfaceS fill if any pair of minimal position representatives fill (that is, the
complement in of the representatives in the surface is a collection of disks
and once-punctured disks). This is the same as saying that for every isotopy
classc of essential simple closed curves in the surface eitheri(a, c) > 0 or
i(b, c) > 0.

Proposition 3.5 Let g, n ≥ 0 and assume thatχ(Sg,n) < 0. There exists a
pair of simple closed curves inSg,n that fill Sg,n.

Proof. Choose a maximal collection{α1, . . . , αk} of pairwise disjoint, non-
homotopic, essential simple closed curves inSg,n. When we cutSg,n along
theαi we obtain a collection of surfaces. Each of these surfaces isa sphere
with b boundary components andp punctures withb + p = 3 (cf. Sec-
tion 8.3). We claim that there is a simple closed curveβ in Sg,n so that
i(β, αi) > 0 for eachi. We can constructβ as follows. First, we cutSg,n
along theαi. On each component of the cut surface, we then connect by
an arc each pair of distinct boundary components coming fromtheαi. We
can take these arcs to be disjoint. InSg,n these arcs can be pasted together
in an arbitrary fashion in order to obtain a collectionβ1, . . . , βk of pairwise
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disjoint simple closed curves inSg,n. By the bigon criterion eachβj is in
minimal position with respect to eachαi and eachαi intersects either one
or two of theβj. Suppose thatβj andβj′ intersectαi and thatβj andβj′
are distinct. Then we can perform a “half-twist” aboutαi so thatβj andβj′
become a single curve. Since this process does not create anybigons, the
resulting collection{βj} is still in minimal position with eachαi. Continu-
ing in this way, we obtain a single simple closed curveβ that inersects each
αi and is in minimal position with respect to eachαi, as desired.

LetM = Tα1
· · ·Tαk

. We claim thatβ andM(β) fill Sg,n. Indeed, letγ be
an arbitrary isotopy class of simple closed curves inSg,n. We wish to show
that eitheri(β, γ) > 0 or i(M(β), γ) > 0. By Proposition 3.4 we have

∣∣∣∣∣i(M(β), γ) −
k∑

i=1

i(αi, β)i(αi, γ)

∣∣∣∣∣ ≤ i(β, γ).

If i(β, γ) andi(M(β), γ) are both equal to zero, then this immediately im-
plies thati(αi, γ) = 0 for eachi. This means thatγ is isotopic to someαi.
But theni(γ, β) > 0 by the construction ofβ, and so we have a contradic-
tion. 2

3.3 BASIC FACTS ABOUT DEHN TWISTS

In this section we prove some fundamental facts about Dehn twists that will
be used repeatedly throughout this book. Throughout this subsectiona and
b denote arbitrary (unoriented) isotopy classes of simple closed curves.

Fact 3.6 Ta = Tb ⇐⇒ a = b.

We have already addressed the reverse implication of Fact 3.6, which says
that Dehn twists are well-defined mapping classes. For the forward impli-
cation, we start by noting that the statement is not as obvious as it seems.
Indeed, suppose we know thatTa = Tb. Then we know that, given any
two representatives ofTa andTb with annular supports (neighborhoods of
simple closed curves in the classesa andb), there is an isotopy between the
representative homeomorphisms. One would then like to say that there is
an induced isotopy from one annular support to the other, andhence an iso-
topy between curves. But partway through the isotopy of homeomorphisms,
the support might become something other than an annulus—perhaps the
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whole surface, even—and we have lost any information we had about sim-
ple closed curves.

So assume now thata 6= b. We will show thatTa 6= Tb. We start by
finding an isotopy classc of simple closed curves so thati(a, c) = 0 and
i(b, c) 6= 0. There are two cases. First, ifi(a, b) 6= 0, then we can take
c = a. If i(a, b) = 0, then one can use change of coordinates to easily
find c (there are several cases, depending on the separation properties of the
curves). Given any such choice ofc, we apply Proposition 3.2 and find:

i(Ta(c), c) = i(a, c)2 = 0 6= i(b, c)2 = i(Tb(c), c).

It follows thatTa(c) 6= Tb(c) and soTa 6= Tb.

We have the following formula for the conjugate of a Dehn twist.

Fact 3.7 For any f ∈ Mod(S) and any isotopy classa of simple closed
curves inS we have:

Tf(a) = fTaf
−1.

Fact 3.7 can be checked directly, as follows. First, recall that we apply
elements of the mapping class group from right to left. Letφ denote a rep-
resentative off , let α denote a representative ofa, and letψα denote a
representative ofTa whose support is an annulus. Note thatφ−1 takes a reg-
ular neighborhood ofφ(α) to a regular neighborhood ofα (preserving the
orientation), thenψα twists the neighborhood ofα, andφ takes this twisted
neighborhood ofα back to a neighborhood ofφ(α) (again preserving the
orientation). So the net result is a Dehn twist aboutφ(α).

From the previous facts we obtain the following.

Fact 3.8 For any f ∈ Mod(S) and any isotopy classa of simple closed
curves inS, we have:

f commutes withTa ⇐⇒ f(a) = a.

Indeed, by Facts 3.7 and 3.6 we have:

fTa = Taf⇐⇒ fTaf
−1 = Ta

⇐⇒Tf(a) = Ta

⇐⇒ f(a) = a.
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By the classification of simple closed curves inS (see§1.3), given any two
nonseparating simple closed curvesa andb in S, there existsh ∈ Mod(S)
with h(a) = b. Hence Fact 3.7 also gives the following.

If a andb are nonseparating simple closed curves inS thenTa
andTb are conjugate inMod(S).

The last statement can be generalized, using change of coordinates, to twists
about any two simple closed curves of the same topological type.

The next fact follows from Proposition 3.2 and Fact 3.8.

Fact 3.9 For any two isotopy classesa and b of simple closed curves in a
surfaceS, we have:

i(a, b) = 0 ⇐⇒ Ta(b) = b ⇐⇒ TaTb = TbTa.

The only nontrivial part of the proof of Fact 3.9 is that the second statement
implies the first. But ifTa(b) = b, then i(Ta(b), b) = i(b, b) = 0. By
Proposition 3.2,i(Ta(b), b) = i(a, b)2, and it follows thati(a, b) = 0.

Powers of Dehn twists.There are analogues of each of the above facts for
powers of Dehn twists. Forf ∈Mod(S), we have

fT jaf
−1 = T jf(a),

and sof commutes withT ja if and only if f(a) = a. Also, for nontrivial
Dehn twistsTa, Tb and nonzero integersj, k, we have:

T ja = T kb ⇐⇒ a = b andj = k

T jaT
k
b = T kb T

j
a⇐⇒ i(a, b) = 0

In each case the proof is essentially the same as the cases when j = k = 1.

In the remainder of this section we give three applications of the Alexan-
der method and our basic facts about Dehn twists: we compute the center
of the mapping class group, we derive some geometrically-induced homo-
morphisms between mapping class groups, and we give computations of
mapping class groups of certain surfaces with boundary.
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3.4 THE CENTER OF THE MAPPING CLASS GROUP

Recall that thecenterZ(G) of a groupG is the subgroup ofG consisting
of those elements that commute with every element ofG. We will apply
Fact 3.8 and the Alexander method to compute the center ofMod(S).

THEOREM 3.10 For g ≥ 3 the groupZ(Mod(Sg)) is trivial.

...

α2 α4 α6 α2gα3 α5 α7

α1 α0

Figure 3.6 The simple closed curves used to determine the center ofMod(S).

Proof. By Fact 3.8, any central elementf of Mod(Sg) must fix every iso-
topy class of simple closed curves inSg. Consider the simple closed curves
α0, . . . , α2g shown in Figure 3.6. By statement (1) of the Alexander method,
f has a representativeφ that fixes the graph∪αi, and thus,φ induces a map
φ∗ of this graph.
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Figure 3.7 The collection of simple closed curves in Figure 3.6 form a graph inS4 that is
abstractly isomorphic to the graphΓ shown here for the caseg = 4.

The graph∪αi is isomorphic to the abstract graphΓ shown in Figure 3.7
for the caseg = 4. For g ≥ 3, the only automorphisms ofΓ come from
flipping the three edges that form loops and swapping pairs ofedges that
form a loop. In particular, any automorphism ofΓ must fix the three edges
coming fromα4. Thus, we see thatφ preserves the orientation ofα4, and so
sinceφ is orientation preserving, it must also preserve the two sides ofα4. It
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follows thatφ∗ does not interchange the two edges ofΓ coming fromα0, the
two coming fromα3, or the two coming fromα5. Inductively, we see that
φ∗ fixes each edge ofΓ with orientation. By statement (2) of the Alexander
method, plus the fact that the{αi} fill Sg, we have thatφ is isotopic to the
identity; that is,f is the identity. 2

The proof of Theorem 3.10 actually shows that the center of any finite index
subgroup ofMod(Sg) is trivial wheng ≥ 3, since a finite index subgroup
contains some power of each Dehn twist and since Fact 3.8 applies to powers
of Dehn twists.

Figure 3.8 Rotations byπ about the indicated axes give hyperelliptic involutions ofthe
punctured surfacesS0,2, S0,4, S1,1, andS1,2.

By choosing appropriate configurations of simple closed curves on other
surfaces, the method of proof of Theorem 3.10 shows that the only candi-
dates for nontrivial central elements of (finite index subgroups of)Mod(Sg,n)
are the hyperelliptic involutions ofT 2 andS2, as well as the hyperelliptic
involutions shown in Figure 3.8. So the order ofZ(Mod(Sg,n)) is at most
2 whenSg,n is one of the punctured surfacesS0,2, S1,0, S1,1, S1,2, or S2,0,
the order ofZ(Mod(S0,4)) is at most 4, andZ(Mod(Sg,n)) is trivial in all
other cases. In the case ofMod(S0,4) the center is trivial since the the sub-
group generated by the hyperelliptic involutions acts faithfully on the four
punctures, and the symmetric group on the four punctures is centerless.

On the other hand, to show that a mapping classz really is an element of
Z(Mod(S)), it suffices to choose a generating set of Dehn twists and half-
twists forMod(S) and show thatz fixes each of the corresponding isotopy
classes of simple closed curves and simple arcs (see Corollary 4.15). In this
way, we find thatZ(Mod(Sg,n)) ≈ Z/2Z whenSg,n is S0,2, S1,0, S1,1,
S1,2, orS2,0. By the same argument, for a surface with boundary, the Dehn
twist about any boundary component is central.

We summarize the results for punctured surfaces in the following table.
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Surface (with punctures) Z(Mod(S))

S0,2, S1,0, S1,1, S1,2, S2,0 Z2

all otherSg,n 1

As stated in the proof of Theorem 3.10, these nontrivial central elements
have the property that they fix the isotopy class of every simple closed curve.

3.5 RELATIONS BETWEEN TWO DEHN TWISTS

The goal of this section is to answer the question: what algebraic relations
can occur between two Dehn twists? In fact we answer the more general
question where powers of Dehn twists are allowed. We have already seen
that Dehn twists about disjoint curves commute in the mapping class group.
The next most basic relation between twists is the braid relation. Except in a
few cases, we will see that there are no other relations between Dehn twists.

3.5.1 THE BRAID RELATION

The following proposition gives a basic relation between Dehn twists in
Mod(S), called thebraid relation.

Proposition 3.11 (Braid relation) If a and b are isotopy classes of simple
closed curves withi(a, b) = 1 then

TaTbTa = TbTaTb.

Proof. The relation

TaTbTa = TbTaTb

is equivalent to the relation

(TaTb)Ta(TaTb)
−1 = Tb.

By Fact 3.7, this is equivalent to the relation

TTaTb(a) = Tb.
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TaTb(α)

Tb(α)
Tb

Ta

α

isotopy

β

β

Figure 3.9 The proof of Proposition 3.12.

Applying Fact 3.6, this is equivalent to the equality

TaTb(a) = b.

By the change of coordinates principle, it suffices to check the last statement
for any two isotopy classesa andb with i(a, b) = 1. The computation is
shown in Figure 3.9, whereα is some representative ofa andβ is some
representative ofb. 2

If a is the(1, 0)–curve andb is the(0, 1)–curve on the torusT 2, then via the
isomorphism of Theorem 2.5 the braid relation corresponds to the familiar
relation inSL(2,Z):

(
1 −1
0 1

)(
1 0
1 1

)(
1 −1
0 1

)
=

(
1 0
1 1

)(
1 −1
0 1

)(
1 0
1 1

)

The next proposition records our rephrasing of the braid relation for use in
our proof of Theorem 4.1 below.

Proposition 3.12 If a andb are isotopy classes of simple closed curves that
satisfyi(a, b) = 1, thenTaTb(a) = b.
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The braid relation gets its name from the analogous relationin the braid
group (see Section 9.4).

One can ask for a converse to the braid relation: if two Dehn twists satisfy
the braid relation algebraically, then do the corresponding curves necessarily
have intersection number one? McCarthy gave the following proof that the
answer is yes [140]. Theorem 3.14 below is a much more generalfact; we
consider Proposition 3.13 as a warmup.

Proposition 3.13 If a and b are distinct isotopy classes of simple closed
curves and the Dehn twistsTa and Tb satisfyTaTbTa = TbTaTb, then
i(a, b) = 1.

Proof. As in the proof of Proposition 3.11, the relationTaTbTa = TbTaTb
is equivalent to the statement thatTaTb(a) = b, which implies

i(a, TaTb(a)) = i(a, b).

Applying T−1
a to both curves on the left hand side of the equation, we see

that

i(a, Tb(a)) = i(a, b).

Now, by Proposition 3.2, we have that

i(a, b)2 = i(a, b).

And soi(a, b) is either equal to 0 or 1. Ifi(a, b) were 0, an application of
Fact 3.9 reduces the relation toTa = Tb, which, by Fact 3.6, contradicts the
assumptiona 6= b. Thus,i(a, b) = 1. 2

We note that the same proof really shows the stronger result that if a 6= b
andT jaT kb T

j
a = T kb T

j
aT kb , theni(a, b) = 1 andj = k = ±1.

3.5.2 GROUPS GENERATED BY TWO DEHN TWISTS

Now that we know the braid relation it is natural to try to find other rela-
tions between two Dehn twists. In this subsection we will give a complete
classification of such relations. We begin with the following.
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THEOREM 3.14 Leta andb be two isotopy classes of simple closed curves
in a surfaceS. If i(a, b) ≥ 2, then the group generated byTa and Tb is
isomorphic to the free groupF2 of rank2.

We can also say what happens in the other cases. Ifa = b, then〈Ta, Tb〉 ≈ Z
sinceT ja = T kb if and only if a = b andj = k. If a 6= b andi(a, b) = 0,
then〈Ta, Tb〉 is isomorphic toZ2 by Fact 3.9 plus the fact thatT ja = T kb if
and only ifa = b andj = k. Wheni(a, b) = 1 we have that

〈Ta, Tb〉 ≈ Mod(S1
1) ≈ 〈x, y |xyx = yxy〉,

whereS1
1 is a torus with an open disk removed (see above).

We remark that the question of which groups can be generated by three
Dehn twists is completely open. See Section 5.1 for one relation between
three Dehn twists.

Below we give the proof of Theorem 3.14 published by Ishida and Hamidi-
Tehrani [99, 74]. The theorem, though, was apparently knownto Ivanov
(and perhaps others) in the early 1980’s. We first introduce the so-called
“ping pong lemma,” which is a basic and fundamental tool fromgeometric
group theory. It is a method to prove that a group is free by understanding
how it acts on a set. Poincaré used this method to prove that if two hyper-
bolic translations have different axes, then sufficiently high powers of these
elements generate a free group of rank2.

Lemma 3.15 (Ping pong lemma)LetG be a group acting on a setX. Let
g1, . . . , gn be elements ofG. Suppose that there are nonempty, disjoint sub-
setsX1, . . . ,Xn ofX with the property that, for eachi and eachj 6= i, we
havegki (Xj) ⊂ Xi for every nonzero integerk. Then the group generated
by thegi is a free group of rankn.

Proof. We need to show that any nontrivial freely reduced word in thegi
represents a nontrivial element ofG. First suppose thatw is a freely reduced
word that starts and ends with a nontrivial power ofg1. Then for anyx ∈
X2, we havew(x) ∈ X1, and sow(x) 6= x sinceX1 ∩ X2 = ∅. Thusw
represents a nontrivial element ofg. Since any other freely reduced word
in the gi is conjugate to a word that starts and ends withg1, every freely
reduced word in thegi represents an element ofG that is conjugate to a
nontrivial element, and hence is itself nontrivial. 2
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Proof of Theorem 3.14.Suppose thati(a, b) ≥ 2. LetG be the group gen-
erated byg1 = Ta andg2 = Tb, and letX be the set of isotopy classes of
simple closed curves inS. The groupG acts onX. With the ping pong
lemma in mind, we define setsXa andXb as follows:

Xa = {c ∈ X : i(c, b) > i(c, a)}
Xb = {c ∈ X : i(c, a) > i(c, b)}

These sets are obviously disjoint, and they are nonempty sincea ∈ Xa and
b ∈ Xb.

By the ping pong lemma, the proof is reduced to checking thatT ka (Xb) ⊂
Xa andT kb (Xa) ⊂ Xb for k 6= 0. By symmetry, we only need to check the
former inclusion.

SettingM = T ka in Proposition 3.4 yields
∣∣∣i(T ka (c), b) − |k|i(a, b)i(a, c)

∣∣∣ ≤ i(b, c),

and so

−i(b, c) ≤ i(T ka (c), b) − |k|i(a, b)i(a, c) ≤ i(b, c).

If c ∈ Xb, then i(a, c) > i(b, c). Sincek 6= 0, the left-hand inequality
implies

i(T ka (c), b)≥ |k|i(a, b)i(a, c) − i(b, c)
≥ 2|k|i(a, c) − i(b, c)
> 2|k|i(a, c) − i(a, c)
= (2|k| − 1)i(a, c)

≥ i(a, c)
= i(T ka (a), T ka (c))

= i(a, T ka (c)).

Thusi(T ka (c), b) > i(T ka (c), a), and soT ka (c) ∈ Xa, as desired. 2

A free group in SL(2, Z). The proof of Theorem 3.14 given above is
inspired by a proof that the matrices

(
1 n
0 1

)
and

(
1 0
n 1

)
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generate a free subgroup ofSL(2,Z) for n ≥ 2 (this fact is originally due
to Magnus [133]). In this case, the sets used for the ping ponglemma are
{(x, y) ∈ Z2 : |x| > |y|} and{(x, y) ∈ Z2 : |y| > |x|}.

The classification of groups generated by two Dehn twists.With a little
more care, the method of proof of Theorem 3.14 can be applied to give the
stronger statement that〈T ja , T kb 〉 ≈ F2 except ifi(a, b) = 0 or if i(a, b) = 1
and the set{j, k} is equal to{1}, {1, 2}, or {1, 3}. Whenj = k = 1 we
already know that we have the braid relation. And in the otherexceptional
cases, there exist nontrivial relations as well. For instance, if i(a, b) = 1,
thenT 2

a andTb satisfy the relation

T 2
aTbT

2
aTb = TbT

2
aTbT

2
a

andT 3
a andTb satisfy

T 3
aTbT

3
aTbT

3
aTb = TbT

3
aTbT

3
aTbT

3
a .

What is more, it turns out that these are the defining relations for the groups
〈T 2
a , Tb〉 and 〈T 3

a , Tb〉. The group〈T 2
a , Tb〉 corresponds to a well-known

index 3 subgroup ofB3 (the subgroup “fixing” the first strand). The group
〈T 3
a , Tb〉 does not seem to be a well-known subgroup ofB3. Luis Paris has

explained to us that this is an index 8 subgroup ofB3 and he has used the
Reidemeister–Schreier algorithm to give an elementary proof that the stated
relation is the unique defining relation; see [169].

Combining the results from this section, we can completely list all possi-
bilities for groups generated by powers of two Dehn twists. In the table we
assume thata andb are essential and thatj ≥ k > 0, and that the underlying
surface is notT 2 or S1,1.

Group generated byT ja , T kb
i(a, b) = 0, a = b 〈T ja , T kb 〉 ≈ 〈x, y |x = y〉 ≈ Z
i(a, b) = 0, a 6= b 〈T ja , T kb 〉 ≈ 〈x, y |xy = yx〉 ≈ Z2

i(a, b) = 1 〈Ta, Tb〉 ≈ 〈x, y |xyx = yxy〉
〈T 2
a , Tb〉 ≈ 〈x, y |xyxy = yxyx〉
〈T 3
a , Tb〉 ≈ 〈x, y |xyxyxy = yxyxyx〉
〈T ja , T kb 〉 ≈ 〈x, y | 〉 ≈ F2 otherwise

i(a, b) ≥ 2 〈T ja , T kb 〉 ≈ 〈x, y | 〉 ≈ F2

If the surface isT 2 or S1,1 and i(a, b) = 1 we have the added relations
(TaTb)

6 = 1, (T 2
aTb)

4 = 1, and(T 3
aTb)

3 = 1.
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3.6 CUTTING, CAPPING, AND INCLUDING

In this section we apply our knowledge about Dehn twists to address a ba-
sic general question about mapping class groups: When does ageometric
operation on a surface induce an algebraic operation on the corresponding
mapping class group? We investigate three such operations:including a
surface into another surface, “capping” a boundary component of a surface
with a punctured disk, and deleting a simple closed curve from a surface.
We will see that in each case there indeed an induced homomorphism on
the level of mapping class groups.

The results in this section are somewhat technical, but veryuseful. The
reader might consider skipping the proofs on a first reading.

3.6.1 THE INCLUSION HOMOMORPHISM

We start with a simple lemma.

Lemma 3.16 Letα1, . . . , αn be a collection of homotopically distinct sim-
ple closed curves in a surfaceS, each not homotopic to a point inS. Letβ
andβ′ be simple closed curves inS that are both disjoint from∪αi and are
homotopically distinct from eachαi. If β andβ′ are isotopic inS, then they
are isotopic inS − ∪αi.

Proof. It suffices to find an isotopy fromβ to β′ in S that avoids∪αi. First,
we may modifyβ so that it is transverse toβ′ and is still disjoint from∪αi.
If β ∩ β′ = ∅, thenβ andβ′ form the boundary of an annulusA in S. Since
β (andβ′) is not homotopic to anyαi, it cannot be that anyαi are contained
in A. The annulusA gives the desired isotopy fromβ to β′.

If β ∩ β′ 6= ∅, then by the bigon criterion they form a bigon. Since theαi
are not homotopic to a point and(∪αi) ∩ (β ∪ β′) = ∅, the intersection of
∪αi with the bigon is empty. We can thus pushβ across the bigon, keeping
β disjoint from∪αi throughout the isotopy. By induction we reduce to the
case whereβ andβ′ are disjoint. This completes the proof. 2

L EMMA 3.17 Let {a1, . . . , am} be a collection of distinct nontrivial iso-
topy classes of simple closed curves in a surfaceS, and assume thati(ai, aj) =
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0 for al i, j. Let {b1, . . . , bn} be another such collection. Letpi, qi ∈
Z− {0}. If

T p1a1 T
p2
a2 · · ·T pm

am
= T q1b1 T

q2
b2
· · ·T qnbn

in Mod(S) thenm = n and the sets{T pi
ai } and{T qibi } are equal. In partic-

ular,

〈Ta1 , Ta2 , . . . , Tam〉 ≈ Zm.

A mapping class
∏
T pi
ai as in Lemma 3.17 is called amultitwist. Lemma 3.17

is a generalization of Fact 3.6, and in fact the proof is also astraightforward
generalization. Note that in the statement theai andbi are allowed to be
peripheral.

WhenS is a closed subsurface of a surfaceS′, there is a natural homomor-
phismη : Mod(S)→ Mod(S′). Forf ∈ Mod(S), we represent it by some
φ ∈ Homeo+(S, ∂S). Then, if φ̂ is the element ofHomeo+(S′, ∂S′) that
agrees withφ on S and is the identity outside ofS, we defineη(f) to be
the class of̂φ. The mapη is well-defined because any homotopy between
two elements ofφ ∈ Homeo+(S, ∂S) gives a homotopy between the cor-
responding elements ofHomeo+(S′, ∂S′). The next theorem describes the
kernel ofη.

THEOREM 3.18 (The inclusion homomorphism)Let S be a closed sub-
surface of a surfaceS′. Assume thatS is not homeomorphic to a closed an-
nulus and that no component ofS′ − S is an open disk. Letη : Mod(S)→
Mod(S′) be the induced map. Letα1, . . . , αm denote the boundary compo-
nents ofS that bound once-punctured disks inS′−S and let{β1, γ1}, . . . , {βn, γn}
denote the pairs of boundary components ofS that bound annuli inS′ − S.
Then the kernel ofη is the free abelian group

ker(η) = 〈Tα1
, . . . , Tαm , Tβ1

T−1
γ1 , . . . , TβnT

−1
γn
〉.

In particular if no connected component ofS′ − S is an open annulus, an
open disk, or an open once-marked disk thenη is injective.

The annulus is a special case for Theorem 3.18 for the simple fact that it
has two boundary components that are isotopic. IfS is an annulus, thenη
is injective unlessS′ is obtained fromS by “capping” one or both boundary
components with disks or once-punctured disks.
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Proof. Let f ∈ ker(η), and letφ ∈ Homeo+(S, ∂S) be a representa-
tive. As above we may extendφ by the identity in order to obtain̂φ ∈
Homeo+(S′, ∂S′). By definition φ̂ representsη(f). Thereforeφ̂ lies in the
connected component of the identity inHomeo+(S′, ∂S′).

Let δ be an arbitrary oriented simple closed curve inS. Sinceφ̂ is isotopic
to the identity, we have that̂φ(δ) is isotopic toδ in S′. Sinceφ̂ agrees with
φ on S, we have thatφ(δ) is isotopic toδ in S′. By Lemma 3.16 and the
assumption onS′ − S, we have thatφ(δ) is isotopic toδ in S.

We can choose a collection of simple closed curvesδ1, . . . , δk in S that
satisfy the three properties in the statement of the Alexander method (pair-
wise minimal position, pairwise nonisotopic, no triple intersections) and so
that the surface obtained fromS by cutting along∪δi is a collection of disks,
once-punctured disks and closed annular neighborhoodsNi of the boundary
components. Moreover, we can choose{δi} so that any homeomorphism
that fixes∪δi ∪ ∂S necessarily preserves the complementary regions.

By the first statement of the Alexander method,φ is isotopic (inS) to a
homeomorphism ofS that fixes∪δi ∪ ∂S. SinceMod(D2) = 1 and
Mod(D2 − point) = 1 (Lemma 2.1), it follows thatf has a representa-
tive that is supported in theNi. SinceMod(A) ≈ Z (Proposition 2.4),
it follows that f is a product of Dehn twists about boundary components.
By Lemma 3.17,f must become the trivial multitwist inS′. The theorem
follows. 2

The proof of Theorem 3.18 extends to the case whereS is disconnected and
Mod(S) is taken to be the direct product of the mapping class groups of its
connected components.

3.6.2 THE CAPPING HOMOMORPHISM

One particularly useful special case of Theorem 3.18 is the case whereS′−S
is a once-punctured disk. We say thatS′ is the surface obtained fromS
by cappingone boundary component. In this case we have the following
statement.

Proposition 3.19 (The capping homomorphism)LetS′ be the surface ob-
tained from a surfaceS by capping the boundary componentβ with a once-
marked disk; call the marked point in this diskp. Denote byMod(S, {p1, . . . , pk})
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the subgroup ofMod(S) consisting of elements that fix the puncturesp1, . . . , pk
wherek ≥ 0. LetMod(S′, {p0, . . . , pk}) denote the subgroup ofMod(S′)
consisting of elements that fix the marked pointsp0, . . . , pk, and letCap :
Mod(S, {p1, . . . , pk}) → Mod⋆(S′, {p0, . . . , pk}) be the induced homo-
morphism. Then the following sequence is exact:

1→ 〈Tβ〉 → Mod(S, {p1, . . . , pk})
Cap→ Mod(S′, {p0, . . . , pk})→ 1.

One might also wonder about the case where a boundary component of S′

is capped by a (unmarked) disk. The kernel in that case is isomorphic to the
fundamental group of the unit tangent bundle ofS′; see Section 4.2.

3.6.3 THE CUTTING HOMOMORPHISM

The next geometric operation we consider is the following. Let α be an
essential simple closed curve in a surfaceS. We can deleteα from S in
order to obtain a surfaceS − α that has two more punctures thanS does.
For example, ifS has no boundary, thenS − α can be identified with the
interior of the surface obtained by cuttingS alongα.

Let a denote the isotopy class ofα and letMod(S, a) denote the stabilizer
in Mod(S) of a. We would like to show that there is a well-defined homo-
morphismMod(S, a)→ Mod(S−α). There is an obvious map: givenf ∈
Mod(S, a), choose a representativeφ that fixesα. The homeomorphism
φ restricts to a homeomorphism ofS − α and hence gives an element of
Mod(S−α). In order to show that this mapζ : Mod(S, a)→ Mod(S−α)
is well-defined, we need to show that if two homeomorphisms ofthe pair
(S,α) are homotopic as homeomorphisms ofS, then they are homotopic
through homeomorphisms that fixα. We now show that this is indeed the
case.

Proposition 3.20 (The cutting homomorphism)LetS be a closed surface
with finitely many marked points. Letα1, . . . , αn be a collection of pairwise
disjoint, homotopically distinct essential simple closedcurves inS. There
is a well-defined homomorphism

ζ : Mod(S, {[α1], . . . , [αn]})→ Mod(S −∪αi).

with kernel〈Tα1
, . . . , Tαn〉.
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Proof. It is clear that the mapζ defined above is a homomorphism, as long
as it is well-defined. Thus, we only need to show thatζ is well-defined.

LetN be an open regular neighborhood of∪αi. The inclusionS −N → S
induces a homomorphismη1 : Mod(S − N) → Mod(S). The mapη1

surjects ontoMod(S, {[α1], . . . , [αn]}) and by Theorem 3.18 its kernelK1

is generated by elementsTα+

i
T−1
α−

i

, whereα+
i andα−i are the two boundary

components ofN that are isotopic toαi in S.

LetS −N denote the surface obtained fromS−N by capping each bound-
ary component with a punctured disk. The surfaceS −N is naturally
homeomorphic toS − ∪αi and thus there is a canonical isomorphismτ :
Mod(S −N)→ Mod(S − ∪αi).

By Theorem 3.18, the kernel of the homomorphismη2 : Mod(S − N) →
Mod(S −N) is the groupK2 generated by theTα+

i
andTα−

i
.

We consider the following diagram.

K1

1 K2 Mod(S −N)
η2

η1

Mod(S −N)

τ≈

Mod(S, {[α1], . . . , [αn]})

	

ζ
Mod(S − ∪αi)

1

SinceK1 < K2, it follows that τ ◦ η2 ◦ η−1
1 is well-defined. But this

composition is nothing other than the mapζ defined above, and so we are
done. 2

3.6.4 COMPUTATIONS OF MAPPING CLASS GROUPS VIA CAPPING

We can use Proposition 3.19 to determine the mapping class groups of some
surfaces with boundary.

Let P denote apair of pants, that is, a compact surface of genus 0 with 3
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boundary components (and no marked points). Recall from Proposition 2.3
thatPMod(S0,3) = 1. Starting from this fact and applying Proposition 3.19
three times, we obtain the isomorphism

Mod(P ) ≈ Z3.

Let S1
1 denote a torus minus an open disk. We will show that

Mod(S1
1) ≈ ˜SL(2,Z)

where ˜SL(2,Z) denotes the universal central extension ofSL(2,Z). We will
need the following group presentations (see [189,§1.5]):

SL(2,Z)≈〈a, b | aba = bab, (ab)6 = 1〉
˜SL(2,Z)≈〈a, b | aba = bab〉

From these presentations one sees that there is a surjectivehomomorphism
˜SL(2,Z) → SL(2,Z) sendinga to a andb to b with kernel〈(ab)6〉 ≈ Z.

There are also homomorphisms̃SL(2,Z) → Mod(S1
1) and SL(2,Z) →

Mod(S1,1), where in each case the generatorsa andbmap to the Dehn twists
about the latitude and longitude curves. These maps fit into the following
diagram of exact sequences, where each square commutes:

1 Z

≈

˜SL(2,Z) SL(2,Z)

≈

1

1 Z Mod(S1
1)

Cap
Mod(S1,1) 1

The desired isomorphism follows from the five lemma.

We mention that the group˜SL(2,Z) is also isomorphic to the braid group
on 3 strands (see Chapter 9), the fundamental group of the complement of
the trefoil knot inS3, as well as the local fundamental group of the ordinary
cusp singularity, that is, the fundamental group of the complement inC2 of
the affine curvex2 = y3.



Chapter Four

Generating the mapping class group

Is there a way to generate all (homotopy classes of) homeomorphisms of
a surface by compositions of simple-to-understand homeomorphisms? We
have already seen thatMod(T 2) is generated by the Dehn twists about the
latitude and longitude curves. Our next main goal will be to prove the fol-
lowing result.

THEOREM 4.1 (Dehn–Lickorish theorem) For g ≥ 0 the groupMod(Sg)
is generated by finitely many Dehn twists about nonseparating simple closed
curves.

Theorem 4.1 can be likened to the theorem that for eachn ≥ 2 the group
SL(n,Z) can be generated by finitely many elementary matrices. As with
the linear case, Theorem 4.1 is fundamental to our understanding ofMod(Sg).

In the 1920’s Dehn proved thatMod(Sg) is generated by2g(g − 1) Dehn
twists [49]. Mumford, building on Dehn’s work, showed in 1967 that only
Dehn twists about nonseparating curves were needed [159]. In 1964 Lick-
orish, apparently unaware of Dehn’s work, gave an independent proof that
Mod(Sg) is generated by the Dehn twists about the3g − 1 nonseparating
curves shown in Figure 4.5 below [128].

In 1979 Humphries [96] proved the surprising theorem that the twists about
the2g + 1 curves in Figure 4.1 suffice to generateMod(Sg). These genera-
tors are often called theHumphries generators. Humphries further showed
that any set of Dehn twist generators forMod(Sg) must have at least2g+1
elements; see Section 6.3 for a proof of this fact.

Punctures and pure mapping class groups. Theorem 4.1 is simply not
true for surfaces with multiple punctures, since no composition of Dehn
twists can permute the punctures. LetPMod(Sg,n) denote thepure map-
ping class groupof Sg,n, which is defined to be the subgroup ofMod(Sg,n)
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...

a1 a2 a3 ag
c1 c2 c3 cg−1

m1 m2

Figure 4.1 Dehn twists about these2g + 1 simple closed curves generateMod(S).

consisting of elements that fix each puncture individually.The action of
Mod(Sg,n) on the punctures ofSg,n gives us a short exact sequence

1→ PMod(Sg,n)→ Mod(Sg,n)→ Σn → 1

whereΣn is the permutation group on then punctures. We will show for
any surfaceSg,n thatPMod(Sg,n) is finitely generated by Dehn twists (see
Theorems 4.9 and 4.11). We will give a finite generating set for the full
groupMod(Sg,n) in Section 4.4.4.

In the casen = 1 we havePMod(Sg,1) = Mod(Sg,1). If we place a marked
point at the rightmost point ofSg in Figure 4.1, we obtain a collection of
curves inSg,1. A slight modification of our proof of Theorem 4.1 will show
that the corresponding Dehn twists form a generating set forMod(Sg,1).

Outline of the proof of Theorem 4.1. In proving Theorem 4.1 we will ac-
tually need to prove a more general statement. Precisely, wewill prove that
PMod(Sg,n) is generated by finitely many Dehn twists about nonseparating
simple closed curves for anyg ≥ 1 andn ≥ 0 (Theorem 4.11 below).

We begin by giving a brief outline of the weaker statement that PMod(Sg,n)
is generated by the (infinite) collection of all Dehn twists about nonseparat-
ing simple closed curves. We do this in order to motivate two important
tools: the complex of curves and the Birman exact sequence. Each of these
tools is of independent interest, and is introduced before the proof of Theo-
rem 4.1.

The argument is a double induction ong andn, with base caseS1,1.

Step 1: Induction on genus.Supposeg ≥ 2, and letf ∈ Mod(Sg,n).
Let a be an arbitrary isotopy class of nonseparating simple closed curves
in Sg,n. We want to show that there is a producth of Dehn twists about
nonseparating curves inSg,n that takesf(a) to a. For if this is the case then
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we can regardhf as an element of the mapping class group ofSg−1,n+2, the
surface obtained by cuttingSg,n along a representative ofa. Then we can
apply induction on genus.

If we are fortunate enough thati(a, f(a)) = 1, then Lemma 3.12 gives that
TaTf(a)Ta takesf(a) to a, and we are done. In the general case, we just
need to show that there is a sequence of isotopy classes of simple closed
curvesa = c1, . . . , ck = f(a) in Sg,n so thati(ci, ci+1) = 1. This is exactly
the content of Lemma 4.5. In the language of Section 4.1, thislemma is
phrased in terms of the connectedness of a particular “modified complex of
nonseparating curves.”

Step 2: Induction on the number of punctures.Supposeg ≥ 1 andn ≥ 1.
The inductive step onn reads as follows. There is a natural mapSg,n →
Sg,n−1 where one of the punctures/marked points is “forgotten,” and this
induces a surjective homomorphismMod(Sg,n) → Mod(Sg,n−1). Ele-
ments of the kernel come from “pushing” thenth puncture around the sur-
face, and the Birman exact sequence (Theorem 4.6) identifiesthe kernel
with π1(Sg,n−1). We also show that generators forπ1(Sg,n−1) correspond
to products of Dehn twists about nonseparating simple closed curves; see
Fact 4.7. In other words the difference betweenMod(Sg,n) andMod(Sg,n−1)
is (finitely) generated by Dehn twists about nonseparating curves, and so this
completes the inductive step on the number of punctures.

We give the details of the proof of Theorem 4.11 in Section 4.3.

The word problem. Aside from his seminal work on the mapping class
group, another of Max Dehn’s highly influential contributions to mathemat-
ics is the idea of the word problem for a finitely generated group Γ. The
word problemfor Γ asks for an algorithm that takes as input any finite prod-
uctw of elements from a fixed generating set forΓ (and their inverses), and
as output tells whether or notw represents the identity element ofΓ. It is
a difficult result of Adian from the 1950’s that there are finitely presented
groupsΓ with unsolvable word problem; that is, no such algorithm forΓ as
above exists. It is not difficult to prove that the (un)solvability of the word
problem for a given group does not depend on the generating set.

Now considerMod(S) with an explicit finite generating set, say for example
the Humphries generators (see below). Suppose we are given any finite
productw of these generators. We can choose a collectionC of curves and
arcs that fillS, and we can apply each generator inw to each curve and
arc ofC. We can then use the bigon criterion and the Alexander methodto
determine whether the element ofMod(S) is trivial or not. ThusMod(S)
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has a solvable word problem.

THEOREM 4.2 LetS = Sg,n. The groupMod(S) has solvable word prob-
lem.

4.1 THE COMPLEX OF CURVES

The complex of curvesC(S), defined by Harvey [83], is an abstract sim-
plicial complex associated to a surfaceS. Its 1–skeleton is given by the
following data.

Vertices.There is one vertex ofC(S) for each isotopy class of
essential simple closed curves inS.

Edges.There is an edge between any two vertices ofC(S) cor-
responding to isotopy classesa andb with i(a, b) = 0.

More generally,C(S) has ak–simplex for each(k + 1)–tuple of vertices
where each pair of corresponding isotopy classes has geometric intersection
number zero. In other words,C(S) is a flag complex, which means that
k + 1 vertices span ak–simplex ofC(S) if and only if they are pairwise
connected by edges.1 While we only make use of the 1–skeleton ofC(S),
the higher-dimensional simplices are useful in a number of applications (see,
e.g., [103]).

Note that, as far as the complex of curves is concerned, a puncture has the
same effect as a boundary component (simple closed curves that are homo-
topic to either a puncture or a boundary component are inessential). There-
fore we will only deal with punctured surfaces.

4.1.1 CONNECTIVITY OF THE COMPLEX OF CURVES

The following theorem, first stated by Harvey, was essentially proved by
Lickorish (Figure 4.2 is his) [128]. Lickorish used it in thesame way we
will: to show thatMod(S) is finitely generated.

1In other words, every nonsimplex contains a nonedge.
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THEOREM 4.3 If 3g + n ≥ 5 thenC(Sg,n) is connected.

In particular, Theorem 4.3 holds for every surfaceSg,n except wheng = 0
andn ≤ 4, or g = 1 andn ≤ 1. We will discuss these sporadic cases below.

Theorem 4.3 can be rephrased as stating that for any two isotopy classesa
andb of simple closed curves inSg,n there is a sequence of isotopy classes

a = c1, . . . , ck = b

so thati(ci, ci+1) = 0.

Proof. Suppose we are given two verticesa, b ∈ C(Sg,n); thusa andb are
isotopy classes of simple closed curves inSg,n). We must find a sequence
a = c1, . . . , ck = b with i(ci, ci+1) = 0. We induct oni(a, b).

If i(a, b) = 0 then there is nothing to prove. Ifi(a, b) = 1 then we can
find representativesα andβ that intersect in precisely one point. A closed
regular neighborhood ofα ∪ β is a torus with one boundary component.
Denote byc the isotopy class of this boundary component. Ifc were not
essential, that would mean that eitherSg,n ≈ S1,1 or Sg,n ≈ T 2, which
violates the condition3g + n ≥ 5. Therefore,a, c, b gives the desired path
in C(Sg,n).

For the inductive step we assume thati(a, b) ≥ 2 and that any two simple
closed curves with intersection number strictly less thani(a, b) correspond
to vertices that are connected by a path inC(Sg,n). We now prove the induc-
tive step by giving a recipe for finding an isotopy classc with both i(c, a)
andi(c, b) less thani(a, b).

Letα andβ be simple closed curves in minimal position representinga and
b. We consider two points of their intersection that are consecutive along
β. We orientα andβ, so that it makes sense to talk about the index of an
intersection point ofα andβ, be it+1 or−1.

α

α

β

γ γ1 γ2

Figure 4.2 The surgered curves in the proof of Theorem 4.3.
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If the two intersection points have the same index, thenc can be chosen to be
the class ofγ shown in bold in the left hand side of Figure 4.2 (outside of the
picture,γ follows alongα). We see thatγ is essential since|α∩ γ| = 1. We
emphasize that we constructγ so that, outside the local picture indicated in
the figure,γ always lies “just to the left” ofα; in particularγ can be chosen
so that it intersectsβ fewer times thanα does (it “skips” one of the two
intersections in the picture).

If the two intersection points have opposite indices, consider the simple
closed curvesγ1 andγ2 shown in bold in the right hand side of Figure 4.2.
Neitherγ1 norγ2 can be nullhomotopic, since that would mean thatα andβ
were not in minimal position. If bothγ1 andγ2 are homotopic to a puncture,
it follows thatα bounds a twice-punctured disk on one of its sides (the side
containingγ1 andγ2). In this case there are similarly defined curvesγ3 and
γ4 on the other side ofα. Again, neitherγ3 nor γ4 can be nullhomotopic.
Also, it cannot be that bothγ3 andγ4 are peripheral, because that would
imply thatSg,n ≈ S0,4, violating the condition3g + n ≥ 5. Thus, we can
choosec to be the class of eitherγ3 or γ4.

By construction, it is evident thati(c, b) < i(a, b) and i(c, a) < i(a, b)
(in fact, i(a, c) is either 0 or 1). By our inductive hypothesis, the vertices
corresponding toa andc are connected by a path inC(Sg,n), and the vertices
corresponding tob andc are connected by a path. The concatenation of these
paths is a path between the vertices corresponding toa andb. 2

We point the reader to Ivanov’s survey [103, Section 3.2], where he gives
a beautiful alternative proof of Theorem 4.3 using Morse–Cerf theory. The
key idea is that two simple closed curves that are level sets of the same
Morse function are necessarily disjoint.

Sporadic cases and the Farey complex.In the cases ofS2, S0,1, S0,2 and
S0,3 the complex of curves is empty, and in the cases ofT 2, S1,1 andS0,4

it a countable disjoint union of points. If we alter the definition of C(S) by
assigning an edge to each pair of distinct vertices that realizes the minimal
possible geometric intersection in the given surface, thenthe disconnected
complexes become connected. In each of the latter three cases above,C(S)
is isomorphic to theFarey complex, which is the ideal triangulation ofH2

indicated in Figure 4.3.

The more classical description of the Farey complex is as follows. It is the
flag complex where vertices correspond to cyclic subgroups of Z2, and two
vertices span an edge if the corresponding primitive vectors spanZ2.
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Figure 4.3 The Farey complex.

4.1.2 THE COMPLEX OF NONSEPARATING CURVES

LetN (S) denote the subcomplex ofC(S) spanned by vertices correspond-
ing to nonseparating simple closed curves. This subcomplexis called the
complex of nonseparating curves. This is an intermediate complex between
the complex of curves and the modified complex of nonseparating curves
N̂ (S) (defined below), which is the complex that will actually be used in
the proof of Theorem 4.1.

THEOREM 4.4 If g ≥ 2 thenN (Sg,n) is connected.

Proof. We first prove the theorem forg ≥ 2 andn ≤ 1, and then use
induction onn to obtain the rest of the cases. So letS be eitherSg orSg,1. If
a andb are arbitrary isotopy classes of simple closed nonseparating simple
closed curves inS, then by Theorem 4.3 there is a sequence of isotopy
classesa = c1, . . . , cn = b with i(ci, ci+1) = 0.

We will alter the sequence{ci} so that it consists of isotopy classes of non-
separating simple closed curves. Supposeci is separating. Letγi be a simple
closed curve representingci, and letS′ andS′′ be the two components of
Sg,n − γi. By the assumption thatg ≥ 2 andn ≤ 1, bothS′ andS′′ have
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positive genus. Ifci−1 and ci+1 have representatives that lie in different
subsurfaces, theni(ci−1, ci+1) = 0 and we can simply removeci from the
sequence. Ifci−1 andci+1 have representatives that both lie inS′, then we
replaceci with the isotopy class of a nonseparating simple closed curve in
S′′. We repeat the above process until eachci is nonseparating, at which
point we have obtained the desired path inN (S). This proves the theorem
in the casen ≤ 1.

For the induction onn we assumen ≥ 2 and proceed as above. The only
possible problem is that it might happen that representatives of ci−1 and
ci+1 lie on S′ andS′′ has genus 0. But thenS′ has genusg ≥ 2, and has
fewer punctures than the original surfaceS, so by induction we can find a
path inN (S′) between the vertices corresponding toci−1 andci+1, and we
replaceci by the corresponding sequence of isotopy classes of curves in S.
2

Theorem 4.4 is not true for any surface of genus 1. Indeed, themapS1,n →
T 2 obtained by filling in then punctures induces a surjective simplicial map
N (S1,n) → C(T 2), where the simplicial structure onC(T 2) is the original
simplicial structure, which is disconnected.

4.1.3 A MODIFIED COMPLEX OF NONSEPARATING CURVES

Let N̂ (S) denote the1–dimensional simplicial complex whose vertices are
isotopy classes of nonseparating simple closed curves in the surfaceS, and
whose edges correspond to pairs of isotopy classesa, b with i(a, b) = 1.

L EMMA 4.5 If g ≥ 2 andn ≥ 0 then the complex̂N (Sg,n) is connected.

Proof. Let a andb be two isotopy classes of simple closed curves inSg,n.
By Theorem 4.4, there is a sequence of isotopy classesa = c1, . . . , ck = b

representing vertices of̂N (Sg,n) with i(ci, ci+1) = 0. By the change of
coordinates principle, for eachi one can find an isotopy classdi of non-
separating simple closed curves withi(ci, di) = i(di, ci+1) = 1. The se-
quencea = c1, d1, c2, . . . , ck−1, dk−1, ck = b represents the desired path in
N̂ (Sg,n). 2

The conclusion of Lemma 4.5 also holds for anyS1,n with n ≥ 0. This can
be proved by induction. The base cases areT 2 andS1,1, whereN̂ (T 2) ≈



GENERATING THE MAPPING CLASS GROUP 101

N̂ (S1,1) is the 1–skeleton of the Farey complex. The inductive step onn is
similar to the inductive step on punctures in the proof of Theorem 4.4.

4.2 THE BIRMAN EXACT SEQUENCE

As mentioned above, the proof of Theorem 4.1 will be a double induction
on genus and the number of punctures. The Birman exact sequence will
provide the inductive step for the number of punctures. Moregenerally it is
a basic tool in the study of mapping class groups.

4.2.1 THE POINT PUSHING MAP , THE FORGETFUL MAP , AND THE BIRMAN

EXACT SEQUENCE

Let S be any surface, possibly with punctures (but no marked points), and
let S∗ be the surface obtained fromS by marking a pointx in the interior of
S. There is a natural homomorphism

Forget : Mod(S∗)→ Mod(S)

called theforgetful map. This map is realized by “forgetting” that the point
x is marked. If we think of the puncture ofS∗ as a puncture (distinguishable
from any other punctures ofS), then the mapForget is the one obtained
by “filling in” this puncture. In other words,Forget is the map induced
by the inclusionS∗ → S. The forgetful map is clearly surjective: given
any homeomorphism ofS, we can modify it by isotopy so that it fixes the
marked point/puncture ofS∗.

We would like to describe the kernel ofForget. To this end, think ofS∗

asS with a marked pointx. Let f ∈ Mod(S∗) be an element of the kernel
of Forget, and letφ be a homeomorphism representingf . We can think of
φ as a homeomorphismφ of S. SinceForget(f) = 1, there is an isotopy
fromφ to the identity map ofS. During this isotopy, the image of the pointx
traces out a loopα in S based atx. What we will show is that, by “pushing”
x alongα−1, we can recoverf ∈ Mod(S∗).

Now to make the idea of pushing more precise. Letα be a loop inS based
at x. We can think ofα : [0, 1] → S as an “isotopy of points” fromx to
itself, and this isotopy can be extended to an isotopy of the whole surfaceS
(this is the 0–dimensional version of Proposition 1.11). Let φα be the home-
omorphism ofS obtained at the end of the isotopy. By removing/marking



102 CHAPTER 4

the pointx, regardingφα as a homeomorphism ofS∗, and then taking its
isotopy class, we obtain a mapping classPush(α) ∈ Mod(S∗). The way
we think ofPush(α) informally is that we stick our finger onx and we
pushx alongα, dragging the rest of the surface along as we go.

What one would like of course is that the mapping classPush(α) is well-
defined, that is, it does not depend on the choice of the isotopy extension.
One would also want thatPush(α) does not depend on the choice ofα
within its homotopy class. In other words, one hopes to have awell-defined
push map:2

Push : π1(S, x)→ Mod(S∗).

It turns out that this is indeed the case. But it is not obviousat all. To begin
with, there is no way in general to extend a homotopy of a loop to a homo-
topy of a surface (rather, only isotopies can be extended). More to the point,
what if we modifyα by a homotopy that passes the loop over the marked
point x? There is certainly no obvious way to show that the corresponding
homeomorphisms of the punctured surfaceS∗ are homotopic.

The Birman exact sequence gives that the image of the point pushing map
is in fact exactly the kernel of the forgetful map.

THEOREM 4.6 (Birman exact sequence)LetS be a surface withχ(S) <
0, possibly with punctures and/or boundary. LetS∗ be the surface obtained
from S by marking a pointx in the interior ofS. Then the following se-
quence is exact:

1 −→ π1(S, x)
Push−→ Mod(S∗)

Forget−→ Mod(S) −→ 1.

Once we know thatPush is well-defined, it follows immediately from the
definitions that its image is contained in the kernel of the mapForget, and
that is surjects onto the kernel ofForget. Also, it is easy to see thatPush
is injective forχ(S) < 0. Indeed, any representativePush(α) ∈ Mod(S∗)
can be thought of as a map of pairs(S, x)→ (S, x) whose induced automor-
phism ofπ1(S, x) is the inner automorphismIα. Sinceπ1(S) is centerless,
we have thatIα is nontrivial wheneverα is. Thus ifα is nontrivial then
the homeomorphismφα : (S, x) → (S, x) defined above is not homotopic
to the identity as a map of pairs, from which it is immediate thatPush(α)
is nontrivial as an element ofMod(S∗). In summary, the entire content of
Theorem 4.6 is thatPush is well-defined.

2Birman’s original terminology was “spin map.”
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We remark that Theorem 4.6 still holds if we replaceMod with Mod±, the
extended mapping class group.

Also, we can take the restriction of the sequence to any subgroup ofMod(S∗).
The most commonly used restriction is toPMod(S∗). In this caseMod(S)
should be replaced withPMod(S). We can rephrase the Birman exact se-
quence in this case as follows:

1→ π1(Sg,n)→ PMod(Sg,n+1)→ PMod(Sg,n)→ 1.

We will show in Section 5.5 that the Birman exact sequence does not split.

4.2.2 PUSH MAPS ALONG LOOPS IN TERMS OF DEHN TWISTS

For a simple loopα in S based at the pointx, we can give an explicit rep-
resentative ofPush(α), as follows. Identify a neighborhood ofα with the
annulusS1 × [0, 2]. We orientS1 × [0, 2] via the standard orientations on
S1 and[0, 2]. Say the marked pointx is at the point(0, 1) in this annulus.
There is an isotopy of the annulus given by

F ((θ, r), t) =

{
(θ + 2πrt, r) 0 ≤ r ≤ 1

(θ + 2π(2 − r)t, r) 1 ≤ r ≤ 2

We can extendF by the identity to get an isotopy ofS. When we restrictF
to {x} × [0, 1] we get

F ((0, 1), t) = (2πt, 1).

In other words, the isotopyF “pushes”x around the core of the annulus.
Also, the homeomorphismφ of S∗ induced byF att = 1 is a product of two
Dehn twists. More precisely, identifying the boundary curveS1×{0} of the
annulus as a simple closed curveα in S∗, and identifyingS1×{2} as a curve
β in S∗, we have thatφ is (isotopic to)TαT

−1
β . A smooth representative of

Push(α) is shown in Figure 4.4. We summarize this discussion as follows.

Fact 4.7 Letα be a simple loop in a surfaceS representing an element of
π1(S, x). Then

Push([α]) = TaT
−1
b

wherea and b are the isotopy classes of the simple closed curves inS∗ =
S − x obtained by pushingα off itself to the left and right, respectively.
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The isotopy classesa and b are nonseparating inS∗ if and only if α is
nonseparating inS.

a

α

Push(α)

b

Figure 4.4 The point pushing mapPush from the Birman exact sequence.

Naturality. We record the following naturality property for the point push-
ing map.

Fact 4.8 For anyh ∈ PMod(S∗) and anyα ∈ π1(S, x), we have

Push(h∗(α)) = hPush(α)h−1.

Fact 4.8 follows immediately from the definitions.

4.2.3 THE PROOF

We now give the proof of the existence of the Birman exact sequence.

Proof of Theorem 4.6.There is a fiber bundle

Homeo+(S, x)→ Homeo+(S)
E→ S. (4.1)

with total spaceHomeo+(S), with base spaceS (i.e., the configuration
space of a single point inS), and with fiber the subgroup ofHomeo+(S)
consisting of elements that fix the pointx (technically, we should only allow
homeomorphisms that fix∂S pointwise, but this does not affect the proof).
The mapE is evaluation at the pointx.

We now explain whyE : Homeo+(S) → S is a fiber bundle, that is, why
Homeo+(S) is locally homeomorphic to a product of an open setU of S
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with Homeo+(S, x) so that the restriction ofE is projection to the first fac-
tor. LetU be some open neighborhood ofx in S that is homeomorphic to a
disk. Givenu ∈ U we can choose aφu ∈ Homeo+(U) so thatφu(x) = u
and so thatφu varies continuously as a function ofu. We have a homeomor-
phismU ×Homeo+(S, x)→ E−1(U) given by

(u, ψ) 7→ φu ◦ ψ.

The inverse map is given byψ 7→ (ψ(x), φ−1
ψ(x) ◦ ψ). For any other point

y ∈ S, we can choose a homeomorphismξ of S takingx to y. Then there is
a homeomorphismE−1(U) → E−1(ξ(U)) given byψ 7→ ξ ◦ ψ, and so we
have verified the fiber bundle property.

The theorem now follows from the long exact sequence of homotopy groups
associated to the above fiber bundle. The relevant part of thesequence is the
following.

· · · → π1(Homeo+(S))→ π1(S)→ π0(Homeo+(S, x))

→ π0(Homeo+(S))→ π0(S)→ · · ·

By Theorem 1.14 the groupπ1(Homeo+(S)) is trivial, and of courseπ0(S)
is trivial. The remaining terms are isomorphic to the terms of the Birman
exact sequence.

Finally, the maps given by the long exact sequence of homotopy groups are
exactly the point pushing mapPush and the forgetful mapForget. 2

There is a version of Theorem 4.6 where one forgets multiple punctures
instead of a single version; see Chapter 9. However, in most cases, one can
simply apply Theorem 4.6 iteratively in order to forget one puncture at a
time.

Surfaces with χ(S) ≥ 0. In the proof of Theorem 4.6 we used the
assumption thatχ(S) < 0 in order to say thatπ1(Homeo+(S)) = 1. But we
can still use the long exact sequence coming from the fiber bundle (4.1) for
other surfaces. For instance, for the torusT 2 we haveπ1(Homeo+(T 2)) ≈
π1(T

2) ≈ Z2, and the relevant part of the short exact sequence becomes

· · · → Z2 id→ Z2 0→ Mod(S1,1)→ Mod(T 2)→ 1→ · · ·

This gives another proof thatMod(S1,1) ≈ Mod(T 2).
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4.2.4 GENERATING Mod(S0,n)

LetS0,n be a sphere withn punctures. As per Section 2.2,PMod(S0,n) = 1
for n ≤ 3. To understand the situation for more punctures, we can apply the
Birman exact sequence:

1→ π1(S0,3)→ PMod(S0,4)→ PMod(S0,3)→ 1.

Sinceπ1(S0,3) ≈ F2, we obtain thatPMod(S0,4) ≈ F2. Moreover, the Bir-
man exact sequence gives geometric meaning to this algebraic statement:
elements ofπ1(S0,3) represented by simple loops map to Dehn twists in
PMod(S0,4), and so the standard generating set forπ1(S0,3) gives a gener-
ating set forPMod(S0,4) consisting of two Dehn twists about simple closed
curves with geometric intersection number 2.

We can increase the number of punctures using the Birman exact sequence:

1→ π1(S0,4)→ PMod(S0,5)→ PMod(S0,4)→ 1.

Sinceπ1(S0,4) ≈ F3 andPMod(S0,4) ≈ F2, we obtainPMod(S0,5) ≈
F2 ⋉ F3. Inductively, we see thatPMod(S0,n) is an iterated extension of
free groups. Applying Fact 4.7, plus the fact thatπ1(S0,n) is generated by
simple loops, we find the following.

THEOREM 4.9 For n ≥ 0 the groupPMod(S0,n) is generated by finitely
many Dehn twists.

To generate all ofMod(S0,n), we again apply the following exact sequence:

1→ PMod(S0,n)→ Mod(S0,n)→ Σn → 1.

It follows that a generating set forMod(S0,n) is obtained from a generating
set forPMod(S0,n) by adding lifts of generators forΣn. We know thatΣn is
generated by transpositions. A simple lift of a transposition is a “half-twist,”
defined in Chapter 9.

4.2.5 CAPPING THE BOUNDARY

By souping up the proof of the Birman exact sequence we can give another
perspective on the boundary capping sequence (Proposition3.19) that uni-
fies it with the Birman exact sequence.
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Let S◦ be a surface with nonempty boundary, and letŜ be the surface ob-
tained fromS◦ by capping some componentβ of ∂S◦ with a disk. Letp
be some point in the interior of this disk. As in Proposition 3.19, we have a
short exact sequence:

1→ 〈Tβ〉 → Mod(S◦)
Cap→ Mod(Ŝ, p)→ 1. (4.2)

Note that〈Tβ〉 is central inMod(S◦), since any element ofMod(S◦) has a
representative that is the identity in a neighborhood of∂S◦.

We now give our second proof of Proposition 3.19, using the notation from
the sequence (4.2).

Second proof of Proposition 3.19.The proof has two steps. Step 1 is to
identify Mod(S◦) with a different group and to reinterpret the capping map
in the new context, and Step 2 is to apply the method of proof ofthe Birman
exact sequence to the corresponding fiber bundle.

Step 1. Let(p, v) be a point of the unit tangent bundleUT (Ŝ) that lies
in the fiber abovep. Let Diff+(Ŝ, (p, v)) denote the group of orientation-
preserving diffeomorphisms of̂S fixing (p, v). The resulting mapping class
group, denotedMod(Ŝ, (p, v)), is defined asπ0(Diff+(Ŝ, (p, v))). We claim
that there is an isomorphism

Mod(S◦) ≈ Mod(Ŝ, (p, v)).

To prove this isomorphism we first identifyMod(S◦) with π0(Diff+(Ŝ,D)),
whereD is the boundary capping disk, and diffeomorphisms are takento fix
D pointwise. This identification can be realized by simply removing the in-
terior ofD. There is a fiber bundle

Diff+(Ŝ,D)→ Diff+(Ŝ, (p, v))→ Emb+((D, Ŝ), (p, v))

where Emb+((D, Ŝ), (p, v)) is the space of smooth, orientation-preserving
embeddings ofD into Ŝ taking some fixed unit tangent vector inD to the
tangent vector(p, v). As in the proof of the Birman exact sequence, we
obtain a long exact sequence of homotopy groups that contains the sequence

· · · → π1(Emb+((D, Ŝ), (p, v))) → π0(Diff+(Ŝ,D))

→ π0(Diff+(Ŝ, (p, v)))→ π0(Emb+((D, Ŝ), (p, v))) → · · ·

SinceD is contractible, the space Emb+((D, Ŝ), (p, v))) is contractible,
and so we obtain the claimed isomorphismMod(Ŝ, (p, v)) ≈ Mod(S◦)
(see [103, Theorem 2.6D] and [44]).
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The projection map(p, v) 7→ p induces a mapMod(Ŝ, (p, v))→ Mod(Ŝ, p)
that makes the following diagram commute:

Mod(Ŝ, (p, v))

≈

Mod(Ŝ, p)

≈

Mod(S◦)
Cap

Mod⋆(S∗)

Thus, we have succeeded in writing the mapCap in terms ofMod(Ŝ, (p, v)).

Step 2. We have another fiber bundle:

Diff+(Ŝ, (p, v))→ Diff+(Ŝ, p)→ UTp(Ŝ)

where the second map is the evaluation map onto the fiber overp of the
unit tangent bundle of̂S. As in the proof of the Birman exact sequence, we
obtain a long exact sequence, part of which is:

· · · → π1(Diff+(Ŝ, p))→ π1(UTp(Ŝ))→ π0(Diff+(Ŝ, (p, v)))

→ π0(Diff+(Ŝ, p))→ π0(UTp(Ŝ))→ · · ·
These terms exactly give the desired short exact sequence. 2

Not only is the last proof similar to the proof of the Birman exact sequence,
but actually both proofs can be combined to give the following diagram,
which encapsulates the two points of view. In the diagram allsequences are
exact and all squares commute.

1 1

Z
≈

Z

1 π1(UT (Ŝ)) Mod(S◦) Mod(Ŝ)

≈

1

1 π1(Ŝ) Mod(S∗) Mod(Ŝ) 1

1 1
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To get the middle row directly, one can consider the fiber bundle

Diff+(Ŝ, (p, v))→ Diff+(Ŝ)→ UT (Ŝ).

4.3 PROOF OF FINITE GENERATION

To show thatMod(S) is finitely generated we consider its action on̂N (S).
Note thatMod(S) indeed acts on̂N (S) since homeomorphisms take non-
separating simple closed curves to nonseparating simple closed curves, and
homeomorphisms preserve geometric intersection number. It is a basic prin-
ciple from geometric group theory that if a groupG acts on a path-connected
spaceX, and ifD is a subspace ofX whoseG–translates coverX, thenG
is generated by the set{g ∈ G : gD ∩D 6= ∅}. The proof of this is implicit
in our proof of Theorem 8.2. The next lemma is a specialized version of this
fact, designed specifically so that we can apply it to the action of Mod(S)

on N̂ (S).

Lemma 4.10 Suppose that a groupG acts by simplicial automorphisms on
a connected,1–dimensional simplicial complexX. Suppose thatG acts
transitively on the vertices ofX, and that it also acts transitively on pairs
of vertices ofX that are connected by an edge. Letv andw be two vertices
of X that are connected by an edge, and chooseh ∈ G so thath(w) = v.
Then the groupG is generated by the elementh together with the stabilizer
of v in G.

Proof. Letg ∈ G. We would like to show thatg is contained in the subgroup
H < G generated by the stabilizer ofv together with the elementh. Since
X is connected, there is a sequence of vertices

v = v0, . . . , vk = g(v)

where adjacent vertices are connected by an edge. SinceG acts transitively
on the vertices ofX, we can choose elementsgi of G so thatgi(v) = vi.
We takeg0 to be the identity andgk to beg. We will prove by induction that
gi ∈ H. The base caseg0 ∈ H clearly holds. Now assume thatgi ∈ H. We
must prove thatgi+1 ∈ H.

Applying the elementg−1
i to the edge betweenvi = gi(v) and vi+1 =

gi+1(v), we obtain the edge betweenv andg−1
i gi+1(v). SinceG acts transi-

tively on ordered pairs of vertices ofX that are connected by an edge, there
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is an elementr ∈ G that takes the pair(v, g−1
i gi+1(v)) to the pair(v,w). In

particular,r lies in the stabilizer ofv andrg−1
i gi+1(v) = w. We then have

thathrg−1
i gi+1(v) = v, which means thathrg−1

i gi+1 lies in the stabilizer
of v. In particular,hrg−1

i gi+1 ∈ H. Sinceh andr lie in H by the definition
of H and sincegi lies inH by induction, we have thatgi+1 lies inH. In
particular,gk = g lies inH, which is what we wanted to show. 2

We are now ready to prove the following theorem, which contains Theo-
rem 4.1 as the special casen = 0.

THEOREM 4.11 Let Sg,n be a surface of genusg ≥ 1 with n ≥ 0 punc-
tures. Then the groupPMod(Sg,n) is finitely generated by Dehn twists
about nonseparating simple closed curves inSg,n.

Recall that we already showed thatPMod(S0,n) is finitely generated by
Dehn twists forn ≥ 0 (Theorem 4.9).

Proof. We will use double induction on genus and the number of punctures
of S, with base casesT 2 = S1,0 andS1,1.

We start with the inductive step on the number of punctures. Let g ≥ 1
and letn ≥ 0. Assuming thatPMod(Sg,n) is generated by finitely many
Dehn twists about nonseparating simple closed curves{αi} in Sg,n, we will
show thatPMod(Sg,n+1) is generated by finitely many Dehn twists about
nonseparating curves inSg,n+1. We may assume that(g, n) 6= (1, 0) since
we know thatMod(S1,1) ≈ Mod(T 2) is generated by Dehn twists about
nonseparating simple closed curves.

We have the Birman exact sequence

1→ π1(Sg,n)→ PMod(Sg,n+1)→ PMod(Sg,n)→ 1.

Sinceg ≥ 1, we have thatπ1(Sg,n) is generated by the classes of finitely
many simple nonseparating loops. By Fact 4.7, the image of each of these
loops is a product of two Dehn twists about nonseparating simple closed
curves. We begin building a generating set forPMod(Sg,n+1) by taking
each of these Dehn twists individually. In order to completethe generating
set it remains to choose a lift toPMod(Sg,n+1) of each Dehn twist gener-
atorTαi of PMod(Sg,n). But given the nonseparating simple curveαi in
Sg,n there exists a nonseparating curve inSg,n+1 that maps toαi under the
forgetful mapSg,n+1 → Sg,n. Thus the Dehn twistTαi in PMod(Sg,n)
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has a preimage inPMod(Sg,n+1) that is a Dehn twist about a nonseparat-
ing simple closed curve inSg,n+1. This completes the inductive step on the
number of punctures.

Since we know thatMod(T 2) andMod(S1,1) are each generated by two
Dehn twists about nonseparating simple closed curves (§2.2), it follows
from the inductive step on the number of punctures that for any n ≥ 0 the
groupPMod(S1,n) is generated by finitely many Dehn twists about nonsep-
arating simple closed curves.

We now attack the inductive step on the genusg. Let g ≥ 2, and as-
sume thatPMod(Sg−1,n) is finitely generated by Dehn twists about non-
separating simple closed curves for anyn ≥ 0. SinceN̂ (Sg) is connected
(Lemma 4.5), and since by the change of coordinates principle Mod(Sg)
acts transitively on ordered pairs of isotopy classes of simple closed curves
with geometric intersection number 1, we may apply Lemma 4.10 to the
case of theMod(Sg) action onN̂ (Sg).

Let a be an arbitrary isotopy class of nonseparating simple closed curves in
Sg, and letb be an isotopy class withi(a, b) = 1. Let Mod(Sg, a) denote
the stabilizer inMod(Sg) of a. By Lemma 3.12, we haveTaTbTa(b) = a.
Thus, by Lemma 4.10,Mod(Sg) is generated byMod(Sg, a) together with
Ta andTb. Thus, it suffices to show thatMod(Sg, a) is finitely generated by
Dehn twists about nonseparating simple closed curves.

Let Mod(Sg,~a) be the subgroup ofMod(Sg, a) consisting of elements that
preserve the orientation ofa. We have the short exact sequence

1→ Mod(Sg,~a)→ Mod(Sg, a)→ Z/2Z→ 1.

SinceTbT 2
aTb switches the orientation ofa, it represents the nontrivial coset

of Mod(Sg,~a) in Mod(Sg, a). Thus, it remains to show thatMod(Sg,~a) is
finitely generated by Dehn twists about nonseparating simple closed curves
in Sg.

By Proposition 3.20 we have a short exact sequence

1→ 〈Ta〉 → Mod(Sg,~a)→ PMod(Sg − α)→ 1,

whereSg − α is the surface obtained fromSg by deleting a representative
α of a. The surfaceSg − α is homeomorphic toSg−1,2. By our induc-
tive hypothesis,PMod(Sg − α) is generated by finitely many Dehn twists
about nonseparating simple closed curves. Since each such Dehn twist has a
preimage inMod(Sg,~a) that is also a Dehn twist about a nonseparating sim-
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ple closed curve, it follows thatMod(Sg,~a) is generated by finitely many
Dehn twists about nonseparating curves, and we are done. 2

4.4 EXPLICIT SETS OF GENERATORS

The goal of this section is to find an explicit finite set of Dehntwist gen-
erators forMod(S). Our strategy for accomplishing this is to sharpen our
proof thatMod(S) is generated by finitely many Dehn twists. More specif-
ically, we choose a candidate set of generators, and check that each step of
the proof of finite generation can be achieved by using our candidate set.

4.4.1 THE CHAIN RELATION

In the very last step of our proof of Theorem 4.13 below, we will require the
following relation between Dehn twists. Recall that a sequence of isotopy
classesc1, . . . , ck in a surfaceS is called achain if i(ci, ci+1) = 1 for all i
andi(ci, cj) = 0 for |i− j| > 1.

Proposition 4.12 (Chain relation) Letk ≥ 0 and letc1, · · · , ck be a chain
of curves in a surfaceS. If we take representatives for theci that are in min-
imal position, and then take a closed regular neighborhood of their union,
then the boundary of this neighborhood consists of one or twosimple closed
curves, depending on whetherk is even or odd. Denote the isotopy classes
of these boundary curves byd in the even case and byd1 andd2 in the odd
case. Then the following relations hold inMod(S):

(Tc1 · · · Tck)2k+2 = Td k even
(Tc1 · · · Tck)k+1 = Td1Td2 k odd.

In each case the relation in Proposition 4.12 is called achain relation, or ak–
chain relation. The chain relation can be proved via the Alexander method.
In Chapter 9 we will derive the chain relations as consequences of relations
in the braid group.

The2–chain relationis a well-known example of the chain relation. In this
case, the relation says that ifi(a, b) = 1, then

(TaTb)
6 = Td
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whered is the boundary of a regular neighborhood ofa∪ b. If a andb lie in
T 2 or S1,1, thenTd is trivial, and we have the relation(TaTb)6 = 1. Via the
isomorphism of Theorem 2.5, this is simply the relation

((
1 1
0 1

)(
1 0
−1 1

))6

= 1

in SL(2,Z).

There is another version of the chain relation that is sometimes useful. In
the above notation, this other version reads:

(T 2
c1Tc2 · · ·Tck)2k = Td and (T 2

c1Tc2 · · ·Tck)k = Td1Td2 ,

for k even and odd, respectively.

Dehn twists have roots.A surprising consequence of the last relation is that
the Dehn twist about a nonseparating simple closed curve hasa nontrivial
root in Mod(Sg) when g ≥ 2. If we consider a chain of simple closed
curvesc1, . . . , c2g−1 in Sg, then the two boundary components of a regular
neighborhood of∪ci are nonseparating simple closed curves in the same
isotopy classd, so we have

(T 2
c1Tc2 · · ·Tc2g−1

)2g−1 = T 2
d .

Thus, sinceTd commutes with eachTci , we have

[(T 2
c1Tc2 · · · Tc2g−1

)1−gTd]
2g−1 = Td.

McCullough–Rajeevsarathy proved that2g − 1 is actually the largest order
of a root ofTd for any g ≥ 2 [143]. It is not difficult to see that Dehn
twists about separating simple closed curves have roots: for example, if we
imagine fixing the subsurface ofSg to one side of a separating curved and
twisting the other side by an angleπ, then we get a square root ofTd. A
more formal way to do this is to use the first chain relation with a chain of
even length.

4.4.2 THE L ICKORISH GENERATORS

Our eventual goal is to show that the Humphries generating set (see the
beginning of the chapter) is indeed a generating set forMod(Sg). As a first
step we show that the Dehn twists about the3g − 1 simple closed curves
indicated in Figure 4.5 generateMod(Sg). This specific generating set was
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first found by Lickorish, and so we call these Dehn twists theLickorish
generators[128].

...

a1 a2 a3 ag
c1 c2 c3 cg−1

m1 m2 m3 mg

Figure 4.5 The Lickorish generating set forMod(S).

THEOREM 4.13 (Lickorish generators) LetSg be closed surface of genus
g ≥ 1. Then the Dehn twists about the isotopy classes

a1, . . . , ag,m1, . . . ,mg, c1, . . . , cg−1

shown in Figure 4.5 generateMod(Sg).

In the proof of Theorem 4.13 we refer to the Dehn twists in the statement of
the theorem as “Lickorish twists,” so as not to confuse the issue that we will
be proving that they are indeed generators forMod(S).

Proof. We proceed by induction ong. Since the Lickorish twists for the
torusT 2 ≈ S1 are the standard generators forMod(T 2), the theorem is true
for the case ofg = 1, and we may assume thatg ≥ 2.

We again apply Lemma 4.10 to the action ofMod(Sg) on the 1–dimensional
simplicial complexN̂ (Sg) from Section 4.1. By Lemma 3.12 we have
Ta1Tm1

Ta1(m1) = a1. Thus by Lemma 4.10 it suffices to show thatMod(Sg,m1),
the stabilizer inMod(Sg) of m1, lies in the group generated by Lickorish
twists.

If Mod(Sg, ~m1) is the subgroup ofMod(Sg) consisting of elements that
preserve the orientation ofm1, then we have

1→ Mod(Sg, ~m1)→ Mod(Sg,m1)→ Z/2Z→ 1.

Since the product of Lickorish twistsTa1T
2
m1
Ta1 reverses the orientation of

m1, it suffices to show thatMod(Sg, ~m1) lies in the group generated by the
Lickorish twists.
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By Proposition 3.20 we have the following exact sequence:

1→ 〈Tm1
〉 → Mod(Sg, ~m1)→ PMod(Sm1

)→ 1

whereSm1
≈ Sg−1,2 is the surface obtained by deleting a representative of

m1 fromSg (this is perhaps a slight abuse of notation, since we usuallywrite
Sm1

to mean the surface obtained from a surfaceS by cutting along a curve
m1). SinceTm1

is a Lickorish twist, it is enough to show thatPMod(Sm1
)

is generated by the images of the Lickorish twists.

...

...

a2

a2

a3

a3

ag

ag

c1

c1

c2

c2

c3

c3

cg−1

cg−1

m+

m+

m−

m2

m2

m3

m3

mg

mgSm1

S′m1

Figure 4.6 The images of the curves from Figure 4.5 inSm1
andS′

m1
.

We apply the Birman exact sequence (Theorem 4.6) twice. LetS′m1
denote

the surface obtained fromSm1
by forgetting the first puncturem−, and let

S′′m1
be the surface obtained fromS′m1

by forgetting the second puncture
m+. We then have the following maps of exact sequences, where each
square commutes:

1 π1(S
′
m1
,m−) Push

≈

PMod(Sm1
)

≈

Mod(S′m1
)

≈

1

1 π1(Sg−1,1) PMod(Sg−1,2) Mod(Sg−1,1) 1
(4.3)

and
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1 π1(S
′′
m1
,m+) Push

′

≈

Mod(S′m1
)

≈

Mod(S′′m1
)

≈

1

1 π1(Sg−1) Mod(Sg−1,1) Mod(Sg−1) 1.
(4.4)

 ... ...

 ... ...

α1

β1

αk

βk

m+

m+

Figure 4.7 Standard generators forπ1(S
′′
m1

, m+)

In the discussion below, we use the notationSm1
, S′m1

, andS′′m1
instead of

the simpler notationsSg−1,2, Sg−1,1, andSg−1 in order to emphasize the
point that each of these surfaces comes with fixed mapsSm1

→ S′m1
→

S′′m1
. In particular, there is no choice for the images of the Lickorish twists

in Mod(S′m1
) andMod(S′′m1

).

We start with sequence (4.4). The goal is to show thatMod(S′m1
) is gen-

erated by the images of the Lickorish twists inMod(S′m1
); that is, we

want to show thatMod(S′m1
) is generated by the Dehn twists about the

simple closed curves shown on the bottom of Figure 4.6. By induction,
Mod(S′′m1

) ≈ Mod(Sg−1) is generated by the Dehn twists about the im-
ages of these curves inS′′m1

≈ Sg, and so by the exact sequence (4.4), it
suffices to show that each element ofPush′(π1(S

′′
m1

)) is a product of the
Dehn twists given in the bottom of Figure 4.6.

Standard generators forπ1(S
′′
m1

) ≈ π1(Sg−1) are shown in Figure 4.7.
The mapping classPush′(α1) is equal to the productTc1T

−1
m2

(refer to Fig-
ure 4.6) so this element is a product of Lickorish twists.

We now explain how to writePush′(β1) as a product of Lickorish twists.
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Using Lemma 3.12 we see that

Tm2
Ta2(α1) = β1.

Thus, by Fact 4.8,Push′(β1) is conjugate toPush′(α1) by a product of
Lickorish twists, and hence itself is a product of Lickorishtwists.

Repeating this conjugation trick, we see that the image of each standard gen-
erator forπ1(S

′′
m1

) underPush′ is a product of the images of the Lickorish
twists inMod(S′m1

). The required formulas are:

(T−1
ci T

−1
ai+1

)(T−1
ai
T−1
ci )(βi−1) =βi

T−1
ai+1

T−1
mi+1

(βi) =αi

We remark that the Lickorish twists seem to be exactly designed for com-
pleting this step.

...

m′2 m′3
Sm1

m+

m−

Figure 4.8 The Dehn twistsTm′

2
, . . . , Tm′

g−1
are all products of Lickorish twists.

Turning to sequence (4.3), it now remains to show thatPush(π1(S
′
m1
,m−))

lies in the group generated by the Dehn twists about the simple closed curves
shown on the top of Figure 4.6. The proof is essentially the same as the
previous argument. To facilitate the argument, it is helpful to notice that
eachTm′

i
is a product of Lickorish twists, where them′2, . . . ,m

′
g−1 are the

isotopy classes shown in Figure 4.8. This follows from the chain relation

(TmgTagTcg−1
Tag−1

Tcg−2
· · ·Tak+1

Tck)2(g−k+1) = Tmk
Tm′

k
.

This completes the proof. 2

4.4.3 THE HUMPHRIES GENERATORS

We can now give Humphries’ proof that the Humphries generators do indeed
form a generating set forMod(Sg).
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THEOREM 4.14 (Humphries generators)Letg ≥ 2. Then the groupMod(Sg)
is generated by the Dehn twists about the2g + 1 isotopy classes of nonsep-
arating simple closed curves

a1, . . . , ag, c1, . . . , cg−1,m1,m2

shown in Figure 4.5.

In Proposition 6.5 below we show that Theorem 4.14 is sharp inthe sense
that, forg ≥ 2, any generating set forMod(Sg) consisting only of Dehn
twists must have at least2g + 1 elements.

Proof of Theorem 4.14.By Theorem 4.13 it suffices to show that the Licko-
rish twistsTm3

, . . . , Tmg can each be written in terms of the other Lickorish
twists.

For any1 ≤ i ≤ g− 2 we will find a producth of Dehn twists about theai,
ci, andmi+1 that takesmi tomi+2. It will then follow from Fact 3.7 in§3.3
that

Tmi+2
= hiTmih

−1
i ,

and the theorem will be proved.

mimi mi+1 mi+2

ai ai+1

ai+2

ci ci+1

d

Figure 4.9 Takingmi to mi+2.

The top left of Figure 4.9 shows the simple closed curves we will use. In the
top right of the figure we seemi. The bottom right showsTmi+1

Tai+1
TciTai(mi),

and the bottom left shows the imaged of the latter under the product

Tci+1
Tai+1

Tai+2
Tci+1

.
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Note that the last curve is symmetric with respect to theith and(i + 2)nd
holes. It follows that we can do a similar product of Dehn twistsh′ in order
to taked to mi+2. Sinceh usedmi+1 and no othermj , it follows thath′

will usemi+1 and no othermj. This completes the proof. 2

4.4.4 SURFACES WITH PUNCTURES AND BOUNDARY

Given the Humphries generators for the mapping class group of a closed
surface, we can use the Birman exact sequence to find a finite set of gener-
ators for the mapping class group of any surfaceSg,n of genusg ≥ 0 with
n ≥ 0 punctures.

......

Figure 4.10 Twists about these simple closed curves generatePMod(Sg,n).

The2g + n twists about the simple closed curves indicated in Figure 4.10
give a generating set forPMod(Sg,n) whenn > 0. The argument in the last
step of Theorem 4.13, i.e. the argument that the images ofPush andPush′
lie in the group generated by the Lickorish twists, applies in this case to
show that the given set of Dehn twists generatePMod(Sg,n).

To obtain a generating set for all ofMod(Sg,n), we can take a generating set
for PMod(Sg,n) together with a set of elements ofMod(Sg,n) that project
to a generating set for the symmetric groupΣn. One standard generating
set forΣn consists ofn − 1 transpositions. The most natural elements of
Mod(Sg,n) that map to transpositions inΣn are the half-twists discussed
in Chapter 9. We thus have the following corollary of Theorem4.9 and
Theorem 4.11.

Corollary 4.15 For any g, n ≥ 0, the groupMod(Sg,n) is generated by a
finite number of Dehn twists and half-twists.

Finally, letS be a compact surface with boundary (and no marked points).
Recall that the elements ofMod(S) do not permute the boundary compo-
nents ofS. By Proposition 3.19 we see thatMod(S) is generated by Dehn
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twists about nonseparating simple closed curves if each Dehn twist about
a boundary curve is a product of Dehn twists about nonseparating simple
closed curves. It turns out that forg ≥ 2 this is possible. Consider the sim-
ple closed curves shown in Figure 4.11. A special case of the star relation
from Section 5.2 gives that

(Tc1Tc2Tc3Tb)
3T−1
d1
T−1
d2

is equal to the Dehn twist about the boundary curved.

c1

c2

c3b
d1

d2

d

Figure 4.11 Writing the Dehn twist about the boundary in terms of Dehn twists about non-
separating curves.

We thus have the following.

Corollary 4.16 LetS be any surface of genusg ≥ 2. The groupPMod(S)
is generated by finitely many Dehn twists about nonseparating simple closed
curves inS.

In particular, for any surfaceS with punctures and/or boundary,PMod(S)
is generated by the Dehn twists about the simple closed curves shown in Fig-
ure 4.10 (in the picture, one can interpret the small circlesas either boundary
components or as punctures).

On the other hand, for a genus 1 surfaceS with more than one boundary
component,Mod(S) is not generated by Dehn twists about nonseparating
curves. In this case there is a generating set consisting of finitely many Dehn
twists about nonseparating curves andb − 1 Dehn twists about boundary
curves, whereb is the number of boundary components. It follows from
the computation ofH1(Mod(S); Z) (Section 5.1 below) that allb− 1 Dehn
twists are needed.



Chapter Five

Presentations and low-dimensional homology

Having found a finite set of generators for the mapping class group, we now
begin to focus on relations. Indeed, one of our main goals in this chapter
is to give a finite presentation forMod(S). In doing so we will see some
beautiful topological ideas, as well as some useful techniques from geomet-
ric group theory.

The relations in a groupG are intimately related to the first and second ho-
mology groups ofG. Recall that the homology groups ofG are defined to
be the homology groups of anyK(G, 1) space. The first and second ho-
mology groups have direct, group-theoretical interpretations. For example,
H1(G; Z) is just the abelianization ofG. Also, Hopf’s formula, given be-
low, gives an explicit expression forH2(G; Z) in terms of the generators
and relators forG. In this chapter we will give explicit computations of the
first and second homology groups of the mapping class group.

5.1 THE LANTERN RELATION AND H1(Mod(S); Z)

In the late 1970’s D. Johnson discovered a remarkable relation among Dehn
twists. He called it thelantern relation, since his diagram for the relation
was “lanternlike” [49, 111]. In the 1990’s N. V. Ivanov pointed out that
Dehn, in his original paper on mapping class groups from the 1920’s, had
already discovered the lantern relation. The existence of this relation has a
number of important implications for the structure of mapping class groups.
As a first example, we will use the lantern relation to show that Mod(S) has
trivial abelianization for mostS.
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5.1.1 LANTERN RELATION

The lantern relationis a relation inMod(S) between seven Dehn twists, all
lying on a subsurface ofS homeomorphic toS4

0 , a sphere with4 boundary
components.

xx y

y

z

z

b1

b1

b2

b2

b3

b3

b4

b4

Figure 5.1 Two views of the lantern relation onS4
0 .

Proposition 5.1 (Lantern relation) Let x, y, z, b1, b2, b3, andb4 be sim-
ple closed curves in a surfaceS that are arranged as the curves shown in
Figure 5.1. Precisely, this means that there is an orientation-preserving em-
beddingS4

0 →֒ S and that each of the above 7 curves is the image of the
curve with the same name in Figure 5.1. InMod(S) we have the relation

TxTyTz = Tb1Tb2Tb3Tb4 .

Proof. As discussed in Section 3.1, any embedding of a compact surfaceS′

into a surfaceS induces a homomorphismMod(S′)→ Mod(S). Since re-
lations are preserved by homomorphisms, it suffices to checkthat the stated
relation holds inMod(S4

0).

To check the relation inMod(S4
0), we cutS4

0 into a disk using three arcs
and apply the Alexander method (actually, two arcs would suffice). The
computation is carried out in Figure 5.2.

For the computation, it is important to keep track of three conventions: Dehn
twists are to the left, the simple closed curvesx, y, andz are configured
clockwise on the surface, and the relation is written using functional nota-
tion (i.e. elements on the right are applied first). 2
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Tx

Ty

Tz

Tb1Tb2Tb3Tb4

Figure 5.2 Proof of the lantern relation. The simple closed curvesx, y, andz are shown in
Figure 5.1.

Any surfaceS with χ(S) ≤ −2 contains an essential subsurfaceS′ home-
omorphic toS4

0 . Indeed, ifx andy are any two simple closed curves inS
with i(x, y) = 2 and î(x, y) = 0, thenS′ can be taken to be any closed
regular neighborhood ofx∪ y. To see this, one can use the fact that ifα and
β are any two simple closed curves inS, andN is any regular neighborhood
of α ∪ β, then|χ(N)| = |α ∩ β|. As such, we see that the lantern relation
occurs in any suchS.

The lantern relation implies another relation that is simpler, yet still inter-
esting, namely:

TxTyTz = TyTzTx = TzTxTy.

This relation follows easily from the lantern relation plusthe relation that
eachTbi commutes with each ofTx, Ty, andTz. We can contrast this result
with Theorem 3.14, which states that there are no relations between Dehn
twistsTa andTb with i(a, b) = 2. Note thatTxTyTz is not equal toTzTyTx.
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The lantern relation via the push map. There is another way to derive
the lantern relation that makes it much less mysterious. LetP be a pair of
pants, that is, a sphere with 3 boundary components. EmbedP in the plane
and label the outer boundary componentx and the inner componentsb1 and
b2. We obtain an element ofMod(P ) by pushingb1 aroundb2, without
ever turningb1 (think about a “do-si-do”). From the Alexander Method and
Figure 5.3 we see that this map is equal to

TxT
−1
b1
T−1
b2
.

More formally, this push map is an element of the image of the homomor-
phismπ1(UT (A)) → Mod(P ), whereA is the annulus obtained by cap-
ping b1 by a closed disk (see Section 4.2).

x

b1

b2

Figure 5.3 A push map.

Let S4
0 be a sphere with four boundary components. We have the following

easy-to-see relation inπ1(UT (P )) < Mod(S4
0), depicted in the left-hand

side of Figure 5.4: pushingb2 aroundb3 and then pushingb2 aroundb1 is
the same as pushingb2 around bothb3 andb1. In other words, using the
simple closed curves shown in the right-hand side of Figure 5.4, we have:

(TxT
−1
b1
T−1
b2

)(TyT
−1
b2
T−1
b3

) = Tb4T
−1
b2
T−1
z .

Since theTbi are central in this group, we can rewrite this as

TxTyTz = Tb1Tb2Tb3Tb4 .

And this is exactly the lantern relation.
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αβ = γ

b1

b2

b3

b4

α

β

γ

x

y

z

Figure 5.4 A new view of the lantern relation.

5.1.2 FIRST HOMOLOGY OF THE MAPPING CLASS GROUP

It is a basic fact from algebraic topology that, for any path-connected space
X, the groupH1(X; Z) is isomorphic to the abelianization ofπ1(X). Since
the homology of a groupG is defined as the homology of anyK(G, 1), we
have that the first homology group ofG with integer coefficients is

H1(G; Z) ≈ G

[G,G]
≈ Gab,

where[G,G] is the commutator subgroup ofG, andGab is the abelianization
of G.

THEOREM 5.2 For g ≥ 3, the groupH1(Mod(Sg),Z) is trivial. More gen-
erally, for any surfaceS with genus at least 3, we have thatH1(PMod(S); Z)
is trivial.

In other words, if the genus ofS is at least 3, then the groupPMod(S) is
equal to its commutator subgroup, or, equivalently,PMod(S)ab is trivial.
A group with this property is calledperfect. As we will see below, the
statement of Theorem 5.2 is false forg ∈ {1, 2}.

The following proof is due to Harer [80].

Proof. Let S be a surface whose genus is at least 3. Since Dehn twists
about nonseparating simple closed curves are all conjugate(Fact 3.7) it fol-
lows that each of them map to the same element under the natural quotient
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homomorphismMod(S)→ H1(Mod(S); Z). Call this elementh. Because
Mod(S) is generated by Dehn twists about nonseparating simple closed
curves (Corollary 4.16), it follows thatH1(Mod(S); Z) is generated byh.

Figure 5.5 A copy of a sphere with four boundary components ina higher genus surface,
which gives rise to a lantern relation between 7 nonseparating simple closed
curves.

We now claimh is trivial. Since the genus ofS is at least 3, it is possible to
embedS4

0 in S so that each of the7 simple closed curves inS4
0 involved

in the lantern relation are nonseparating; see Figure 5.5. The image of
this lantern relation under the homomorphismMod(S)→ H1(Mod(S); Z)
gives the relationh4 = h3, from which we deduce thath is trivial, giving
the theorem. 2

The search for the right relation. Mumford was the first to attack
the problem of finding the abelianization ofMod(Sg). He proved that
H1(Mod(Sg); Z) is a quotient ofZ/10Z for g ≥ 2 [160]. In his paper,
he punctuated his result with a question-exclamation mark,?!, an annota-
tion used in chess for a “dubious move.” As above, once you know that
Mod(Sg) is generated by Dehn twists about nonseparating simple closed
curves, it is a matter of using relations between Dehn twiststo determine
the abelianization. Mumford used the 3–chain relation(TaTbTc)

4 = TdTe,
hence his result. Birman noticed that one could use a different relation to
show that the abelianization ofMod(Sg) is a quotient ofZ/2Z for g ≥ 3
[20, 21]. Powell then produced a product of 15 nonseparatingDehn twists
that equals the identity onMod(Sg) for g ≥ 3, finally proving Theorem 5.2
[176]. Later, Harer [80] noticed that the lantern relation can be used to give
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a simple proof, as above.

For n > 1 the groupMod(Sg,n) is not perfect: if we take the sign of the
induced permutation on the punctures (or marked points), weget a surjective
homomorphism fromMod(Sg,n) to the abelian groupZ/2Z.

a1

a2

a3

a4

a5

Figure 5.6 The Dehn twists about these simple closed curves generateMod(S2).

5.1.3 LOW GENUS CASES

In order to determineH1(Mod(S); Z) whenS is a surface of genus 1 or 2,
we work directly from the known presentations of these groups.

Genus two. The groupMod(S2) has the following presentation, due to
Birman–Hilden. In the presentation, we useai to denote the Dehn twist
about the simple closed curveai shown in Figure 5.6.

Mod(S2) = 〈a1, a2, a3, a4, a5 | [ai, aj ] = 1 |i− j| > 1,

aiai+1ai = ai+1aiai+1,

(a1a2a3)
4 = a2

5,

[(a5a4a3a2a1a1a2a3a4a5), a1] = 1,

(a5a4a3a2a1a1a2a3a4a5)
2 = 1〉

The first relation is simply disjointness, the second the braid relation, and
the third a special case of the 3–chain relation (the two simple closed curves
forming the boundary of the 3–chain are isotopic). The elementa5a4a3a2a1a1a2a3a4a5

appearing in the last two relations is exactly the hyperelliptic involution. We
give the Birman–Hilden proof of this presentation in Chapter 9, and we give
a brief discussion of the “hyperelliptic relations” later in this section.

To get a presentation forMod(S2)
ab, we simply add the relations that all

generators commute. This makes the first and fourth relations redundant.
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The braid relations then tell us that all theai represent the same elementa
in the abelianization. The next relation becomesa12 = a2, or, a10 = 1, and
the last relation becomesa20 = 1, which is redundant. Thus,Mod(S2)

ab is
a cyclic group of order 10, as proved by Birman–Hilden [25].

It turns out that for any surfaceS2,n of genus 2 withn ≥ 0 punctures, we
haveH1(Mod(S2,n); Z) ≈ Z/10Z; see [120].

Genus one. Similarly, we can find thatH1(Mod(T 2); Z) ≈ Z/12Z, using
the classical presentation:

Mod(T 2) ≈ SL(2,Z) ≈ 〈a, b | aba = bab, (ab)6 = 1〉.

In Mod(T 2), the elementsa and b are Dehn twists about simple closed
curves that intersect once. The relations are the braid relation and the 2–
chain relation.

In the genus 1 case, adding punctures does not change the firsthomology
of Mod(S), but adding boundary does. IfS is a genus 1 surface with no
boundary thenH1(Mod(S); Z) ≈ Z/12Z, and if S is a genus 1 surface
with b boundary components, thenH1(Mod(S); Z) ≈ Zb; again, see [120].
Combining the last statement with Proposition 3.19 we see that the map-
ping class group of a genus 1 surface with multiple boundary components is
not generated by Dehn twists about nonseparating simple closed curves (cf.
Section 4.4.4).

Genus zero. By again considering presentations, we see that ifS0,n is a
sphere withn punctures, thenH1(Mod(S0,n); Z) is isomorphic to a cyclic
group of order2(n − 1) or n − 1, depending on whethern is even or odd,
respectively. The presentation forMod(S0,n) is

Mod(S0,n) = 〈σ1, . . . , σn−1 | [σi, σj ] = 1 |i− j| > 1,

σiσi+1σi = σi+1σiσi+1,

(σ1 · · · σn−1)
n = 1,

(σ1 · · · σn−1σn−1 · · · σ1) = 1〉.

One can arrive at this presentation from a presentation for the braid groups;
theσi correspond to half-twists. See Chapter 9.



PRESENTATIONS AND HOMOLOGY 129

5.1.4 THE HYPERELLIPTIC RELATIONS

In our presentation ofMod(S2) above we encountered a new, seemingly
complicated relation. Here, we generalize this relation tohigher genus sur-
faces, and in Chapter 9 we give a geometric explanation for this relation.

Let c1, . . . , c2g+1 be a chain of isotopy classes of simple closed curves in the
closed surfaceSg; that is,i(ci, ci+1) = 1 andi(ci, cj) = 0 when|i− j| > 1.
There is only one such chain inSg up to homeomorphism (this follows
from the fact that there is one2g–chain inSg up to homeomorphism, as in
Section 1.3). The product

Tc2g+1
· · ·Tc1Tc1 · · ·Tc2g+1

is a hyperelliptic involution (thehyperelliptic involution wheng is equal to
1 or 2).

Thus, we have the followinghyperelliptic relationsin Mod(Sg):

(Tc2g+1
· · ·Tc1Tc1 · · ·Tc2g+1

)2 = 1

[Tc2g+1
· · · Tc1Tc1 · · ·Tc2g+1

, Tc2g+1
] = 1

A strange fact. If we rewrite the first hyperelliptic relation, we see that
there is a product of4g + 1 Dehn twists that equals the inverse of one Dehn
twist. In other words, a right Dehn twist is a product of left Dehn twists.
This, plus the Dehn–Lickorish theorem, gives us the following surprising
fact (pointed out to us by Luis Paris):

Every element ofMod(Sg) is a product of left (positive) Dehn
twists.

5.2 PRESENTATIONS FOR THE MAPPING CLASS GROUP

We have already seen several relations between Dehn twists.In particular,
we have the disjointness relation (Fact 3.9), the braid relation, the chain
relation, the lantern relation, and the hyperelliptic relation. We will see that
these relations suffice to give a finite presentation forMod(Sg).



130 CHAPTER 5

5.2.1 WAJNRYB ’ S PRESENTATION

Finite presentations for the mapping class groups of closedsurfaces of genus
1 and 2 were already discussed in Section 5.1.2. McCool gave the first
algorithm for finding a finite presentation for the mapping class group of
a higher genus surface [141]. His techniques are algebraic in nature; no
explicit presentation has been derived from this algorithm.

Hatcher and Thurston made a breakthrough by finding a topologically fla-
vored algorithm for constructing an explicit finite presentation forMod(S).
The algorithm was carried out by Harer, who produced a finite but unwieldy
presentation [80]. Wajnryb used these ideas to derive the following ex-
plicit presentation, which is considered to be the standardpresentation for
Mod(S) [204, 28]. The exact form of the presentation given here is taken
from a survey paper of Birman [24]. In the statement, we use functional
notation as usual (elements applied right to left).

...

c0c1

c2
c3

c4
c5

c6
c7 c2g−1

c2g

Figure 5.7 The Humphries generators forMod(S).

THEOREM 5.3 (Wajnryb’s finite presentation) Let S be either a closed
surface or a surface with one boundary component and genusg ≥ 3. Let
ai denote the Humphries generatorTci , whereci is as shown in Figure 5.7.
The mapping class groupMod(S) has a presentation where the generators
area0, . . . , a2g, and the relations are as follows.

1. Disjointness relations

aiaj = ajai if i(ci, cj) = 0

2. Braid relations

aiajai = ajaiaj if i(ci, cj) = 1
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3. 3–chain relation

(a1a2a3)
4 = a0b0

where

b0 = (a4a3a2a1a1a2a3a4)a0(a4a3a2a1a1a2a3a4)
−1

4. Lantern relation

a0b2b1 = a1a3a5b3

where

b1 = (a4a5a3a4)
−1a0(a4a5a3a4)

b2 = (a2a3a1a2)
−1b1(a2a3a1a2)

b3 = (a6a5a4a3a2ua
−1
1 a−1

2 a−1
3 a−1

4 )a0(a6a5a4a3a2ua
−1
1 a−1

2 a−1
3 a−1

4 )−1

and where

u = (a6a5)
−1b1(a6a5)

5. Hyperelliptic relation (S closed)

(a2g · · · a1a1 · · · a2g)d = d(a2g · · · a1a1 · · · a2g)

whered is any word in the generating set that, under the previous re-
lations, is equivalent to the Dehn twist about the simple closed curve
d in Figure 5.8.

In the statement, we mean that the hyperelliptic relation isonly needed (and
it is only true) for closed surfaces. The reason for the term “hyperelliptic
relation” is that the productd(a2g · · · a1a1 · · · a2g)d is a hyperelliptic invo-
lution.

Strictly speaking, Theorem 5.3 does not give a formal presentation ofMod(Sg),
since we have not given the elementd in terms of the generators, so we take
care of that now. If we rephrase things, we need to write the Dehn twistd
as a product of the generatorsai in the mapping class group of the surface
with one boundary component. Letn1, . . . , ng be the Dehn twists about
the simple closed curves shown in Figure 5.9. Note thatn1, n2, andng are
the same as the Dehn twistsa1, b0, andd from Theorem 5.3. Similarly to
Section 4.4.3, we can inductively write theni in terms of the Humphries
generators. We start withn1 = a1 andn2 = b0. Then, we have

ni+2 = winiw
−1
i ,
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...

...
b0

b1

b2
b3

d

Figure 5.8 Extra elements used in the relations for Wajnryb’s presentation forMod(S).
We have labelled the simple closed curves by the corresponding elements of
Mod(S).

where

wi = (a2i+4a2i+3a2i+2ni+1)(a2i+1a2ia2i+2a2i+1)(a2i+3a2i+2a2i+4a2i+3)(ni+1a2i+2a2i+1a2i).

Finally, setd = ng.

...
n1 n2 n3 ng

Figure 5.9 Extra elements used in the relations for Wajnryb’s presentation forMod(S).
We have labelled the simple closed curves by the corresponding elements of
Mod(S).

A presentation of the mapping class group of a surface with more than
one boundary component can be obtained by applying the Birman exact se-
quence. Also, a presentation forMod(Sg,1) can be obtained by combining
Wajnryb’s presentation with Proposition 3.19.

The effect of relations on homology. Harer notes that if we take the ab-
stract group with the Humphries generators and the first two sets of relations
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in the Wajnryb presentation, then we have a group (an Artin group) whose
first homology isZ. We see from our proof of Theorem 5.2 that if we next
add in the lantern relation, the resulting group has trivialfirst homology. At
this point, our abstract group has trivial second homology,yet Harer proved
thatH2(Mod(Sg); Z) ≈ Z (Theorem 5.8 below). Adding in the 3–chain
relation corrects this.

The algebro-geometric approach. Years before McCool’s result, Baily
and Deligne–Mumford gave different compactifications ofM(Sg), the mod-
uli space of Riemann surfaces homeomorphic toSg, showing thatM(Sg) is
a quasiprojective variety [10, 50]. We will prove in Theorem6.9 below that
Mod(Sg) has a finite index subgroupΓ that is torsion free, from which it
follows thatM(Sg) has a finite cover (corresponding toΓ) which is a man-
ifold, and so a smooth quasiprojective variety. Lojasiewicz had also shown
that any smooth quasiprojective variety has the homotopy type of a finite
complex; in particular its fundamental group is finitely presented. We con-
clude thatΓ, henceMod(Sg), is finitely presented. However, this approach
does not give an algorithm for finding an explicit finite presentation.

5.2.2 THE CUT SYSTEM COMPLEX

We now very briefly outline the strategy used to derive the presentation in
Theorem 5.3. In Section 5.3 below, we will give a complete proof that
Mod(Sg) is finitely presented, although we will not derive an explicit pre-
sentation.

The cut system complex.Hatcher–Thurston [84] defined a 2–dimensional
CW–complexX(Sg), called thecut system complex, as follows. Vertices of
X(Sg) correspond tocut systemsin Sg, that is (unordered) sets{c1, . . . , cg}
where:

1. eachci is the isotopy class of a nonseparating simple closed curveγi
in Sg,

2. i(ci, cj) = 0 for all i andj, and

3. Sg − ∪γi is connected.

An example of a vertex inX(Sg) is given by the set of isotopy classes
{a1, . . . , ag} shown in Figure 5.10. Vertices represented by{ai} and{bi}
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are connected by an edge inX(Sg) if (up to renumbering)ai = bi for
2 ≤ i ≤ g, andi(a1, b1) = 1.

Just as the edges ofX(Sg) are defined by certain topological configura-
tions of curves, so are the 2–cells ofX(Sg). For example, we glue in
a triangle to the 1–skeleton ofX(Sg) for each triple of vertices that are
pairwise connected by edges. For example, in Figure 5.10, the vertices
va = {a, a2, . . . , ag}, vb = {b, a2, . . . , ag}, andvc = {c, a2, . . . , ag} span
a triangle inX(Sg). The complexX(Sg) also has squares and pentagons;
we refer the reader to the paper [84] for the details.

Hatcher–Thurston give a beautiful Morse–Cerf-theoretic proof thatX(Sg)
is simply connected. Later Hatcher–Lochak–Schneps gave analternate proof
for a closely related complex [87], and Wajnryb gave a combinatorial proof
of simple connectivity for the original complex [205].

The mapping class group action. In general, when a groupG acts co-
compactly on a simply connected complexX with finitely presented vertex
stabilizers and finitely generated edge stabilizers, the groupG is finitely pre-
sented (see Proposition 5.6 below). For each orbit of vertices ofX, there
are relations inG coming from the relations in those vertex stabilizers, for
each orbit of edges ofX there are relations inG coming from the generators
of those edge stabilizers (the relations identify elementsof the two vertex
stabilizers), and finally there is one relation inG for each orbit of 2–cells in
X. See the paper of Ken Brown for details [36].

Since the complexX(Sg) is defined by topological rules, it follows that
Mod(Sg) acts onX(Sg). Using the change of coordinates principle it is
not hard to see that the action is cocompact; indeed there is asingle orbit
of vertices and a single orbit of edges. Now, the stabilizer in Mod(Sg) of a
vertex ofX(Sg) is closely related to a braid group. This is because if we cut
Sg along the simple closed curves corresponding to a vertex ofSg, the result
is a sphere with2g boundary components, cf. Chapter 9. Therefore, the
presentation for a vertex stabilizer can be derived from known presentations
of braid groups, or, mapping class groups of genus 0 surfaces. Generating
sets for edge stabilizers are obtained similarly.

Wajnryb’s calculation. To give a flavor of the calculation used to get
Wajnryb’s actual presentation, we explain how the braid relation comes up
in his analysis of the action ofMod(Sg) on X(Sg). Of course, to verify
the braid relation inMod(Sg) is not difficult (see Proposition 3.11). The
point here is that, by the general theory, a full set of relations forMod(Sg)
is obtained by identifying elements of different cell stabilizers. We will
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realize the braid relation as one such relation.

a = a1 a2 a3 ag

b

c
. . .

Figure 5.10 The simple closed curvesai give a vertex of the cut system complex, and the
simple closed curvesa, b, andc, along witha2, . . . ag, give a triangle of the
complex.

In what follows, we abuse notation, denoting a simple closedcurve and its
associated Dehn twist by the same symbol.

Let va be the vertex ofX(Sg) corresponding to the cut system{ai} given in
Figure 5.10. We will make use of two particular elements of the stabilizer
Gva of va, namely the Dehn twista and the elements = ba2b, whereb is
the Dehn twist about the simple closed curve shown in Figure 5.10.

Let eab be the edge ofX(Sg) spanned by the verticesva and vb defined
above. One element of the stabilizerGeab

of eab is r = aba. Sincer
interchanges the vertices ofeab, it follows thatr2 is an element ofGva . In
particular, it is the elementsa2 ∈ Gva . So we obtain the following relation
(relation P10 in [205, Theorem 31]):

r2 = sa2.

We now focus on the stabilizer of a 2–cell, namely the triangle tabc spanned
by va, vb, andvc. The elementar does not stabilizeva or eab, but it does
stabilizetabc, inducing an order 3 rotation oftabc. Thus,(ar)3 is an element
of Gva , and again one can write it as a word in the elementss, a ∈ Gva ,
namely,(asa)2. So we have the following relation (relation P11 in [205,
Theorem 31]):

(ar)3 = (asa)2.

We can rewrite this last relation using the relationr2 = sa2 and the trivial
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relationsaa−1 = 1 andbb−1 = 1.

(ar)3 = (asa)2

=⇒ (ar)3 = a(sa2)sa

=⇒ (ar)3 = ar2sa

Replacingr with aba ands with ba2b, we find:

a2ba3ba3ba= a2ba2baba2ba

=⇒ (a2ba2)aba(a2ba) = (a2ba2)bab(a2ba)

=⇒ aba= bab

Thus we see the braid relation arising from the action ofMod(Sg) onX(Sg);
it comes from two relations one gets by flipping edges and by rotating trian-
gles. Deriving the complete presentation ofMod(Sg) given in Theorem 5.3
is quite involved; we refer the reader to Wajnryb’s paper [205] for details.

It is straightforward to carry out this procedure in the caseof the torus. The
complexX(T 2) is the Farey complex (see Section 4.1), and, in fact, the
relationsr2 = sa2 andaba = bab already discussed suffice to present the
groupMod(T 2) ≈ SL(2,Z).

5.2.3 THE GERVAIS PRESENTATION

While Wajnryb’s presentation (Theorem 5.3) is the most well-known and
classical presentation ofMod(S), there are several other useful ones. We
now present one due to Gervais. Some of the features of this presentation
are: it is fairly easy to write down explicitly, it works for the pure mapping
class group of any surface with boundary, and all of the relations are de-
scribed on uniformly small subsurfaces (tori with at most 3 boundary com-
ponents). It is important to keep in mind that Gervais’s derivation of this
presentation is accomplished by starting from Wajnryb’s presentation and
simplifying the relations there. The same is true for the beautiful presen-
tation due to Matsumoto [139], which is phrased in terms of Artin groups,
and which we do not discuss here.

The Gervais presentation uses one new relation which we havenot seen
before.

The star relation. Consider the torusS3
0 with 3 boundary componentsd1,

d2, andd3. Let c1, c2, c3, andb be isotopy classes of simple closed curves
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configured as in Figure 5.11. Note thatS3
0 is homeomorphic to a closed

regular neighborhood ofc1 ∪ c2 ∪ c3 ∪ b (really, the union of four represen-
tatives).

c1 c2

c3

b

d1d2

d3

Figure 5.11 The simple closed curves used in the star relation.

Gervais gives the following relation [69]. Ifc1, c2, c3, b, d1, d2, andd3 are
the isotopy classes of simple closed curves inS3

0 given in Figure 5.11, then
we have:

(Tc1Tc2Tc3Tb)
3 = Td1Td2Td3 .

As with the lantern relation, this relation can be checked with the Alexander
method. We callb thecentral curveof the star relation. For any embedding
S3

0 →֒ S into a surfaceS, the image of the star relation under the induced
homomorphismMod(S3

0) → Mod(S) of course gives a relation (betwen
the images of the above curves) inMod(S).

Suppose thatS3
0 is embedded inS in such a way that the isotopy classesc1

andc2 are equal, but distinct fromc3. This happens when the image ofd3

under the embedding is the trivial isotopy class and the images ofd1 andd2

are nontrivial. In this case, the star relation becomes

(T 2
c1Tc3Tb)

3 = Td1Td2 .

We call this adegenerate star relation. We will not need to consider star
relations withc1 = c2 = c3. We note that the degenerate star relation is the
same as one of the 3–chain relations given in Section 4.4.

Recall that we used the star relation in Section 4.4.4 to prove Corollary 4.16.

The Gervais presentation. Let S be a compact surface of genusg with
n boundary components. We begin by giving the generating set for the
Gervais presentation ofMod(S). Each of the generators is a Dehn twist,
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and so it suffices to list the corresponding simple closed curves. The curves
are shown in Figure 5.12, where we have drawnS as a torus withg − 1
handles attached andn disks removed.

We start with the top picture in the figure. There is one simpleclosed curve
b which will form the central curve for all of our star relations. There are
2(g−1)+n simple closed curves{ci} with i(b, ci) = 1. There are2(g−1)
simple closed curves corresponding to the latitudes and longitudes of the
g − 1 handles attached to the central torus. We also include then boundary
components. Finally, for each ordered pair of distinct curves(ci, cj), there
is a simple closed curveci,j that lies in a neighborhood ofci ∪ cj ∪ b and
that lies in the clockwise direction fromci alongb (note that eachci,i+1 has
already appeared on the list). The curvesci,j are depicted in the bottom
picture of Figure 5.12; there are(2g − 2 + n)(2g − 3 + n) of these curves.

b

Figure 5.12 The generators for the Gervais presentation.

THEOREM 5.4 (Gervais’ finite presentation) LetS be a surface of genus
g with n boundary components. The groupMod(S) has a presentation with
one Dehn twist generator for each simple closed curve shown in Figure 5.12,
and with the following relations.

1. All disjointness relations between generators.

2. All braid relations between generators.

3. All star relations between generators, including the degenerate ones,
whereb is the central curve.
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From Theorem 5.4, it is straightforward to write down the presentation ex-
plicitly, by listing the generators and relations. For the first two kinds of re-
lations, one needs to find all pairs of generators that are disjoint or that have
intersection number 1. The degenerate star relations are given by triples
{ci, ci, cj}, whereci 6= cj , and the other star relations are given by triples
of distinctci–curves.

By Proposition 3.19, one can get a presentation for the case of a surface with
punctures by setting each generator corresponding to a Dehntwist about a
boundary curve to be trivial.

5.3 PROOF OF FINITE PRESENTABILITY

We now give a proof thatMod(S) is finitely presented. While it is possible
to give a proof analogous to our proof of finite generation, weinstead choose
to introduce a new technique. As a result, we obtain a new proof of finite
generation.

The strategy, suggested by Andrew Putman, is to show that the“arc com-
plex”A(S) is contractible, and use the action ofMod(S) onA(S) to build a
K(Mod(S), 1) with finite 2–skeleton. It immediately follows thatMod(S)
is finitely presented. While this is a simple proof of finite presentability, we
do not know what explicit finite presentation comes out of this approach.

5.3.1 THE ARC COMPLEX

Let S be a compact surface that either has nonempty boundary or hasat
least one marked point. We define thearc complexA(S) as the abstract
simplicial flag complex described by the following data (cf.§4.1).

Vertices.There is one vertex for each free isotopy class of es-
sential simple proper arcs inS.

Edges.Vertices are connected by an edge if the corresponding
free isotopy classes have disjoint representatives.

If we take a surfaceS with nonempty boundary and cap one or more bound-
ary components with a once-marked disk, thenA(S) is naturally isomorphic
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to the arc complex for the capped surface. So in this sense there is no dif-
ference between marked points and boundary components in defining the
arc complex. When we consider the action of the mapping classgroup on
the arc complex, marked points are more natural than boundary components
since Dehn twists about boundary components act trivially on the arc com-
plex.

As a first example, the arc complex of the torus with one boundary compo-
nent is the Farey complex (see Section 4.1).

The most fundamental fact about the arc complex is the following theorem,
due to Harer [80].

THEOREM 5.5 Let S be any compact surface with finitely many marked
points. IfA(S) is nonempty then it is contractible.

The elegant proof we present is due to Hatcher [85]. A number of other
mathematicians made various contributions to the circle ofideas surround-
ing this theorem, including Thurston, Bowditch–Epstein, Mumford, Mosher,
and Penner.

For the proof, recall that the simplicial star of a vertexv in a simplicial
complex is the union of closed simplices containingv. The simplicial star
of a vertex is contractible.

Proof. We choose some base vertexv of A(S). To prove thatA(S) is con-
tractible we will define a flow ofA(S) onto the simplicial star ofv.

An arbitrary pointp in the simplex ofA(S) spanned by verticesv1, . . . , vn is
given by barycentric coordinates, that is, a formal sum

∑
civi where

∑
ci =

1 andci ≥ 0 for all i. Let α be a fixed representative ofv. We can realize
p in S as follows: first realize thevi as disjoint arcs inS, each in minimal
position withα, and then thicken eachvi-arc to a band, which is declared to
have widthci.

By an isotopy, we make the intersection of the arc representing v with the
union of these bands equal to a closed interval disjoint from∂S, as in the left
hand side of Figure 5.13. (In the figure we have shownα with its endpoint at
a boundary component. If instead its endpoint is at a marked point/puncture,
then the boundary component, depicted as a horizontal line at the bottom of
the figure, is not in the picture.) Letθ =

∑
cii(vi, v) denote the thickness

of this union of bands.
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α

∂S

Figure 5.13 The “Hatcher flow” onA(S).

The flow is defined as follows. At timet, we push a total band width of
tθ in some prechosen direction along the arcα (see the right hand side of
Figure 5.13). The picture gives barycentric coordinates for some new point
in A(S). At time 1, all of the bands are disjoint from the arcα, and we are
in the star ofv.

It is not difficult to check that the flow is continuous and well-defined on the
intersections of simplices. This completes the proof of thetheorem. 2

5.3.2 FINITE PRESENTABILITY VIA GROUP ACTIONS ON COMPLEXES

The groupMod(S) acts by simiplicial automorphisms on the contractible
simplicial complexA(S). In order to use this action to analyzeMod(S),
we need to apply some geometric group theory.

The following theorem is adapted from Scott–Wall [184]. In the statement
of the theorem, we say that a groupG acts on a CW–complexX without
rotations if whenever an elementg ∈ G fixes a cellσ ⊂ X theng fixesσ
pointwise. Any action of a group on a CW–complex can be turnedinto an
action without rotations by barycentrically subdividing the complex. The
benefit of an action without rotations is that the quotient has a natural CW–
complex structure coming from the structure of the originalcomplex.

Proposition 5.6 LetG be a group acting on a contractible CW–complexX
without rotations. Suppose that each of the following conditions holds.
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1. The quotientX/G is finite.

2. Each vertex stabilizer is finitely presented.

3. Each edge stabilizer is finitely generated.

ThenG is finitely presented.

Proof. Let U be anyK(G, 1) complex. Consider the contractible complex
Ũ × X. Since the action ofG on Ũ is free, the diagonal action ofG on
Ũ ×X is free. Therefore, as̃U ×X is contractible,(Ũ ×X)/G is another
K(G, 1) complex. This construction of aK(G, 1) from a group action on a
complex is called theBorel construction.

We will show that(Ũ × X)/G has the homotopy type of a complex with
finite 2–skeleton. Consider the projection

(Ũ ×X)/G→ X/G.

If v is a vertex ofX with stabilizerGv inG, then(Ũ×v)/Gv is aK(Gv , 1)

complex. Moreover, this space maps injectively to(Ũ × X)/G and is the
preimage of[v] ∈ X/G. In other words, over each vertex ofX/G there is
in (Ũ ×X)/G aK(π, 1) corresponding to that vertex stabilizer. Similarly,
lying over each higher-dimensional open cell is the productof a K(π, 1)
complex for that cell stabilizer with that open cell.

As a result, we see that(Ũ × X)/G has the structure of a “complex of
spaces,” with each vertex space aK(Gv , 1) for a vertex stabilizerGv and
each edge space aK(Ge, 1) for an edge stabilizerGe. That is, the space
(Ũ × X)/G is obtained inductively as follows: we start with the disjoint
union of theK(Gv, 1) spaces; then, we take theK(Ge, 1) spaces, cross
them with intervals, and glue them to theK(Gv , 1) spaces via any map in
the unique homotopy class of maps determined by the inclusionGe →֒ Gv.
This process is repeated inductively (and analogously) on higher dimen-
sional skeleta.

We make the following observation: if each space in the complex of spaces
is replaced with another space to which it is homotopy equivalent (i.e., an-
otherK(π, 1) space), the homotopy type of the resulting complex does not
change. In other words, the “homotopy colimit” is well-defined [86, Prop
4G.1].
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Since the stabilizerGv of each vertexv is assumed to be finitely presented,
eachK(Gv, 1) space can be chosen to have finite 2–skeleton. Since the
stabilizer of each edgee is assumed to be finitely generated, eachK(Ge, 1)
space can be chosen to have finite 1–skeleton. For the stabilizerGf of each
2-cell f , theK(Gf ) space can be chosen to have finite 0–skeleton, since for
any groupH there is aK(H, 1) with a single vertex).

There are three ways that2–cells arise in the complex of spaces(Ũ×X)/G:
via 2–cells ofK(Gv, 1) spaces, 1–cells ofK(Ge, 1) spaces, and 0–cells of
K(Gf , 1) spaces. As discussed above, each of these spaces can be chosen
to have finite 2–skeleton, 1–skeleton and 0–skeleton, respectively. Since the
quotientX/G is finite, the resulting complex of spaces has finitely many
2–cells. Thus, we have created aK(G, 1) with finite 2–skeleton, and soG
is finitely presented. 2

We remark that the proof of Proposition 5.6 can be slightly modified to work
in the case whereX is only assumed to be simply connected, as opposed to
contractible. Actually, the complex of curvesC(S) is simply connected (but
not contractible) for mostS; see [82, Theorem 3.5] and [104, Theorem 1.3].
The reason we use the arc complex in our application of Proposition 5.6 is
simply because it is easier to prove thatA(S) is contractible than it is to
prove thatC(S) is simply connected.

5.3.3 PROOF THAT THE MAPPING CLASS GROUP IS FINITELY PRESENTED

We are now ready to prove the following theorem.

THEOREM 5.7 If S is a compact surface with finitely many marked points,
then the groupMod(S) is finitely presented.

Proof. We first reduce the problem to the case ofSg,n with n > 0 marked
points. Suppose we can prove the theorem in this case. We now explain how
to deduce the theorem in the case thatS has nonempty boundary, and then
the case whereS is closed.

Let S be a compact surface withn > 0 boundary components, and assume
thatS is not the diskD2. Also assume by induction that for any compact
surface withn−1 boundary components, the mapping class group is finitely
presented. We recall Proposition 3.19, which states that ifS∗ is the surface
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obtained from a surfaceS by capping a boundary componentβ with a once-
marked disk, then the following sequence is exact:

1→ 〈Tβ〉 → Mod(S)
Cap→ Mod⋆(S∗)→ 1.

whereMod⋆(S∗) is the subgroup ofMod(S∗) consisting of elements that
fix the marked point coming from the capping operation. By theinductive
hypothesis, we have thatMod(S∗) is finitely presented. SinceMod⋆(S∗)
has finite index inMod(S∗), it is also finitely presented. Since the extension
of a finitely presented group by a finitely presented group is finitely pre-
sented, it follows from Proposition 3.19 thatMod(S) is finitely presented.

A similar argument to the above, using the Birman exact sequence, shows
thatMod(Sg,0) is finitely presented ifMod(Sg,1) is, since the quotient of a
finitely presented group by a finitely generated group is finitely presented.

We have thus reduced the proof to showing thatMod(Sg,n) is finitely pre-
sented whenn > 0. We may assume that(g, n) 6= (0, 1) because we already
know Mod(S0,1) = 1. Since a group is finitely presented if and only if any
of its finite index subgroups is finitely presented, it suffices to prove that
PMod(Sg,n) is finitely presented. We make the inductive hypothesis that
PMod(Sg′,n′) is finitely presented wheng′ < g or wheng′ = g andn′ < n.

We would like to apply Proposition 5.6. By Theorem 5.5, the arc com-
plexA(Sg,n) is contractible. Therefore its barycentric subdivisionA′(Sg,n),
on which PMod(Sg,n) acts without rotations, is also contractible. Note
that vertices ofA′(Sg,n) correspond to simplices ofA(Sg,n). It follows
from the change of coordinates principle that the quotient of A′(Sg,n) by
PMod(Sg,n) is finite.

Now letv be a vertex ofA′(Sg,n), and letGv be its stabilizer inPMod(Sg,n).
In order to apply Proposition 5.6, we need to show thatGv is finitely pre-
sented.

As above,v corresponds to a simplex ofA(Sg,n), that is, the isotopy class of
a collection of disjoint simple proper arcsαi in Sg,n. If we cutSg,n along the
αi, we obtain a (possibly disconnected) compact surface with boundarySα,
possibly with marked points in its interior. We may pass fromthe cut surface
Sα to a surface with marked points but no boundary by collapsingeach
boundary component to a marked point (or, what will have the same effect,
capping each boundary component with a once-marked disk). Denote the
connected components of the resulting surface byRi. EachRi has marked
points coming from the marked points ofSg,n and/or marked points coming
from ∪αi. Note that eachPMod(Ri) falls under the inductive hypothesis.
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LetG0
v denote the subgroup ofGv consisting of elements that fix each iso-

topy class[αi] with orientation. Note that these elements necessarily fix the
Ri as well. SinceG0

v has finite index inGv, it suffices to show thatG0
v is

finitely presented. There is a map

η : G0
v →

∏
PMod(Ri).

To see thatη is a well-defined homomorphism, one needs the fact that if
two homeomorphisms ofSg,n fixing ∪αi are homotopic, then they are ho-
motopic through homeomorphisms that fix∪αi.

The mapη is also surjective. Indeed, given any element of
∏

PMod(Ri),
one can choose a representative homeomorphism that is the identity in a
neighborhood of the marked points, and then one can lift thisto a repre-
sentative of an element ofG0

v that is the identity on a neighborhood of the
union of the marked point with theαi. It follows from Proposition 3.19 that
the kernel ofη is generated by the Dehn twists about the components of the
boundary of the cut surfaceSα. Since eachPMod(Ri) is finitely presented,
their product is as well. As the kernel ofη is finitely generated and its cok-
ernel is finitely presented, it follows thatG0

v is finitely presented, which is
what we wanted to show.

Two vertices ofA′(Sg,n) are connected by an edge if and only if the corre-
sponding simplices ofA(Sg,n) share a containment relation (that is, one is
contained in the other). It follows that the stabilizer of anedge inA′(Sg,n)
is a finite index subgroup of the larger of the two stabilizersof its vertices.
Thus edge stabilizers are finitely presented and in particular they are finitely
generated.

We thus have thatMod(Sg,n) acts on the contractible simplicial complex
A(S) without rotations, with finitely presented vertex stabilizers and finitely
generated edge stabilizers. Applying Proposition 5.6 to this action gives that
Mod(Sg,n) is finitely presented. 2

5.4 HOPF’S FORMULA AND H2(Mod(S); Z)

In Section 5.1.2 we computedH1(Mod(S); Z). In this section we compute
H2(Mod(S); Z). As with first homology, the second homology is a basic
invariant of a groupG. For example, ifH2(G; Z) infinitely generated then
G has no finite presentation. The precise connection betweenH2(G; Z)
and presentations forG is made explicit by Hopf’s formula below. Later we



146 CHAPTER 5

will see thatH2(G; Z) is related toH2(G; Z), which in turn classifies cyclic
central extensions ofG.

THEOREM 5.8 (Harer) Let g ≥ 4. Let S1
g denote a compact surface of

genusg with one boundary component. Then we have the following isomor-
phisms:

(i) H2(Mod(Sg); Z) ≈ Z
(ii) H2(Mod(S1

g ); Z) ≈ Z
(iii) H2(Mod(Sg,1); Z) ≈ Z2

Harer proved Theorem 5.8 by reducing to the case whereS has boundary
and using the action ofMod(S) on the arc complex associated toS. In fact
Harer proved a more general theorem for surfaces with multiple boundary
components and arbitrarily many punctures.

Pitsch gave a completely different proof of the “upper bound” in Theorem
5.8. That is, he showed thatH2(Mod(S1

g ); Z) is a quotient ofZ. He realized
that one can actually apply Hopf’s formula to Wajnryb’s explicit presenta-
tion of Mod(S). In this section we present what is essentially Pitsch’s proof
from [174], together with the variations on his argument that are required
for the cases ofSg andSg,1.

5.4.1 THE HOPF FORMULA

LetG be any group with a finite presentationG = 〈F |R〉. The groupG can
also be thought of asF/K, whereK is the normal subgroup generated by
the relators, namely, the elements ofR. The classicalHopf Formulastates
that

H2(G; Z) ≈ K ∩ [F,F ]

[K,F ]
.

So elements ofH2(G; Z) are cosets represented by relators inG—i.e., ele-
ments ofK—that are products of commutators inF . Given a relatork, we
think of any conjugate relatorfkf−1 as being redundant, and that is why
we take the quotient by[K,F ]. See Brown’s book [37, Theorem 5.3] for a
proof of Hopf’s formula.

The group(K∩[F,F ])/[K,F ] is a subgroup of the abelian groupK/[K,F ].
Therefore, asK is normally generated by the finitely many elements ofR,
the groupK/[K,F ] is an abelian group generated by the cosets represented
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by the finitely many elements ofR. Hopf’s formula thus implies that any
element ofH2(G; Z) can be represented (nonuniquely) as a product

∏
rni
i ,

whereR = {r1, . . . rN} andni ∈ Z.

5.4.2 THE HOPF FORMULA APPLIED TO THE WAJNRYB PRESENTATION

We start with the case ofS1
g with g ≥ 4. We will use Wajnryb’s presentation

for Mod(S1
g ), in particular using the notation from Theorem 5.3. Pitsch’s

idea is to plug this presentation into Hopf’s formula.

We can rewrite each relation from Theorem 5.3 so that we get a word in the
generators forMod(S1

g ) that is equal to the identity element ofMod(S1
g ),

that is, a relator. We do this by moving all generators to the left hand
side of each relation. We will use the following notation forthe relators:

(i) Disjointness relators [ai, aj ] denotedDi,j

(ii) Braid relators aiajai(ajaiaj)
−1 denotedBi,j

(iii) 3–chain relator (a1a2a3)
4(a0b0)

−1 denotedC
(iv) Lantern relator (a0b2b1)(a1a3a5b3)

−1 denotedL

In the first two relators, only certain pairs(i, j) are allowed, as governed by
the statement of Theorem 5.3. We will not need the precise forms of the
relators here—that is, we will not write out thebi in terms of theai—but
rather we will only need the number of times, with sign, eachai appears in
each relator. We will give these numbers as needed, though the reader can
easily read them off from Theorem 5.3.

Let F be the free group generated by theai, and letK denote the subgroup
of F normally generated by the above relators. As in the above discussion,
any elementx of the abelian groupK/[K,F ] is a coset represented by an
element of the form

x =
(∏

D
ni,j

i,j

)(2g−1∏

i=1

Bni
i,i+1

)
Bn0

0,4C
nCLnL (5.1)

where the exponents are integers. In the remainder of the proof, we will ig-
nore the distinction between the coset given by such an element ofK/[K,F ]
and the actual element ofK/[K,F ].

According to Hopf’s formula,H2(Mod(S1
g ); Z) is isomorphic to the sub-

group(K ∩ [F,F ])/[K,F ] of K/[K,F ]. So which elements ofK/[K,F ]
given by (5.1) are also elements of[F,F ]/[K,F ]? One obvious condition is
that the exponent sum of eachai must be zero. Actually, we will show that,
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up to multiples, there is at most one element of the form (5.1)that satisfies
this condition.

5.4.3 COMMUTING RELATORS

We begin by analyzing the simplest relators, namely the commuting relators
Di,j . We will show that each represents the trivial element ofH2(Mod(S1

g); Z),
and hence these terms can be ignored in (5.1). Choose some particular
Di,j = [ai, aj ]. As an element ofF = 〈ai〉, this word certainly lives in
K ∩ [F,F ], whereK is the normal subgroup ofF generated by the relators.
Our goal is to show that it also lies in[F,K].

In general, ifg andh are two commuting elements ofMod(S1
g ), then[g, h]

is an element ofK ∩ [F,F ]. Let {g, h} denote the corresponding element
(coset) inH2(Mod(S1

g ); Z).

If g is an element ofMod(S1
g ) that commutes with the elementsh andk of

Mod(S1
g ), then

{g, hk} = {g, h} + {g, k} (5.2)

in H2(Mod(S1
g ); Z). This follows from the fact that, for any three elements

x, y, andz in the free groupF , we have

[x, yz] = [x, y][x, z]y .

We have also used the fact that conjugation “does nothing” inthe quotient
(K ∩ [F,F ])/[K,F ]. It is also easy to check that

{g, h−1} = −{g, h}. (5.3)

Lemma 5.9 Let g ≥ 4. If a andb are disjoint nonseparating simple closed
curves inS1

g , then{Ta, Tb} = 0 in H2(Mod(S1
g ); Z).

Proof. We cutS1
g alonga and obtain a compact surfaceS′ of genusg − 1

with three boundary components. The simple closed curveb can be thought
of as a simple closed curve onS′, and so the Dehn twistTb can be thought
of as an element ofMod(S′). Sinceg ≥ 4 we haveg − 1 ≥ 3, so by
Theorem 5.2Mod(S′) has trivial abelianization, i.e., it is perfect. We can
thus writeTb as a product of commutatorsTb =

∏
[xi, yi], where eachxi

andyi is an element ofMod(S′), and so commutes withTa.
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Using (5.2) and (5.3), we then obtain

{Ta, Tb} = {Ta,
∏
i[xi, yi]}

=
∑

i

{Ta, [xi, yi]}

=
∑

i

[{Ta, xi}+ {Ta, yi} − {Ta, xi} − {Ta, yi}]

= 0.

2

Lemma 5.9 has a topological interpretation. Let[T 2] ∈ H2(T
2; Z) ≈

H2(Z2; Z) ≈ Z denote the fundamental class. Two commuting Dehn twists
g, h ∈ Mod(S) determine an inclusionZ2 → Mod(S). This homomor-
phism determines (up to homotopy) a based mapη from the classifying
spaceK(Z2, 1) ≈ T 2 to the classifying spaceK(Mod(S), 1). Let i∗ :
H2(Z2; Z)→ H2(Mod(S); Z) be the induced homomorphism. Lemma 5.9
says precisely thati∗ is the zero map.

It follows immediately from Lemma 5.9 that eachDi,j represents the trivial
element ofH2(Mod(S1

g); Z). From this fact and (5.1) we now have that any
elementx of (K ∩ [F,F ])/[K,F ] has the form

x =

(
2g−1∏

i=1

Bni
i,j

)
Bn0

0,4C
nCLnL . (5.4)

5.4.4 COMPLETING THE PROOF

Let x ∈ (K ∩ [F,F ])/[K,F ]. We have shown thatx has the form given in
(5.4). We will now use the exponent sum condition for elements of [F,F ]
to reduce the possibilities forx further.

Each relator on the right hand side of (5.4) is a product of thegenerators
{ai : 1 ≤ i ≤ 2g} of F . In order thatx lie in [F,F ] it must be that the
exponent sum of eachai occurring inx is 0. The only relator involvinga2g

is B2g−1,2g, in which a2g has exponent sum1. Thus in the wordBn2g−1

2g−1,2g
the total exponent sum ofa2g is n2g−1. Since no other relator containsa2g,
and since the exponent sum ofa2g in x is 0, it follows thatn2g−1 is 0. We
can thus delete the relatorB2g−1,2g from the expression (5.4) forx.
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Now note that the only relator left on the right hand side of (5.4) involving
a2g−1 is B2g−2,2g−1. By the same argument as above we conclude that
n2g−2 = 0. Continuing in this way we obtain thatni = 0 for eachi ≥ 6;
we stop atB5,6 because botha5 anda6 appear in other (non-braid) relators.

Sincea6 appears inB5,6 with a total exponent of−1, and since the only
other relator in whicha6 appears isL, where it has an exponent sum of0, it
follows thatn5,6 = 0.

At this point we have shown that any elementx ∈ (K ∩ [F,F ])/[K,F ] has
the form

x = Bn0

0,4B
n1

1,2B
n2

2,3B
n3

3,4B
n4

4,5C
nCLnL .

The power of the preceding arguments is that, for arbitraryg ≥ 4, we have
reduced the problem to understanding just seven relators, and that these re-
lators only involve the generatorsa0, . . . , a5.

Again, in order to get an element of(K∩[F,F ])/[K,F ], the exponent sums
of each of the6 generatorsa0, . . . , a5 must be zero. Since, for example,a5

occurs inB4,5 with exponent sum−1, and inL with exponent sum−1, the
fact that the total exponent ofa5 in must be0 gives the equation−n4−nL =
0. Continuing in this way, setting each of the exponent sums ofa0, . . . , a5

equal to0, we obtain the following system of equations.




1 0 0 0 0 −2 2
0 1 0 0 0 4 −1
0 −1 1 0 0 4 0
0 0 −1 1 0 4 −1
−1 0 0 −1 1 0 0

0 0 0 0 −1 0 −1







n0

n1

n2

n3

n4

nC
nL




=




0
0
0
0
0
0




An elementary calculation gives that the above matrix has rank 6, and so
the linear mappingZ7 → Z6 has one-dimensional kernel. So there is at
most one element (up to multiples) that satisfies the given linear equations.
A quick check gives that all solutions are simply integral multiples of the
vector(−18, 6, 2, 8,−10, 10). It follows that the only possibilities for the
arbitrary elementx ∈ K ∩ [F,F ]/[F,K] ≈ H2(Mod(S1

g ); Z) are integral
powers of the element

x0 = B−18
0,4 B

6
1,2B

2
2,3B

8
3,4B

−10
4,5 CL

10.

In other wordsx0 generatesH2(Mod(S1
g); Z). Note that we still do not
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know whether or notx0 is trivial in H2(Mod(S1
g ); Z). We will prove below,

by a completely different line of argument, thatx0 has infinite order.

5.4.5 PITSCH ’ S PROOF FOR CLOSED SURFACES

To extend Pitch’s proof to the case of a closed surfaceSg (g ≥ 4), we only
need to show that the hyperelliptic relation from Wajnryb’spresentation
does not contribute toH2(Mod(Sg); Z). The argument, due to Korkmaz–
Stipcisz [122] is similar to the proof that the disjointnessrelations do not
contribute.

Recall that the hyperelliptic relation is:

[a2g · · · a1a1 · · · a2g, d] = 1.

One would like to directly apply the proof of Lemma 5.9. However, if we cut
Sg along a representative ofd, the hyperelliptic involutiona2g · · · a1a1 · · · a2g

does not induce an element of the pure mapping class group of the cut sur-
face (it switches the two sides ofd). Therefore, we cannot writed as a
product of commutators of elements that commute withd.

We must therefore proceed with a different argument. Our first claim is that
if a andb are isotopy classes of simple closed curves inSg with i(a, b) = 1,
then{Ta, (TaTbTa)2} = 0 in H2(Mod(Sg,1; Z). We proceed in three steps.
Throughout, we apply the formula (5.2) without mention.

Step 1.The classes{Ta, (TaTbTa)2} and{Tb, (TaTbTa)2} are equal.

Let r be an element ofMod(Sg) that interchangesa andb. We have:

{Ta, (TaTbTa)2} = {rTar−1, r(TaTbTa)
2r−1}

= {Tb, (TbTaTb)2}

= {Tb, (TaTbTa)2}.

Step 2.The class2{Ta, (TaTbTa)2} is trivial.

The braid relation gives that(TaTbTa)4 = (TaTb)
6, and the 2–chain relation

gives that this product is equal to the Dehn twist about the simple closed
curvecwhich is the boundary of a regular neighborhood of minimal position
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representatives ofa andb. We then have:

2{Ta, (TaTbTa)2} = {Ta, (TaTbTa)4} = {Ta, Tc} = 0

where in the last step we have applied Lemma 5.9.

Step 3.The class3{Ta, (TaTbTa)2} is trivial.

To prove this equality, we apply Step 1, which gives:

3{Ta, (TaTbTa)2}= {Ta, (TaTbTa)2}+ {Ta, (TaTbTa)2}+ {Ta, (TaTbTa)2}
= {Ta, (TaTbTa)2}+ {Tb, (TaTbTa)2}+ {Ta, (TaTbTa)2}
= {TaTbTa, (TaTbTa)2}
= 0.

Steps 2 and 3 immediately imply the claim. We can now show thatthe
hyperelliptic relator contributes zero toH2(Mod(Sg); Z). In the calculation,
we use the identity{x, y} = {x, xjyxk}, which follows from formula (5.2)
and the fact that{x, x} = 0. Denote the producta2g−1 · · · a1a1 · · · a2g−1

by A. If a2g represents the Dehn twistTc2g , one can check thatA(c2g) =

d2(c2g), and soAa2gA
−1 = d2a2gd

−2. We therefore have:

{d, a2g · · · a1a1 · · · a2g} = {d, a2gAa2g}
= {d, a2gAa2gA

−1}
= {d, a2gd

2a2gd
−2}

= {d, da2gd
2a2gd}

= {d, (da2gd)
2}

= 0

Here the last equality follows from the claim. This completes the proof.

5.5 THE EULER CLASS

In Section 5.4 we proved the “upper bounds” for Theorem 5.8. That is, we
showed thatH2(Mod(S); Z) is cyclic whenS = Sg or S = S1

g , and that
H2(Mod(Sg,1); Z) is generated by at most two elements.

In this section we explicitly construct an infinite order element ofH2(Sg,1; Z),
called the “Euler class.” This will be used, together with the universal coef-
ficients theorem, to provide one of the “lower bounds” for Theorem 5.8.
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The Euler class is not just some element of a cohomology group; it is the
most basic and fundamental invariant of surface bundles.

5.5.1 COCYCLES FROM CENTRAL EXTENSIONS

We first recall how a central extensions of a group give rise to2–dimensional
cohomology classes. For a more detailed explanation, see for example [37,
§IV.3]. Let

1→ A→ E → G→ 1 (5.5)

be acentral extensionof the groupG; in other wordsA is central inE and
the sequence (5.5) is exact. Note thatA is abelian since it lies in the center
of E.

If the extension (5.5) is split then sinceA is central it follows thatE ≈
A × G. Even ifE does not split, we still have a (non-canonical) bijection
φ : A×G → E, obtained by simply picking any set-theoretic sectionψ of
the mapE → G. Moreover, there exists a functionf : G×G→ A, called
a factor set, so that

φ(a1, g1)φ(a2, g2) = φ(a1a2f(g1, g2), g1g2).

The factor setf measures the failure of the sectionψ to be a homomorphism
or, equivalently, the failure ofφ to be an isomorphism.

While φ, and hencef , depended on the choice of sectionψ, one can check
that f does represent a well-defined elementξ of H2(G;A). That is, the
elementξ depends only on the extension (5.5), and not on any of the choices.
The sequence (5.5) splits precisely when the cohomology classξ is trivial.

5.5.2 THE CLASSICAL EULER CLASS

Before we construct the Euler class inH2(Mod(Sg,1); Z) we recall the clas-
sical Euler class, which is an element ofH2(Homeo+(S1); Z).

Consider the coveringR → S1 given by the quotient ofR by the groupZ
generated by the translationt(x) = x+ 1. The set of all lifts of an element
ψ ∈ Homeo+(S1) to Homeo+(R) is precisely the set of elements of the

form ψ̃ ◦ tm for m ∈ Z, whereψ̃ is any fixed lift ofψ. Let H̃omeo
+
(S1)

denote the group of all lifts of all elements ofHomeo+(S1). In other words,
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H̃omeo
+
(S1) is the subgroup ofHomeo+(R) consisting of those homeo-

morphisms that commute witht, i.e. the group of periodic homeomorphisms
of period1. We thus have an exact sequence

1→ Z→ H̃omeo
+
(S1)

π→ Homeo+(S1)→ 1 (5.6)

whereZ is generated byt and is thus central. We know that the sequence

(5.6) does not split sinceHomeo+(S1) has torsion whileH̃omeo
+
(S1), be-

ing a subgroup ofHomeo+(R), is torsion free. As explained above, it fol-
lows that the short exact sequence (5.6) gives rise to a nontrivial element of
H2(Homeo+(S1)). This element is called the (classical)Euler class. This
Euler class is the most important invariant in the study of circle bundles.

5.5.3 THE EULER CLASS FOR THE MAPPING CLASS GROUP

Let g ≥ 2. We will show that there is a torsion-free group̃Mod(Sg,1) and a
central extension

1→ Z→ M̃od(Sg,1)→ Mod(Sg,1)→ 1 (5.7)

SinceMod(Sg,1) contains torsion, it follows that the short exact sequence
(5.7) does not split, and so we thus obtain a nontrivial element ofH2(Mod(Sg,1); Z),
called theEuler class.

We now give two different constructions of the Euler class, that is, we give
two derivations of the short exact sequence (5.7) defining the Euler class.
The first comes directly from the classical Euler class.

5.5.4 THE EULER CLASS VIA LIFTED MAPPING CLASSES

In Section 8.2 (cf. Corollary 8.7) we will prove that an element ofMod(Sg,1)
gives rise to a homeomorphism of the circle at infinity in hyperbolic space
as follows. Assume thatg ≥ 2 and regard the puncture ofSg,1 as a marked
point p. If we choose a hyperbolic metric on the closed surfaceSg, its uni-
versal cover is isometric toH2. Let p̃ be some distinguished lift ofp to
H2.

We can represent anyf ∈ Mod(Sg,1) by a homeomorphismφ : Sg → Sg
such thatφ(p) = p. There is a unique lift ofφ to a homeomorphism̃φ :
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H2 → H2 such thatφ̃(p̃) = p̃. In Section 8.2 we will prove that̃φ is a
π1(Sg)–equivariant quasi-isometry ofH2, and thatφ̃ can be extended in a
unique way to a homeomorphism

φ̃ ∪ ∂φ̃ : H2 ∪ ∂H2 → H2 ∪ ∂H2

of the closed unit disk. Restricting to∂H2 ≈ S1, we obtain an element
∂φ̃ ∈ Homeo+(S1). SinceSg is compact, homotopies ofSg move points
by a uniformly bounded amount, and so∂φ̃ does not depend on the choice
of representativeφ.

We thus have a well-defined map

Mod(Sg,1) →֒ Homeo+(S1).

This map is clearly a homomorphism. It is injective because if ∂φ̃ fixes each
γ±1
∞ ∈ ∂H2 (using the notation from Section 8.2), it follows thatφ⋆ fixes

eachγ ∈ π1(Sg), and then, sinceSg is aK(G, 1) space, it follows thatφ
is homotopic to the identity. The construction of the mapMod(Sg,1) →
Homeo+(S1) is due to Nielsen; he used this as a starting point for his anal-
ysis and classification of mapping classes.

We finally define the group̃Mod(Sg,1) as the pullback ofMod(Sg,1) to

H̃omeo
+
(S1):

1→ Z→ M̃od(Sg,1)→ Mod(Sg,1)→ 1. (5.8)

ThusM̃od(Sg,1) is the subgroup of elements of̃Homeo
+
(S1) that project

into Mod(Sg,1). Because the kernelZ is central inH̃omeo
+
(S1), it is cen-

tral in M̃od(Sg,1). As above, the central extension (5.8) has an associated
cocycle, giving an elemente ∈ H2(Mod(Sg,1; Z). The elemente is called
theEuler classfor Mod(Sg,1).

The group̃Mod(Sg,1) is torsion free because it is a subgroup of̃Homeo
+
(S1),

which we already noted was torsion free. On the other handMod(Sg,1) has
nontrivial torsion (e.g. take any rotation fixing the markedpoint). As above,
it follows that (5.8) does not split, soe is nontrivial. We will later see thate
has infinite order inH2(Mod(Sg,1; Z).

Note that the Euler class forMod(Sg,1) is the pullback of the classical Euler
class under the map on cohomology induced by the inclusionMod(Sg,1)→
Homeo+(S1).
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5.5.5 THE RESTRICTION OF THE EULER CLASS TO THE POINT PUSHING

SUBGROUP

We will next evaluate the Euler classe ∈ H2(Mod(Sg,1); Z) on a concrete
2–cycle, namely, the one coming from the point pushing subgroup. We
will do this by constructing an easy-to-evaluate cohomology class and by
proving that this class equals the Euler class.

Let g ≥ 2. Recall from Section 4.2 that the point pushing map is an in-
jective homomorphismPush : π1(Sg) →֒ Mod(Sg,1). We can thus pull
back the Euler classe ∈ H2(Mod(Sg,1); Z) to an elementPush∗(e) ∈
H2(π1(Sg); Z) ≈ Z. Let π̃1(Sg) denote the pullback ofπ1(Sg) < Homeo+(S1)

to H̃omeo
+
(S1). We have thatPush∗(e) is the cocycle associated to the

following central extension:

1→ Z→ π̃1(Sg)→ π1(Sg)→ 1.

Another way to obtain an element ofH2(π1(Sg); Z) is by considering the
unit tangent bundleS1 → UT (Sg) → Sg. SinceSg is aspherical, the long
exact sequence associated to this fiber bundle gives a short exact sequence

1→ Z→ π1(UT (Sg))→ π1(Sg)→ 1.

This is a central extension, and so it has an associated cocycle e′ ∈ H2(Sg; Z).
We claim thate′ is nontrivial. Ifewere trivial then there would be a splitting
π1(Sg) → π1(UT (Sg), and hence a section ofUT (Sg) → Sg. The latter
would give a nonvanishing vector field onSg, which is prohibited by the
Poincaré–Bendixon theorem (forg ≥ 2). We thus have thate′ is nontrivial.
In fact this argument gives thate′ has infinite order inH2(Sg; Z). Indeed,
the extension given byke′ is

1→ kZ→ π1(UT (Sg))→ π1(Sg)→ 1.

If this extension were trivial for somek 6= 0, we would again have a nonva-
nishing vector field onSg.

Proposition 5.10 The elementsPush∗(e) ande′ ofH2(π1(Sg); Z) are equal.

Proposition 5.10 implies that the evaluation of the pullback viaPush∗ of the
Euler class forMod(Sg,1) on the fundamental class ofπ1(Sg) is the Euler
number of the unit tangent bundle, which is equal2− 2g (the Euler number
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of the tangent bundle to a Riemannian manifold is always equal to the Euler
characteristic of the manifold). In particular, we have that the Euler class for
Mod(Sg,1) is nontrivial even when restricted to the point pushing subgroup.

Proof. By the five lemma it suffices to exhibit a homomorphismπ1(UT (Sg))→
π̃1(Sg) that makes the following diagram commutative:

1 Z π1(UT (Sg)) π1(Sg) 1

1 Z π̃1(Sg) π1(Sg) 1

The key is the following claim.

Claim: The image ofπ1(Sg) in Homeo+(S1) given by the
compositionπ1(Sg)→ Mod(Sg,1)→ Homeo+(S1) coincides
with the image of the compositionπ1(Sg) → Isom+(H2) →
Homeo+(S1) obtained by identifyingπ1(Sg) with the group of
deck transformations of the coveringH2 → Sg.

Proof of claim. Forα ∈ π1(Sg, p), we have thatPush(α) acts
by conjugation onπ1(Sg, p), and so the lift of any represen-
tative ofPush(α) fixing p̃ sendsγ · p̃ to (αγα−1) · p̃ for all
γ ∈ π1(Sg, p). On the other hand, the deck transformation cor-
responding toα sendsγ · p̃ to (αγ) · p̃. We can modify this deck
transformation by pushing each point(αγ) · p̃ along the unique
lift of α−1 starting at that point. This induces an isotopy ofH2

moving points a uniformly bounded amount, and hence does
not change the corresponding element ofHomeo+(S1). At the
end of this isotopy, each point(αγ) · p̃ gets sent to(αγα−1) · p̃.
Since the lift ofPush(α) and the (modified) deck transforma-
tion corresponding toα agree on the orbit of̃p, they induce the
same element ofHomeo+(S1). 2

Now letα̂ be an element ofπ1(UT (Sg)). In order to construct the associated

elementψ̂ ∈ H̃omeo
+
(S1), we need two ingredients:

1. a homeomorphismψ ∈ Homeo+(S1), and



158 CHAPTER 5

2. a pathτ in S1 from some basepointx0 ∈ S1 to ψ(x0).

Indeed, ifx̂0 is some fixed lift ofx0 to R, andτ̂ is the unique lift of the path

τ starting atx0, then we can takêψ to be the unique element of ˜Homeo+(R)
that liftsψ and takeŝx0 to the endpoint of̂τ .

After constructingψ̂, we will then need to check that it actually lies in

π̃1(Sg).

As in Section 4.2, the element̂α ∈ π1(UT (Sg)) gives an elementfbα ∈
Mod(Sg, (p, v)), the group of isotopy classes of diffeomorphisms ofSg
fixing the point-vector pair(p, v). The mapping classfbα is the class of a
diffeomorphismφbα obtained at the end of a smooth isotopy ofSg push-
ing (p, v) along α̂. By taking the unique liftφ̃bα of φbα to Homeo+(H2)
that fixes the point̃p, we obtain a well-defined homeomorphismf bα ∈
Homeo+(S1) as before. For example, in the case thatα̂ is the central ele-
ment ofπ1(UT (Sg)), the lift of φbα simply rotates a neighborhood of each
lift of p, and the induced element ofHomeo+(S1) is trivial.

The homeomorphismf bα is the desired element ofHomeo+(S1). It remains
to construct the pathτ in S1 from some fixed basepointx0 to f bα(x0).

If we forget the datum of the vectorv, and only remember the pointp, then
fbα also representsPush(α), whereα ∈ π1(Sg) is the image of̂α under the
forgetful mapπ1(UT (Sg)) → π1(Sg). Thus, it follows from the claim that
as an element ofHomeo+(S1) the mapping classfbα agrees with the deck
transformation corresponding toα.

Let (p̃, ṽ) be a fixed lift of(p, v) toUT (H2). Let x0 be the point of∂H2 ≈
S1 to which(p̃, ṽ) points. Becausefbα agrees with the deck transformation
α, and since deck transformations are isometries, the liftedmap φ̃bα takes
(p̃, ṽ) to an element ofUT (H2) that points tof bα(x0).

Recall thatφbα is a diffeomorphism obtained at the end of a smooth isotopy
of Sg. Thus,φ̃bα is a diffeomorphism obtained at the end of a smooth isotopy
of H2. At each point in time during the isotopy ofH2, the pair(p̃, ṽ) has a
well-defined image, which in turn points to some point on∂H2. Thus, the
isotopy ofH2 coming fromα̂ determines a pathτbα in ∂H2 ≈ S1. Again, at
the end of the isotopy, the image of(p̃, ṽ) points to the image ofx0, and so
τbα satisfies the desired properties.

We have thus obtained the desired element of̃Homeo
+
(S1). Since the claim
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implies thatfbα agrees with a deck transformation, we have in fact con-

structed an element of̃π1(Sg). It follows easily from the above discussion

that the resulting mapπ1(UT (Sg)) → π̃1(Sg) is well-defined and that it
satisfies the desired commutativity, and we are done. 2

5.5.6 THE EULER CLASS VIA CAPPING THE BOUNDARY

We now give a different construction of the group̃Mod(Sg,1), and hence a
different derivation of the Euler class forMod(Sg,1). Let S1

g be the genus
g surface with one boundary component. Recall from Proposition 3.19 that
there is a short exact sequence

1→ Z→ Mod(S1
g )→ Mod(Sg,1)→ 1 (5.9)

where the kernelZ is generated by the Dehn twist about the boundary of
S1
g and is thus central. Since the extension is central it gives an element
e′′ ∈ H2(Mod(Sg,1); Z). Corollary 7.3 gives thatMod(S1

g ) is torsion free,
and soe′′ is nontrivial.

We will show below thatH2(Mod(Sg,1; Z) ≈ Z2. We will show that this
group is generated by the Euler class and the Meyer signaturecocycle. We
will also show that the Meyer signature cocycle evaluates trivially on the
subgroupπ1(Sg) of Mod(Sg,1). Thus, to show thate′′ is the Euler class, it
suffices to check that these two classes agree on the point pushing subgroup
π1(Sg). As in Section 4.2, the central extension (5.9) restricts tothe central
extension:

1→ Z→ π1(UT (Sg))→ π1(Sg)→ 1.

We thus deduce from Proposition 5.10 thate′′ is again the Euler class.

5.5.7 THE BIRMAN EXACT SEQUENCE DOES NOT SPLIT

Let g ≥ 2. The Birman exact sequence (Theorem 4.6) is:

1→ π1(Sg)→ Mod(Sg,1)→ Mod(Sg)→ 1.

Above, we described an embeddingMod(Sg,1) → Homeo+(S1). Since
finite subgroups ofHomeo+(S1) are cyclic, it follows that the same is true
for Mod(Sg,1). It is easy to find finite subgroups ofMod(Sg) that are not
cyclic (for example the dihedral group of order2g), and so we have the
following.
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Corollary 5.11 Letg ≥ 2. The Birman exact sequence

1→ π1(Sg)→ Mod(Sg,1)→ Mod(Sg)→ 1

does not split.

5.6 SURFACE BUNDLES AND THE MEYER SIGNATURE COCYCLE

Our next goal is to construct an element ofH2(Mod(Sg); Z) that is not a
power of the Euler classe. This element, called the Meyer signature cocycle,
is defined using the theory of surface bundles over surfaces.

We will use some homological algebra to show that the Meyer signature
cocycle gives rise to nontrivial elements ofH2(Mod(Sg)), H2(Mod(S1

g)),
andH2(Mod(Sg,1), and to then complete the proof of Theorem 5.8.

In order to define the Meyer signature cocycle properly, we must clarify
the connection between the mapping class group and the theory of surface
bundles, so this is where we start.

5.6.1 SURFACE BUNDLES

The basic problem in the theory of surface bundles is to classify, for fixed
(Hausdorff, paracompact) base spaceB, all isomorphism classes of bundles

Sg → E → B.

Recall that abundle isomorphismis a fiberwise homeomorphism of total
spaces covering the identity map. The reduction of theSg–bundle classifi-
cation problem to a problem aboutMod(Sg), at least forg ≥ 2, begins with
the following theorem. This theorem is a special case of Theorem 1.14,
proved by Hamstrom. For the statement, recall thatHomeo0(Sg) denotes
the topological group of homeomorphisms ofSg that are isotopic to the
identity.

THEOREM 5.12 If g ≥ 2 thenHomeo0(Sg) is contractible.

Let BHomeo+(Sg) denote the classifying space of the topological group
Homeo+(Sg). The theory of classifying spaces gives a bijective correspon-
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dence as follows.{
Isomorphism classes of

orientedSg–bundles overB

}
←→

{
Homotopy classes of

mapsB → BHomeo+(Sg)

}

This bijection is realized concretely in the following way.There is a bundle
ζ given by

Sg → E → BHomeo+(Sg)

with the universal property that anySg–bundle over any spaceB is the pull-
back ofζ via a continuous map (theclassifying map) f : B → BHomeo+(Sg).
Homotopic classifying maps gives isomorphic bundles. Conversely, any
bundle induces such a mapf . The bundleζ is called theuniversalSg–
bundle. ThusBHomeo+(Sg) plays the same role for surface bundles as the
(infinite) Grassmann manifoldsBSO(n) play for vector bundles.

Consider the exact sequence

Homeo0(Sg)→ Homeo+(Sg)→ Mod(Sg).

Theorem 5.12 together with Whitehead’s theorem implies that Homeo+(Sg)
is homotopy equivalent to the discrete topological groupMod(Sg) for g ≥
2. In other words we have the following.

Proposition 5.13 For g ≥ 2 the spaceBHomeo+(Sg) is aK(Mod(Sg), 1)
space.

A continuous mapf : B → K(Mod(Sg), 1) induces a representationf∗ :
π1(B) → Mod(Sg). Two such representationsρ1, ρ2 are calledconjugate
if there exists anh ∈ Mod(Sg) so that

ρ1(γ) = hρ2(γ)h
−1

for all γ ∈ π1(B). Basic algebraic topology gives that the mapf is de-
termined up to free homotopy by the conjugacy class of the representation
f∗, and that every representation is induced by some continuous map. In
other words there is a bijection between free homotopy classes of mapsf :
B → K(Mod(Sg), 1) and conjugacy classes of representationsπ1(B) →
Mod(Sg). This bijection, together with Proposition 5.13, gives thefollow-
ing bijective correspondence.





Isomorphism classes
of orientedSg–bundles

overB



←→





Conjugacy classes
of representations

ρ : π1(B)→ Mod(Sg)




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The simplest (but already interesting) instance of this fact is that isomor-
phism classes ofSg–bundles overS1 are in bijection with conjugacy classes
of elements inMod(Sg). A more remarkable consequence is that, given any
group extension

1→ π1(Sg)→ G→ Q→ 1, (5.10)

there exist topological spaces (indeed closed manifolds)E andB and a fi-
brationSg → E → B inducing the given group extension. Why is this sur-
prising? Well, if we are given a representationρ : π1(B)→ Homeo+(Sg),
it is easy to see how to build a bundleSg → E → B with monodromy
π ◦ρ : π1(B)→ Mod(Sg): just takes the quotient ofSg× B̃ by the obvious
π1(B)–action. However, the data specified by the group extension (5.10)
only determines a representationρ : π1(B)→ Mod(Sg). That is, elements
of the monodromy are specified only up to isotopy, so it is not at all clear
how to use this data to build a well-definedSg-bundle. In fact Morita has
constructed examples where the monodromyρ : π1(B) → Mod(Sg) does
not lift to a representatioñρ : π1(B) → Homeo+(Sg) [155]. Yet the bi-
jection above gives a fiber bundleSg → E → B with B andE closed
manifolds that has monodromyρ.

The above discussion should clarify why the problem of classifying conju-
gacy classes of representations of various groups intoMod(Sg) is an impor-
tant problem.

Another corollary of Proposition 5.13 is that

H∗(BHomeo+(Sg); Z) ≈ H∗(Mod(Sg); Z).

This isomorphism is one of the main reasons that we care aboutthe coho-
mology ofMod(Sg). It is the reason we think of elements ofH∗(Mod(Sg); Z)
as “characteristic classes of surface bundles,” as we now explain.

Suppose one wants to associate to everySg–bundle a (say integral) coho-
mology class on the base of that bundle, so that this association is natural,
that is, it is preserved under pullbacks. By applying this tothe universalSg–
bundleζ, we see that each such cohomology class must be the pullback of
some element ofH∗(BHomeo+(Sg,Z)) ≈ H∗(Mod(Sg); Z). In this sense
the classes inH∗(Mod(Sg); Z) are universal. This is why they are called
“characteristic classes” of surface bundles.

We have already seen thatH1(Mod(Sg); Z) = 0 if g ≥ 3 (Theorem 5.2). It
follows from the Universal Coefficients Theorem thatH1(Mod(Sg); Z) =
0. Thus there are no natural1–dimensional cohomology invariants for these
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Sg–bundles. In Section 5.4 we proved forg ≥ 4 thatH2(Mod(Sg); Z) is
cyclic, so that there is at most one natural 2–dimensional invariant. This is
the Meyer signature cocycle, constructed below.

Remark on the smooth case.Every aspect of the discussion above holds
with the smooth category replacing the topological category. Here we re-
placeBHomeo+(Sg) with BDiff+(Sg), etc. The key fact is the theorem of
Earle–Eells [51] (see also [71]) that the topological groupDiff0(Sg) is con-
tractible forg ≥ 2. Following the exact lines of the discussion above, This
gives a bijective correspondence between isomorphism classes ofsmooth
Sg–bundles over a fixed base spaceB and conjugacy classes of representa-
tionsρ : π1(B)→ Mod(Sg).

5.6.2 DEFINITION OF THE M EYER SIGNATURE COCYCLE

We are now ready to describe the construction of a nonzero elementσ ∈
H2(Mod(Sg); Z): theMeyer signature cocycle. Below we will prove thatσ
pulls back to a nontrivial class both inH2(Mod(Sg,1); Z) and inH2(Mod(S1

g ); Z).

For any closed4–manifoldM there is a skew-symmetric pairing

H2(M ; Z) ⊗ H2(M ; Z) → Z
a ⊗ b 7→ 〈a ∪ b, [M ]〉

given by taking the cup product of two classes and evaluatingthe result on
the fundamental class ofM . The signature of the resulting quadratic form
is called thesignatureof M , denoted bysig(M).

We can use signature to give a2–cochain

σ ∈ C2(BHomeo+(Sg); Z) ≈ Hom(C2(BHomeo+(Sg); Z),Z)

as follows. Suppose we are given a chainc ∈ C2(BHomeo+(Sg); Z). It
follows from general facts about 2–chains in topological spaces thatc can
be represented by a mapf : Sh → BHomeo+(Sg), whereSh is a closed
surface of genush ≥ 0. We then letσ ∈ C2(BHomeo+(Sg); Z) be defined
by

σ(f) = sig(f∗ζ)

where, as above,ζ denotes the universalSg–bundle overBHomeo+(Sg).

It follows from work of Meyer thatσ is a well-defined2–cocycle [152]. One
key ingredient in this is the fact that the signature of a fiberbundle depends
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only on the action of the fundamental group of the base on the homology of
the fiber; another is the so-called “Novikov additivity” of signature.

It is not easy to prove thatσ is a nonzero element ofH2(BHomeo+(S); Z).
The hard part is finding a good way to compute signature in terms of the
monodromy data. Kodaira, and later Atiyah (see [7]), found asurface bun-
dle over a surface with nonzero signature. This construction can be used
to give such a bundle with fiberSg for any g ≥ 4. It follows that the sig-
nature cocycleσ ∈ H2(BHomeo+(S); Z) ≈ H2(Mod(Sg); Z) is nonzero.
Indeed, this kind of argument can be used to prove thatσ has infinite order
in H2(Mod(Sg); Z).

5.6.3 MATCHING UPPER AND LOWER BOUNDS ON H2(Mod(S); Z)

In Section 5.4 we used Hopf’s formula to give an upper bound onthe num-
ber of generators of the groupH2(Mod(S); Z), whereS is eitherSg, Sg,1
or S1

g and whereg ≥ 4. So far in this section we have constructed two non-
trivial elements ofH2(Mod(S); Z), the Euler class and the Meyer signature
cocycle. We will now use homological algebra to computeH2(Mod(S); Z)
on the nose.

The universal coefficients theorem andH2(Mod(S); Z). Let S be a
surface of genus at least 3. In what follows we assume that allhomology and
cohomology groups haveZ coefficients. The universal coefficients theorem
gives the following short exact sequence:

1→ Ext(H1(Mod(S)),Z)→ H2(Mod(S))→ Hom(H2(Mod(S)),Z)→ 1.
(5.11)

SinceH1(Mod(S); Z) = 0 (Theorem 5.2), the Ext term in (5.11) is trivial.
Thus

H2(Mod(S); Z) ≈ Hom(H2(Mod(S); Z),Z).

In other words we have

H2(Mod(S); Z) ≈ H2(Mod(S); Z)/torsion.

Proof that H2(Mod(Sg); Z) ≈ Z. In Section 5.4 we proved that
H2(Mod(Sg); Z) is cyclic. Since the Meyer signature cocycle is an in-
finite order element ofH2(Mod(Sg); Z), and sinceH2(Mod(Sg); Z) ≈
H2(Mod(Sg); Z)/torsion, we have that

H2(Mod(Sg); Z) ≈ Z,
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as stated in Theorem 5.8. Thus we see that, up to multiples, signature is the
only 2–dimensional isomorphism invariant forSg–bundles.

A 5–term exact sequence for homology groups.We now introduce a tool
that will help us computeH2(Mod(S1

g )) andH2(Mod(Sg,1)).

Given any short exact sequence of groups

1→ K → G→ Q→ 1

there is a 5–term exact sequence of homology groups

H2(G)→ H2(Q)→ H1(K)Q → H1(G)→ H1(Q)→ 0

where all coefficient groups areZ andH1(K)Q is thecoinvariantsof the
action ofQ by conjugation onH1(K; Z), that is, the quotient ofH1(K; Z)
by all elementsx− q · x wherex ∈ H1(K; Z) andq ∈ Q. The existence of
this 5–term exact sequence is a consequence of the Hopf formula (see [37,
page 47]).

Proof that H2(Mod(S1

g
); Z) ≈ Z. We saw in Section 5.4 thatH2(Mod(S1

g); Z)
is a cyclic group. Our aim is to prove that it is isomorphic toZ.

If we apply the 5–term exact sequence for homology groups to the short
exact sequence

1→ π1(UT (Sg))→ Mod(S1
g )→ Mod(Sg)→ 1,

we obtain the sequence

H2(Mod(S1
g ))→ H2(Mod(Sg))→ H1(π1(UT (Sg)))Mod(Sg)

→ H1(Mod(S1
g ))→ H1(Mod(S1

g ))→ 0,

or, by Theorem 5.2,

H2(Mod(S1
g ))→ Z→ H1(π1(UT (Sg)))Mod(Sg) → 0→ 0→ 0.

We now determine the coinvariants in this sequence.

Claim: H1(π1(UT (Sg)))Mod(Sg) ≈ Z/(2g − 2)Z.

Proof of claim. We start with the presentation

π1(UT (Sg)) = 〈 a1, b1, . . . , ag, bg, z|
g∏

i=1

[ai, bi] = z2−2g, z central〉
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wherez is the generator of theS1 fiber. It follows that

H1(UT (Sg); Z) ≈ Z2g ⊕ Z/(2g − 2)Z ≈ H1(Sg; Z)⊕ Z/(2g − 2)Z.

What is more, the action ofMod(Sg) onH1(UT (Sg); Z) is given by the
standard action ofMod(Sg) onH1(Sg; Z) together with the trivial action
on Z/(2g − 2)Z. Thus, we have

H1(π1(UT (Sg)))Mod(Sg) ≈ H1(Sg; Z)Mod(Sg) ⊕ Z/(2g − 2)Z

and so it now remains to show that the coinvariantsH1(Sg; Z)Mod(Sg) is
trivial.

By the change of coordinates principle,Mod(Sg) identifies all primitive
elements ofH1(Sg; Z) with each other. In particular, each primitive element
is identified with its inverse. Thus,H1(Sg; Z)Mod(Sg) is a quotient ofZ/2Z.
On the other hand, one can find inH1(Sg; Z) three primitive elements that
sum to zero. It follows thatH1(Sg; Z)Mod(Sg) is trivial. 2

Our 5–term sequence is now reduced to

H2(Mod(S1
g ))→ Z→ Z/(2g − 2)Z→ 0.

It follows that the kernel of the mapZ → H1(π1(UT (Sg)))Mod(Sg) is iso-
morphic toZ. By exactness of the sequence, we see thatH2(Mod(S1

g ); Z)
contains an infinite cyclic subgroup. On the other hand, we already showed
thatH2(Mod(S1

g ); Z) is a quotient ofZ, and so follows thatH2(Mod(S1
g ); Z) ≈

Z, as desired.

Actually, we have proven a little more. We have shown that there is an exact
sequence

H2(Mod(S1
g ))

≈

H2(Mod(Sg))

≈

H1(π1(UT (Sg)))Mod(Sg)

≈

0

Z Z Z/(2g − 2)Z

So we see that the map fromH2(Mod(S1
g ) ≈ Z to H2(Mod(Sg)) ≈ Z is

multiplication by2g − 2.

Proof that H2(Mod(Sg,1); Z) ≈ Z2. We start by showing that the
groupH2(Mod(Sg,1); Z) is generated by at most two elements. Recall from
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Proposition 3.19 that we have a short exact sequence

1→ 〈Ta〉 → Mod(S1
g)→ Mod(Sg,1)→ 1

wherea is the isotopy class of the boundary component ofS1
g . The associ-

ated 5–term exact sequence of homology groups is

H2(Mod(S1
g ))→ H2(Mod(Sg,1))→ H1(〈Ta〉)Mod(Sg,1)

→ H1(Mod(S1
g ))→ H1(Mod(Sg,1))→ 0.

We just proved thatH2(Mod(S1
g )) ≈ Z. Also by Theorem 5.2 the groups

H1(Mod(S1
g)) andH1(Mod(Sg,1)) are trivial. Finally, since〈Ta〉 is central

in Mod(S1
g), the coinvariantsH1(〈Ta〉)Mod(Sg,1) is isomorphic toZ. We

can thus rewrite the 5–term exact sequence as:

Z→ H2(Mod(Sg,1))→ Z→ 0→ 0→ 0.

It follows thatH2(Mod(Sg,1); Z) is a quotient ofZ2, as desired.

We obtain one elemente⋆ of H2(Sg,1; Z) by passing the Euler classe ∈
H2(Mod(Sg,1); Z) through the universal coefficients theorem, as above.

We obtain another element ofH2(Sg,1; Z) from the Meyer signature cocy-
cle σ ∈ H2(Mod(Sg); Z) as follows. The universal coefficients theorem
identifiesσ with an elementσ⋆ of H2(Mod(Sg); Z). Then, we consider the
Birman exact sequence

1→ π1(Sg)→ Mod(Sg,1)→ Mod(Sg)→ 1.

The associated 5–term exact sequence in homology is

H2(Mod(Sg,1))→ H2(Mod(Sg))→ H1(Sg)Mod(Sg)

→ H1(Mod(Sg,1))→ H1(Mod(Sg))→ 0.

Above, we showed thatH1(Sg)Mod(Sg) is trivial, and so the mapH2(Mod(Sg,1))→
H2(Mod(Sg)) is surjective. Thus (abusing notation) there is an element
σ⋆ ∈ H2(Mod(Sg,1)) mapping toσ⋆ ∈ H2(Mod(Sg)). Applying the
universal coefficients theorem one more time, we obtain an elementσ ∈
H2(Mod(Sg,1)).

We now show thate⋆ andσ⋆ are distinct elements ofH2(Mod(Sg,1); Z),
even up to multiples. By the universal coefficients theorem,it suffices to
show thate andσ are distinct elements ofH2(Mod(Sg,1); Z).
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By Proposition 5.10 the Euler classe evaluates nontrivially on the2–cycle
given by the fundamental class of the “point pushing subgroup” π1(Sg).
On the other hand, sinceπ1(Sg) is the kernel of the mapMod(Sg,1) →
Mod(Sg) (Theorem 4.6), we have that the fundamental class ofπ1(Sg)
pushes forward to zero inH2(Mod(Sg)). As the signature cocycleσ ∈
H2(Mod(Sg,1)) is the pullback ofσ ∈ H2(Mod(Sg); Z), it follows that
σ ∈ H2(Mod(Sg,1)) evaluates trivially on the fundamental class ofπ1(Sg).
We thus have thatH2(Mod(Sg,1); Z) ≈ Z2 and hence

H2(Mod(Sg,1); Z) ≈ Z2.

This completes the proof of Theorem 5.8.



Chapter Six

The symplectic representation and the Torelli

group

One of the fundamental aspects ofMod(Sg) is its action onH1(Sg; Z).
The representationΨ : Mod(Sg) → Aut(H1(Sg; Z)) is like a “first linear
approximation” toMod(Sg), and we can try to transfer our knowledge of
the linear groupAut(H1(Sg; Z)) to the groupMod(Sg).

As we show in§6.1, the algebraic intersection number onH1(Sg; R) gives
this vector space a symplectic structure. This symplectic structure is pre-
served by the image ofΨ, and soΨ can be thought of as a representation

Ψ : Mod(Sg)→ Sp(2g,Z)

into the integral symplectic group. The homomorphismΨ is called thesym-
plectic representationof Mod(Sg). The bulk of this chapter is an exposition
of the basic properties and applications ofΨ. A sample application is that
Mod(Sg) has a torsion-free subgroup of finite index (Theorem 6.9).

The representationΨ has a large kernel, called the Torelli groupI(Sg),
which can be thought of as the “nonlinear” part ofMod(Sg). We conclude
this chapter with an introduction to the study ofI(Sg), which is an important
topic in its own right.

6.1 ALGEBRAIC INTERSECTION NUMBER AS A SYMPLECTIC FORM

In order to understand symplectic representationΨ : Mod(Sg)→ Sp(2g,Z)
one of course needs to know the basic facts about symplectic linear transfor-
mations. After describing these, we show howH1(Sg; R) comes equipped
with a natural symplectic structure. This structure relates in a natural way
to simple closed curves inSg.
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6.1.1 SYMPLECTIC VECTOR SPACES AND SYMPLECTIC MATRICES

Let g ≥ 1 be an integer and let{x1, y1, . . . , xg, yg} be a basis for the vector
spaceR2g. Denote the dual vector space ofR2g by (R2g)⋆. Thestandard
symplectic formon R2g is the 2–form

ω =

g∑

i=1

dxi ∧ dyi.

Given two vectorsv = (v1, w1, . . . , vg, wg) andv′ = (v′1, w
′
1, . . . , v

′
g, w

′
g)

in R2g, we compute

ω(v, v′) =

g∑

i=1

(viw
′
i − v′iwi).

The 2–formω is a nondegenerate, alternating bilinear form onR2g. In fact
it is the unique such form up to change of basis ofR2g. The vector space
R2g equipped with such a form is called areal symplectic vector space.

The linear symplectic groupSp(2g,R) is defined to be the group of linear
transformations ofR2g that preserve the standard symplectic formω. In
terms of matrices:

Sp(2g,R) = {A ∈ GL(2g,R) : A⋆ω = ω}

or in other words

Sp(2g,R) = {A ∈ GL(2g,R) : ATJA = J}

whereJ is the2g × 2g matrix:

J =




0 1 0 0 · · · 0 0
−1 0 0 0 · · · 0 0

0 0 0 1 · · · 0 0
0 0 −1 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 1
0 0 0 0 · · · −1 0




The integral symplectic groupSp(2g,Z) is defined as:

Sp(2g,Z) = Sp(2g,R) ∩GL(2g,Z).
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It is straightforward to check the following facts using basic linear algebra
(see, e.g. [144], Lemmas 1.14, 2.19, and 2.20):

1. det(A) = 1 for eachA ∈ Sp(2g,R).

2. Sp(2g,R) ∩O(2g,R) = U(g).

3. λ is an eigenvalue ofA ∈ Sp(2g,R) if and only if λ−1 is. This
follows from the fact thatA−1 andAT are similar (that is, conjugate).

We also remark that in the caseg = 1 we have

Sp(2,R) = SL(2,R) and Sp(2,Z) = SL(2,Z).

Elementary symplectic matrices. There are symplectic analogues of the
elementary matrices forSL(n,Z). Let σ be the permutation of{1, . . . , 2g}
that transposes2i and2i−1 for each1 ≤ i ≤ g. Theelementary symplectic
matricesare the (finitely many) matrices of the form

SEij =

{
I2g + eij if i = σ(j)
I2g + eij − (−1)i+jeσ(j)σ(i) otherwise

wherei 6= j andeij is the matrix with a1 in the (i, j)-entry and0’s else-
where. We note that ifi 6= σ(j) thenSEij = SE−1

ji .

The following result is classical [150, Hilfssatz 2.1].

THEOREM 6.1 Sp(2g,Z) is generated by elementary symplectic matrices.

The Burkhardt generators. In 1890 Burkhardt [39] gave the following
generating set forSp(4,Z). Below, when we refer to afactor, we mean a
subgroup ofZ2g spanned by some pair{xi, yi}.

Transvection:

(x1, y1, x2, y2) 7→ (x1 + y1, y1, x2, y2)

Factor rotation:

(x1, y1, x2, y2) 7→ (y1,−x1, x2, y2)
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Factor mix:

(x1, y1, x2, y2) 7→ (x1 − y2, y1, x2 − y1, y2)

Factor swap:

(x1, y1, x2, y2) 7→ (x2, y2, x1, y1)

For g > 2, if one adds for each1 ≤ i ≤ g the factor swap exchanging the
adjacent factors{xi, yi} ↔ {xi+1, yi+1}), one can derive the finite generat-
ing set given in Theorem 6.1. Thus Burkhardt’s elements givea generating
set for Sp(2g,Z). Below we will consider an infinite generating set for
Sp(2g,Z), namely the set of all transvections.

6.1.2 H1(Sg; Z) AS A SYMPLECTIC VECTOR SPACE

In what follows we will use[c] to denote the homology class corresponding
to an oriented simple closed curvec. Consider theorderedbasis

{[a1], [b1], . . . , [ag], [bg]}

for H1(Sg; R) ≈ R2g shown in Figure 6.1. The algebraic intersection num-
ber

î : H1(Sg; Z) ∧H1(Sg; Z) −→ Z

extends uniquely to a nondegenerate, alternating bilinearmap

î : H1(Sg; R) ∧H1(Sg; R) −→ R.

If [ai]
⋆ and [bi]

⋆ denote the vectors inH1(Sg; R)⋆ dual to[ai] and [bi], re-
spectively, then

î =

g∑

i=1

[ai]
⋆ ∧ [bi]

⋆ ∈ ∧2 (H1(Sg; R)⋆) .

With this structure the pair(H1(Sg; R), î) is a symplectic vector space.

It is an important observation that there is a collection of oriented simple
closed curves{ai, bi} in Sg so that the homology classes{[ai], [bi]} form
a symplectic basis forH1(Sg; Z) and i(ai, bj) = î([αi], [βj ]) for all i, j.
Such a collection of curves will be called ageometric symplectic basisfor
H1(Sg; Z).
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a1

b1

a2

b2

ag

bg

. . .

Figure 6.1 The “standard” geometric symplectic basis forH1(Sg; Z).

6.2 THE EUCLIDEAN ALGORITHM FOR SIMPLE CLOSED CURVES

In order to effectively make use of the symplectic structureonH1(Sg; Z),
we will need to strengthen the dictionary between the algebraic and topo-
logical aspects ofH1(Sg; Z). As a start, we answer the question: when can
an element ofv ∈ H1(Sg; Z) be represented by an oriented simple closed
curve? Of course ifv 6= 0 then such a curve must be nonseparating.

Recall thatv ∈ H1(Sg; Z) ≈ Z2g is primitive if v 6= nw for any w ∈
H1(Sg; Z) and any integern ≥ 2.

Proposition 6.2 Let g ≥ 1. A nonzero element ofH1(Sg; Z) is represented
by an oriented simple closed curve if and only if it is primitive.

Our proof of Proposition 6.2, adapted from Meeks–Patrusky [149], is a topo-
logical incarnation of the Euclidean algorithm. We recall the classical Eu-
clidean algorithm for finding the greatest common divisor oftwo nonnega-
tive integers. Given a pair of nonnegative integers{p, q} with 0 < p ≤ q,
we subtractp from q to obtain a new set{p, q − p} with gcd(p, q − q) =
gcd(p, q). If we start with the two natural numbersm andn and repeat this
process iteratively, then the theorem is that we will eventually arrive at the
pair{gcd(m,n), 0}.

Proof of Proposition 6.2.Let{ai, bi} be a geometric symplectic basis shown
in Figure 6.1, as well as the corresponding basis{[ai], [bi]} for H1(Sg; Z).

The statement of the proposition for the torus is exactly that of Proposi-
tion 1.5. Thus we can assume thatg ≥ 2.

One direction of the proposition is simple. By the change of coordinates
principle, for any nonseparating oriented simple closed curve γ in Sg, there
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existsφ ∈ Homeo+(S) with φ(γ) = a1. Thus the homology class[γ] ∈
H1(Sg; Z) is part of some basis forZ2g, and is therefore primitive.

The interesting direction of the proposition is to start with a primitive ho-
mology classx ∈ H1(Sg; Z) and to show thatx is represented by a simple
closed curve.

Say that that, with respect to the above basis, we have

x = (v1, w1, . . . , vg, wg).

Without loss of generality we may assume that eachvi andwi is nonnega-
tive, for if not, we can simply switch the orientations of some ai andbi so
that this condition holds.

For each1 ≤ i ≤ g, take a closed regular neighborhoodNi of ai ∪ bi. We
can take theNi to be disjoint. EachNi is homeomorphic to a torus with one
boundary component. Note that, since the proposition is true for the torus, it
is also true for a torus with one boundary component. Thus foreachi there
is an oriented nonseparating simple closed curveγi in Ni so that

gcd(vi, wi)[γi] = vi[ai] + wi[bi] ∈ H1(Sg; Z).

We can thus representx by
∑

gcd(vi, wi) pairwise disjoint oriented simple
closed curves contained in∪Ni. Our goal is to combine these together to
form a single curve.

The following key observation is a consequence of the changeof coordinates
principle.

Observation:Given any two disjoint, oriented, nonhomologous, nonsepa-
rating simple closed curvesα andβ in Sg, there is an arc joining the left
side ofα to the left side ofβ.

Using this observation we can perform a “topological Euclidean algorithm”
on the

∑
gcd(vi, wi) curves above. By this we mean the following. Let

N1,2 be a closed subsurface ofSg that containsN1 andN2 and is dis-
joint from the otherNi. We can takeN1,2 to be a surface of genus 2 with
one boundary component. As above, we havegcd(v1, w1) parallel copies
of γ1 andgcd(v2, w2) parallel copies ofγ2 in N1,2 that together represent
(v1, w1, v2, w2, 0, . . . , 0) ∈ H1(Sg; Z).

By the observation, we can surger the leftmost curve copy ofγ1 with the
leftmost curve inγ2 as in Figure 6.2. Since the surgery adds two parallel arcs



THE SYMPLECTIC REPRESENTATION AND THE TORELLI GROUP 175

with opposite orientations, the homology class of the collection of curves is
unchanged. We can repeat this process until we run out of components of
γ2. We then again have two collections of parallel curves. Ifgcd(v1, w1) ≥
gcd(v2, w2) then the two collections havegcd(v1, w1) − gcd(v2, w2) and
gcd(v2, w2) oriented curves, respectively. If we repeat this process inN1,2,
we will end up, as in the Euclidean algorithm, with

gcd(gcd(v1, w1), gcd(v2, w2)) = gcd(v1, w1, v2, w2)

parallel oriented simple closed curves inN1,2 that together represent the
element(v1, w1, v2, w2, 0, . . . , 0) ofH1(Sg; Z). Moreover, by our choice of
N1,2, these curves are disjoint from theγi with i ≥ 3.

Figure 6.2 Surgering two oriented simple closed curves along an arc.

We continue the process inductively. LetN1,2,3 be a closed surface of genus
3 that containsN1, N2, andN3 and is disjoint from the otherNi. We can
apply the above process to thegcd(v1, w1, v2, w2) curves obtained in the
previous step andgcd(v3, w3) parallel copies ofγ3 in N3. If we do this, we
will find gcd(v1, w1, v2, w2, v3, w3) parallel oriented simple closed curves
in the class(v1, w1, v2, w2, v3, w3, 0, . . . , 0) ∈ H1(Sg; Z).

By induction on genus we can find, at the very end,gcd(v1, w1, . . . , vg, wg)
parallel oriented simple closed curves inSg representingx. Sincex is prim-
itive, we have thatgcd(v1, w1, . . . , vg, wg) = 1, and so we actually have a
single oriented simple closed curve inSg, as desired. 2

Note that since the inclusion mapsSg,1 → Sg andS1
g → Sg induce isomor-

phismsH1(Sg,1; Z) → H1(Sg; Z) andH1(S
1
g ; Z) → H1(Sg; Z), Proposi-

tion 6.2 implies the analogous statement for surfaces with either one punc-
ture or one boundary component.

6.3 MAPPING CLASSES AS SYMPLECTIC AUTOMORPHISMS

Any φ ∈ Homeo+(Sg) induces an automorphismφ∗ : H1(Sg; Z)→ H1(Sg; Z).
As homotopic homeomorphismsφ ∼ ψ induce the same mapφ∗ = ψ∗,
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there is a representation

Ψ0 : Mod(Sg)→ Aut(H1(Sg; Z)) ≈ Aut(Z2g) ≈ GL(2g,Z).

The rightmost isomorphism comes from choosing a basis forH1(Sg; Z).
Our goal in this section is to understand the basic properties of Ψ0, and in
particular to compute its image.

Since each element ofMod(Sg) is represented by an orientation-preserving
homeomorphism ofSg, it follows that the image ofΨ0 lies in SL(2g,R).
Since eachf ∈ Mod(Sg) preserves the latticeH1(Sg; Z) insideH1(Sg; R),
it follows thatΨ0(Mod(Sg)) ⊆ SL(2g,Z). SinceMod(Sg) preserves the
nondegenerate, alternating bilinear formî, it follows thatΨ0(Mod(Sg)) ⊂
Sp(2g,R). Together these observations give that

Ψ0(Mod(Sg)) ⊂ Sp(2g,Z).

ThusΨ0 is better regarded as a representation

Ψ : Mod(Sg)→ Sp(2g,Z).

The representationΨ is called thesymplectic representationof Mod(Sg).

As we already said, the inclusionsSg,1 → Sg andS1
g → Sg induce isomor-

phismsH1(Sg,1; Z) → H1(Sg; Z) andH1(S
1
g ; Z) → H1(Sg; Z). There-

fore, the above discussion applies to give representations

Ψ : Mod(Sg,1)→ Sp(2g,Z) and Ψ : Mod(S1
g )→ Sp(2g,Z).

6.3.1 THE ACTION OF A DEHN TWIST ON HOMOLOGY

A first step in understandingΨ is to compute what it does to Dehn twists.
We have the following formula.

Proposition 6.3 Let a and b be isotopy classes of oriented simple closed
curves inSg. For anyk ≥ 0, we have

Ψ(T kb )([a]) = [a] + k · î(a, b)[b].

Proof. By the change of coordinates principle there is a geometric symplec-
tic basis{ai, bi} for H1(Sg; Z) with b1 = b. It is straightforward to check
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that the action ofT kb onH1(Sg; Z), written with respect to the basis{ai, bi}
is given by

Ψ(T kb )([c]) = [T kb (c)] =

{
[a1] + k[b1] c = a1

[c] c ∈ {b1, a2, b2, . . . , ag, bg}

Now let a be the isotopy class of an arbitrary oriented simple closed curve
in Sg. The [a1]–coefficient of[a] in the basis{[ai], [bi]} is î(a, b). By the
linearity of Ψ(T kb ), the proposition follows. 2

We caution the reader that if[c] = [a] + [b] ∈ H1(S; Z) then

Ψ(Tc) 6= Ψ(TaTb)

in general. It is true, though, that

Ψ(Ta) = Ψ(Ta′) ⇐⇒ [a] = [a′]

as can be seen from Proposition 6.3. Another consequence of Proposi-
tion 6.3 is that if[a] = 0 thenΨ(Ta) is trivial.

6.3.2 SURJECTIVITY OF THE SYMPLECTIC REPRESENTATION : THREE PROOFS

It is natural to ask whether every automorphism ofH1(Sg; Z) preserving
algebraic intersection number can be realized by some homeomorphism.
In other words, isΨ : Mod(Sg) → Sp(2g,Z) surjective? The first proof
one might think of would be to realize each elementary symplectic matrix
as the action of some element ofMod(Sg); since these matrices generate
Sp(2g,Z), surjectivity of Ψ would follow. While some elementary sym-
plectic matrices are the images of a Dehn twist, others are not, and it is not
obvious how to prove these lie in the image ofΨ. NeverthelessΨ is indeed
surjective.

Theorem 6.4 The representationΨ : Mod(Sg) → Sp(2g,Z) is surjective
for g ≥ 1.

We give three conceptually distinct proofs of Theorem 6.4, as each demon-
strates a different useful concept. The first proof presupposes the Burkhardt
generating set forSp(2g,Z) and finds particular elements ofMod(Sg) map-
ping to those elementary matrices. The second and third proofs offer a more
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“bare hands” approach, for example using the Euclidean algorithm from
Proposition 6.2.

WhenS is eitherSg,1 or S1
g , there is a commutative diagram

Mod(S) Sp(2g,Z)

≈

Mod(Sg) Sp(2g,Z)

and soMod(Sg,1) andMod(S1
g) both surject ontoSp(2g,Z) as well.

Theorem 6.4 follows immediately in the caseg = 1 from the isomorphism
Mod(T 2) ≈ SL(2,Z) = Sp(2,Z) given in Theorem 2.5. Hence in what
follows we can assumeg ≥ 2.

First proof of Theorem 6.4.The finite generating set forSp(2g,Z) given
by Burkhardt has four types of generators: one transvection, one factor
rotation, one factor mix, andg − 1 factor swaps. Let{ai, bi}gi=1 be ori-
ented simple closed curves inSg forming a geometric symplectic basis for
H1(Sg; Z) (see Figure 6.1). We show that each of Burkhardt’s generators,
hence all ofSp(2g,Z), lies inΨ(Mod(Sg)). Figure 6.3 illustrates the proof
that follows.

By Proposition 6.3,Ψ(Tb1) is the transvection generator.

We obtain Burkhardt’s factor rotation generator as follows. Let N be a
closed regular neighborhood ofa1 ∪ b1 in Sg. The subsurfaceN is homeo-
morphic to a torus with one boundary component. Think ofN as a square
with sides identified and an open disk removed from the center. Consider
the homeomorphism ofN obtained by rotating the boundary of the square
by π/2 and leaving the boundary ofN fixed. Extending by the identity map
gives a homeomorphism ofSg, hence a mapping classh ∈ Mod(Sg) called
a handle rotation. This handle rotation represents a mapping class which
equals the product of Dehn twists:Tb1Ta1Tb1 . A direct check gives that
Ψ(h) is Burkhardt’s factor rotation generator.

We next realize Burkhardt’s factor mix generator by a mapping class. Con-
sider a closed annular neighborhood ofb1, and push the left-hand bound-
ary component of this annulus along a path in the surface thatintersects
a2 once (from the left ofa2) and misses the other curves in the geometric
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Figure 6.3 Realizing the Burkhardt generators geometrically. From top to bottom: a
transvection, a factor rotation, a factor swap, and a factormix.

symplectic basis; see the third diagram in Figure 6.3. The resulting map-
ping classh is called ahandle mix. We can also describeh as the mapping
class obtained by cuttingSg along b1, pushing one of the new boundary
components through the(a2, b2)–handle as in Figure 6.3, and then regluing.
Alternatively,h is a product of three commuting Dehn twists:

h = T−1
b1
T−1
b2
Tc

wherec is a simple closed curve in the homology class[b2]− [b1]. Compare
the handle mixh with our push map description of the lantern relation in
Section 5.1. Another direct check gives thatΨ(h) is Burkhardt’s factor mix
generator.

Finally we have Burkhardt’sg − 1 factor swaps. These are obtained as the
Ψ–images of handle swaps. Theith handle swaphi for 1 ≤ i ≤ g − 1 is
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easily visualized (see Figure 6.3), but we can also write it as a product of
Dehn twists:

hi = (Tai+1
Tbi+1

Tdi
TaiTbi)

3

wheredi is a simple closed curve that in the homology class[ai+1]+ [bi]. 2

We point out that all of the symplectic elementary matricesSEij are, up
to change of basis, equivalent to Burkhardt’s transvectiongenerators and
factor mix generators forSp(2g,Z). Therefore, up to change of coordinates,
the proof of Theorem 6.4 shows how to realize the symplectic elementary
matrices as Dehn twists and handle mixes.

Second proof of Theorem 6.4.In the first proof of Theorem 6.4 it was not
essential for us to write down explicit products of Dehn twists realizing each
Burkhardt generator. In fact it was not even necessary to saywhich particu-
lar mapping classes descend to those generators. The idea isas follows.

Say that{ai, bi} are oriented simple closed curves inSg that form a geo-
metric symplectic basis. LetA ∈ Sp(2g,Z), and say that we can find a
geometric symplectic basis representing{A([ai]), A([bi])}. That is, sup-
pose we can a geometric symplectic basis{a′i, b′i} so that[a′i] = A([ai]),
[b′i] = A([bi]).

If we cutSg along the union of theai andbi, we get a sphere withg “square”
boundary components. Of course each boundary component is atopologi-
cal circle, but each circle is divided into four segments according to which
points came from the left side ofa1, the right side ofa1, the left side ofb1,
and the right side ofb1. Similarly, if we cutSg along thea′i andb′i, we also
get a sphere withg square boundary components.

Choose any homeomorphismφ from the first sphere to the second. We can
chooseφ so that it not only takes theith square to theith square, but it
also takes theai sides to thea′i sides (with orientation) and thebi sides to
the b′i sides. Sinceφ respects the required identifications, it follows thatφ
extends to a homeomorphismSg → Sg. By construction, the action ofφ on
H1(Sg; Z) is exactly given byA.

Thus to prove the theorem it suffices to show that the image of{[ai], [bi]}
under each of the Burkhardt generators can be realized by a geometric sym-
plectic basis. For the transvection this is easy, and for thepermutation gen-
erators, namely the factor rotation and the factor swap, this is essentially
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obvious. It remains to consider the factor mix

([a1], [b1], [a2], [b2]) 7→ ([a1]− [b2], [b1], [a2]− [b1], [b2]).

But it is easy to realize this basis geometrically (see Figure 6.3 for the solu-
tion), and so we are done. 2

We can use the idea from the second proof of Theorem 6.4 to givea proof
that does not presuppose that we already know an explicit generating set for
Sp(2g,Z).

Third proof of Theorem 6.4.Let A ∈ Sp(2g,Z) be given. Let{ai, bi} be
oriented simple closed curves inSg that form a geometric symplectic basis.
SinceA ∈ GL(2g,Z) the image vectorA([a1]) ∈ H1(Sg; Z) is primitive.
By Proposition 6.2 there is an oriented simple closed curvea′1 representing
the homology classA([a1]).

Since the vectorA([b1]) is primitive we can represent it by an oriented sim-
ple closed curve. SinceSp(2g,Z) preserves algebraic intersection number,
this simple closed curve will necessarily have algebraic intersection+1 with
a′1. But we want something better: we want to find a simple closed curveb′1
that representsA([b1]) and has geometric intersection number 1 witha′1.

We proceed as follows. Choose any geometric symplectic basis{a′′i , b′′i } for
H1(Sg; Z) wherea′′1 = a′1. The curveb′′1 is the only curve in{a′′i , b′′i } that in-
tersectsa′1 = a′′1, and it intersects it once. We can writeA([b1]) uniquely in
terms of the basis{[a′′i ], [b′′i ]}. Sincêi(A([a1]), A([b1])) = î([a1], [b1]) = 1,
it follows that the coefficient ofb′′1 in this sum is exactly+1. This sum gives
a nonsimple (and not-necessarily-connected) representative β of A([b1]).
The good news is thatβ intersectsa′1 exactly once.

The strategy now is to convertβ into a connected simple closed curve with-
out changing its homology class or its geometric intersection number with
a′1. By “resolving” intersections, we immediately turnβ into a disjoint
union β′ of simple closed curves such that[β′] = A([b1]) ∈ H1(Sg,Z).
Note thatβ′ has exactly one component simple closed curve that intersects
a′1, since the intersection ofβ with a′1 is 1.

To changeβ′ into a connected simple closed curve without changing its
homology class, we apply a slight variation of the Euclideanalgorithm for
curves from Proposition 6.2. One just needs to notice that, given any two
oriented simple closed curves inSg that are disjoint froma′1 or perhaps
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an oriented simple closed curve disjoint froma′1 and one that intersectsa′1
once, there is an arc that connects the left side of the first curve/arc to the
left side of the second and that is disjoint froma′1. (The reader might prefer
to translate this statement into the context of the surface with two boundary
components obtained by cuttingSg alonga′1.) Given this fact, we can pro-
ceed exactly as in the proof of Proposition 6.2 in order to obtain an oriented
simple closed curveb′1 that representsA([b1]) and that intersectsa′1 once.

At this point, one can repeat the process to obtain a geometric symplectic
basis{a′i, b′i} for H1(Sg; Z) that represents{A([ai]), A([bi])}. As in the
second proof of Theorem 6.4, the result follows. 2

6.3.3 MINIMALITY OF THE HUMPHRIES GENERATING SET

The surjectivity of the symplectic representationΨ : Mod(Sg)→ Sp(2g,Z)
can be applied to prove thatMod(Sg) cannot be generated by fewer than
2g + 1 Dehn twists. Before proving this we need a bit of setup.

A transvectionin Sp(2g,Z) is an element ofSp(2g,Z) whose fixed set in
R2g has codimension 1. We claim that each transvection inSp(2g,Z) is
the image underΨ of some power of a Dehn twist inMod(Sg). Indeed, let
v ∈ Z2g be any primitive vector that is not fixed by a given transvectionA,
and choose some symplectic basis{v,w, x2, y2, . . . , xg, yg} for Z2g. Since
A preserves the symplectic form restricted toZ2g it follows thatA(v) =
v + kw for somek ∈ Z. By Proposition 6.3, we haveA = Ψ(T kb ) whereb
is any oriented simple closed curve inSg with [b] = w ∈ H1(Sg; Z).

It follows from the fact thatMod(Sg) is generated by Dehn twists (Theo-
rem 4.1) that Theorem 6.4 is equivalent to the fact thatSp(2g,Z) is gener-
ated by transvections. That is, we can give another proof of Theorem 6.4 by
showing that transvections generateSp(2g,Z). Or, we can use Theorem 6.4
to deduce the fact that transvections generateSp(2g,Z).

If v is a primitive vector inZ2g, we denote byτv the corresponding transvec-
tion in Sp(2g,Z), by which we mean thatτv = Ψ(Tc), where[c] = ±v.
We call an element ofSp(2g,Z/mZ) a transvectionif it is the image of a
transvection under the reductionSp(2g,Z) → Sp(2g,Z/mZ). The follow-
ing proposition (and its proof) are due to Humphries [96].

Proposition 6.5 Let g ≥ 2. The groupSp(2g,Z/2Z) cannot be generated
by fewer than2g + 1 transvections.
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Note that, sinceSp(2,Z) = SL(2,Z), the conclusion of Proposition 6.5
does not hold forg = 1.

Proof. First note that the fixed set of a nontrivial transvection inSp(2g,Z/2Z)
has codimension 1 in(Z/2Z)2g. Given a set of transvections, the intersec-
tion of their fixed sets is the fixed set for the entire group that they generate.
Clearly there is no nontrivial element of(Z/2Z)2g fixed by the whole group
Sp(2g,Z/2Z). It follows that any generating set forSp(2g,Z/2Z) consist-
ing entirely of transvections must have at least2g elements, corresponding
to linearly independent vectors.

It remains to show thatSp(2g,Z/2Z) cannot be generated by transvections
corresponding to2g linearly independent elements of(Z/2Z)2g .

Let v1, . . . , v2g be linearly independent elements of(Z/2Z)2g. Note that
each nontrivial element of(Z/2Z)2g is primitive, and in particular thevi
form a basis for(Z/2Z)2g (this basis is not necessarily symplectic). We
would like to show that theτvi do not generateSp(2g,Z/2Z).

We construct a graphG with one vertex for eachvi and an edge between
each pair of vertices{vi, vj} that pair nontrivially (mod 2) under the sym-
plectic form on(Z/2Z)2g induced by that onZ2g.

To any vectorw ∈ (Z/2Z)2g we associate a subgraphG(w) of G, as fol-
lows: if w =

∑
civi, whereci ∈ Z/2Z, thenG(w) is defined to be the full

subgraph ofG spanned by the vertices ofG corresponding to thosevi with
ci 6= 0.

We now argue that, for any transvectionτvi and anyw ∈ (Z/2Z)2g, the
mod 2 Euler characteristics ofG(w) and ofG(τvi(w)) are the same. If the
symplectic pairing ofvi with w is 0 thenτvi(w) = w, and there is nothing
to show. If the symplectic pairing ofvi with w is 1 then by Proposition 6.3
G(τvi(w)) is obtained fromG(w) as follows: first we “add modulo 2” the
vi–vertex ofG (that is, add it if it is not there, delete it if it is); then, soas to
preserve the property of being a full subgraph, we add modulo2 the edges
connecting thevi–vertex to the other vertices ofG(w). The first operation
changes the Euler characteristic by 1. Since the symplecticpairing ofvi with
w is 1 (modulo 2) the second operation changes the Euler characteristic by
1. Thus the mod 2 Euler characteristics ofG(w) andG(τvi(w)) are the
same.

SinceSp(2g,Z/2Z) acts transitively on the nontrivial vectors of(Z/2Z)2g,
it now suffices to show that there exist nontrivial vectors in(Z/2Z)2g whose
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associated subgraphs have different mod 2 Euler characteristics. Observe
thatG(v1) is a single vertex and so has Euler characteristic equal to 1.If G
is not a complete graph then we can find two verticesvi andvj that are not
connected by an edge inG, and soG(vi + vj) is the union of two vertices,
which has mod 2 Euler characteristic equal to 0, and we are done in this
case. IfG is a complete graph then (sinceg ≥ 2) the graphG(v1 + v2 + v3)
is a triangle, which also has Euler characteristic 0. This completes the proof.
2

Since the symplectic representationΨ : Mod(Sg)→ Sp(2g,Z) is surjective
(Theorem 6.4), Proposition 6.5 implies the following.

Corollary 6.6 Let g ≥ 2. Any generating set forMod(Sg) consisting en-
tirely of Dehn twists must have cardinality at least2g+ 1. In particular, the
Humphries generating set forMod(Sg) is minimal among such generating
sets.

6.4 CONGRUENCE SUBGROUPS, TORSION-FREE SUBGROUPS, AND

RESIDUAL FINITENESS

In this section we define the congruence subgroupsMod(Sg)[m] of Mod(Sg)
for m ≥ 2. We will then use these groups to prove two important algebraic
properties of the groupMod(Sg): it has a torsion-free subgroup of finite
index, and it is residually finite. We will approach these results via the cor-
responding theorems in the classical, linear case ofSp(2g,Z), by using the
symplectic representation.

6.4.1 CONGRUENCE SUBGROUPS OFSp(2g, Z)

Letm ≥ 2. The levelm congruence subgroupSp(2g,Z)[m] of Sp(2g,Z)
is defined to be the kernel of the reduction homomorphism:

Sp(2g,Z)[m] = ker (Sp(2g,Z)→ Sp(2g,Z/mZ)) .

When studying the topology of a space with infinite fundamental groupΓ,
it is quite useful to have a torsion-free subgroup ofΓ of finite index. For
example, if an orbifoldX has orbifold fundamental groupΓ, andΓ has a
torsion-free subgroup of finite index, then we can sometimesconclude that
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X is finitely covered by a manifold; indeed we will apply this principle later
in this book (Section 12.3). The following is a classical example.

Proposition 6.7 Let g ≥ 1. The groupSp(2g,Z)[m] is torsion free for
m ≥ 3.

Note thatSp(2g,Z)[2] is not torsion free; consider for example the element
−I2g.

Proof. SinceSp(2g,Z)[m] ⊂ Sp(2g,Z)[n] whenevern is a divisor ofm,
we can assume thatm = pa, where eitherp = 2 anda > 1 or p is an odd
prime anda = 1.

Let h ∈ Sp(2g,Z)[m] be nontrivial, and letk ≥ 1 be any positive integer.
We must show thathk 6= I2g. Sinceh ∈ Sp(2g,Z)[m] we can write

h = I2g + pdT

whered ≥ a and whereT is a2g× 2g matrix with the property that at least
one of its entries is not divisible byp. Replacingh by a positive power of
h if necessary, we can assume thatk is prime. Consider the following two
cases.

Case 1:p = k. By the binomial theorem

hk = (I2g + pdT )k ≡ I2g + k(pdT ) ≡ I2g + pd+1T 6≡ I2g modpd+2.

Note that the first congruence usesm 6= 2.

Case 2:p 6= k. Note that

(pdT )2 = p2dT 2 ≡ 0 modpd+1.

Using this fact, the binomial theorem, and the assumption that k is prime
(sop ∤ k), it follows that

hk = (I2g + pdT )k ≡ I2g + k(pdT ) 6≡ I2g modpd+1.

2

Replacing “Sp(2g,Z)[m]” by “ SL(n,Z)[m]” in the proof of Proposition 6.7
gives that the stronger result that the congruence subgroupSL(n,Z)[m] is
torsion free.



186 CHAPTER 6

6.4.2 CONGRUENCE SUBGROUPS OFMod(Sg)

Let g ≥ 1 and letm ≥ 2. The levelm congruence subgroupMod(Sg)[m]
of Mod(Sg) is defined to be the preimageΨ−1(Sp(2g,Z)[m]) of the level
m congruence subgroupSp(2g,Z)[m] under the symplectic representation
Ψ : Mod(Sg) → Sp(2g,Z). That is,Mod(Sg)[m] is the kernel of the
composition

Mod(Sg)
Ψ→ Sp(2g,Z)→ Sp(2g,Z/mZ).

SinceSp(2g,Z/mZ) is finite,Mod(Sg)[m] has finite index inMod(Sg).

In order to convert our knowledge about torsion inSp(2g,Z) into informa-
tion about torsion inMod(Sg) we will need the following.

THEOREM 6.8 Letg ≥ 1. If f ∈ Mod(Sg) has finite order and is nontriv-
ial thenΨ(f) is nontrivial.

We will prove Theorem 6.8 in Section 7.1.2, as an applicationof the Lef-
schetz fixed point theorem. With this theorem in hand, we can now prove
the following theorem, first observed by Serre [188].

THEOREM 6.9 Letg ≥ 1. The groupMod(Sg)[m] is torsion free form ≥
3.

The hyperelliptic involutions ofSg are finite order elements ofMod(Sg)[2]
(there are others!). Thus the assumptionm ≥ 3 in Theorem 6.9 is necessary.

Proof. Supposef ∈ Mod(S)[m] has finite order. SinceSp(2g,Z)[m] is
torsion free (Proposition 6.7), it follows thatΨ(f) is the identity. In other
words,f induces the trivial action onH1(Sg; Z). But this contradicts The-
orem 6.8. 2

6.4.3 RESIDUAL FINITENESS

Residual finiteness is one of the most commonly studied concepts in com-
binatorial group theory. A groupG is residually finiteif it satisfies any one
of the following equivalent properties.
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1. For each nontrivialg ∈ G there exists a finite index subgroupH < G
with g /∈ H.

2. For each nontrivialg ∈ G there exists a finite index normal subgroup
N ⊳G with g /∈ N .

3. For each nontrivialg ∈ G there is a finite quotientφ : G → F with
φ(g) 6= 1.

4. The intersection of all finite index subgroups inG is trivial.

5. The intersection of all finite index normal subgroups inG is trivial.

6. G injects into itsprofinite completion

Ĝ = lim
←
G/H,

whereH ranges over all finite index normal subgroups ofG.

It is elementary to check that these six properties are indeed equivalent. A
group is thus residually finite if it is “well-approximated”by its finite quo-
tients. Correspondingly, spaces with residually finite fundamental groups
can be understood via their finite covers.

Linear groups. By a linear group, we mean a group that is isomorphic to
a subgroup ofGL(n,C) for somen. It is a famous theorem of Malcev that
every finitely generated linear group is residually finite. This is easy to see
for Sp(2g,Z), since the intersection

⋂

m≥3

SL(n,Z)[m]

is trivial. Indeed, ifA ∈ SL(n,Z) is any matrix lying in the intersection,
then all of its off-diagonal entries must be congruent to0( mod m) for
all m ≥ 3. Thus all off-diagonal entries ofA must be 0, and soA = Id.
Since subgroups of residually finite groups are residually finite, we have the
following.

Proposition 6.10 For eachn ≥ 2 the groupSL(n,Z) is residually finite. In
particular, for g ≥ 1 the groupSp(2g,Z) is residually finite.

Mapping class groups. In analogy with linear groups we have the follow-
ing.
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THEOREM 6.11 LetS be a compact surface. The groupMod(S) is resid-
ually finite.

Theorem 6.11 was originally proven by Grossman [72]. The idea of her
proof is to first show thatπ1(S) is conjugacy separable: given two noncon-
jugate elementsx, y ∈ π1(S), there is a homomorphismφ : π1(S) → F to
a finite groupF such thatφ(x) andφ(y) are not conjugate inF . She then
proves that any automorphism ofπ1(S) that preserves conjugacy classes is
inner. The outer automorphism group of any finitely generated group with
these two properties is residually finite. Theorem 6.11 thenfollows from the
Dehn–Nielsen–Baer theorem (Theorem 8.1 below) and the factthat residual
finiteness is inherited by subgroups. See also [11].

Ivanov outlines the following more direct proof in [101, Section 11.1]. The
general idea is to derive residual finiteness ofMod(S) from residual finite-
ness properties of finitely generated subrings ofR.

Proof of Theorem 6.11.First note thatMod(S) is a subgroup ofMod(S′)
whereS′ is the surface obtained fromS by gluing a genus1 surface with
boundary onto each boundary component ofS (see Theorem 3.18). Since
any subgroup of a residually finite group is clearly residually finite, it suf-
fices to prove the theorem when∂S = ∅, which we now assume.

We assume thatS is hyperbolic; for every otherS the theorem is either
trivial or easy.

Let f ∈ Mod(S) be any nontrivial element. We need to find a homo-
morphismφ : Mod(S) → F to a finite groupF so thatφ(f) 6= Id. By
Theorem 6.8 it is enough to consider two cases: eitherf acts nontrivially on
H1(S; Z) or f has infinite order.

In the first case this says precisely that the imageΨ(f) under the symplectic
representationΨ : Mod(S) → Sp(2g,Z) is nontrivial. SinceSp(2g,Z) is
residually finite (Proposition 6.10) there is a finite quotient Sp(2g,Z) → F
to whichΨ(f) projects nontrivially, and so we are clearly done.

Now assume thatf ∈ Mod(S) has infinite order. Choose any hyperbolic
metric onS where the boundary ofS is geodesic. This gives a faithful
representation

ρ : π1(S)→ PSL(2,R) ≈ Isom(H2).

Sinceπ1(S) is finitely generated,ρ(π1(S)) is a subgroup ofPSL(2, A) for
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some finitely generated subringA of R. Such a ringA is residually finite:
for each nontriviala ∈ A there is a ring homomorphismφ : A → R to a
finite ringR with φ(A) 6= 0. See [206,§4.1] for a proof of this fact.

Now, f acts on the set of oriented isotopy classes of simple closed curves in
S. SinceS is compact, each free homotopy classγ of curves onS contains a
unique geodesic, and the isometryρ(γ) is of hyperbolic type. To each such
such isotopy classγ we associate the hyperbolic lengthℓ(γ) of this unique
geodesic. Denote by| tr |(γ) the absolute value of the trace ofρ(α) for
anyα ∈ π1(S) freely homotopic toγ; this is well-defined since geodesics
in free homotopy classes are unique. Sinceρ(γ) is an isometry ofH2 of
hyperbolic type it can be diagonalized, from which we see that | tr |(γ) =
2 cosh(ℓ(γ)/2).

Since f has infinite order, the action off on the simple closed curves
in S must change the hyperbolic length of some conjugacy classγ (see
Lemma 10.7 below for a proof). It follows that

| tr |(γ) 6= | tr |(f(γ)).

Since the ringA is residually finite we can find a finite index subringU of
A so that| tr |(γ) and | tr |(f(γ)) are not equal inA/U . It follows thatγ
andf(γ) are not equal inPSL(2, A/U).

As PSL(2, A/U) is finite, the composition

π1(S)→ PSL(2, A)→ PSL(2, A/U)

has a finite index kernelH ′. Sinceπ1(S) is finitely generated,H ′ contains
a finite indexcharacteristic subgroupH; that is,H is preserved by every
automorphism ofπ1(S). Such anH can be constructed by taking the com-
mon intersection of the all subgroups in the (finite)Aut(π1(S))–orbit ofH ′.
SinceH is characteristic, the quotient homomorphismπ1(S) → π1(S)/H
gives rise to a homomorphism

ψ : Out(π1(S))→ Out(π1(S)/H).

We restrictψ to Mod(S). The fact thatγ 6= f(γ) in π1(S)/H ′ implies that
γ 6= f(γ) in π1(S)/H. It follows thatψ(f) 6= Id. Sinceπ1(S)/H is finite
so isOut(π1(S)/H), and we are done. 2

When S is allowed to have finitely many punctures, it is still true that
Mod(S) is residually finite. While the proof of Theorem 6.11 given above
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does not work verbatim in this case, since there are finitely many free homo-
topy classes (one for each puncture) that do not contain geodesics, a slight
variation of the proof can still be used to give the result in this case.

6.5 THE TORELLI GROUP

In this section we give a brief introduction to the Torelli subgroupI(S)
of Mod(S). In addition to the beauty of the topic, the study ofI(S) has
important connections and applications to3–manifold theory and algebraic
geometry.

There is another good reason to studyI(S). One recurring theme in the area
is that questions aboutMod(S) can often be answered in two steps: first for
the elements that act nontrivially onH1(S; Z), and then for the elements that
act trivially onH1(S; Z). Since we understand matrix groups comparatively
well, the first type of element is usually vastly easier to analyze. We have
already seen several instances of this phenomenon:

1. When we computed in Proposition 2.3 thatMod(S0,3) ≈ Σ3, all
of the work was in showing that an element that acts triviallyon
H1(S0,3; Z), that is an element that fixes the three punctures, is the
trivial mapping class.

2. When we proved in Proposition 3.1 that Dehn twists are nontrivial
elements ofMod(S), we easily dispensed with the case of Dehn
twists about nonseparating simple closed curves, using their action
on H1(S; Z). For the case of separating curves, we needed a more
subtle argument.

3. When we proved in Theorem 6.11 thatMod(S) is residually finite,
we quickly dealt with the case of elements that act nontrivially on
H1(S; Z); the other elements ofMod(S) required a much more in-
volved argument.

It is therefore important for us to understand the elements of Mod(Sg) that
act trivially on H1(Sg; Z). These elements form a normal subgroup of
Mod(Sg) called theTorelli group and denotedI(Sg). We have an exact
sequence

1→ I(Sg)→ Mod(Sg)
Ψ→ Sp(2g,Z)→ 1.
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The Torelli groupI(T 2) of the torus is trivial; this is simply a restatement
of Theorem 2.5. In general, we think ofI(Sg) as encoding the more mys-
terious structure ofMod(Sg)—it is the part that cannot be “seen” via the
symplectic representationΨ. The study ofI(S) is also of central impor-
tance in understanding the structure of congruence subgroups ofMod(S);
for example see the recent work of Putman [179].

Torelli groups for other surfaces. WhenS is a surface of genusg with
either one puncture or one boundary component, we also have anaturally
defined Torelli groupMod(S), which is again the kernel of the symplectic
representation. For other surfacesS, one can still consider the subgroup
of Mod(S) consisting of elements that act trivially onH1(S; Z). However,
there are other natural choices for the Torelli group in these cases; see Put-
man’s paper [178] for an in-depth discussion.

Homology 3–spheres. One purely topological motivation for studying
I(Sg) is the following connection withintegral homology 3–spheres, which
are 3–manifolds that have the same integral homology asS3. A standard
handlebodyH is a3–manifold homeomorphic to a closed regular neighbor-
hood of a graph embedded in a plane inS3. The complement inS3 of the
interior of H is another handlebodyH ′. Thus we can think ofS3 as the
union of two handlebodies glued along their boundaries by a homeomor-
phismφ : ∂H → ∂H ′, that is:

S3 ≈ H ∪φ H ′.

Note that∂H and∂H ′ are homeomorphic closed surfaces. Ifψ is a self-
homeomorphism of∂H, we obtain a new 3–manifold

Mψ = H ∪φ◦ψ H ′.

The manifoldMψ only depends on the isotopy class ofψ. The homology
of Mψ only depends onΨ([ψ]) ∈ Sp(2g,Z). In particular, if[ψ] lies in the
Torelli subgroup ofMod(∂H) thenMψ is a homology 3–sphere. What is
more, every homology 3–sphere arises in this way [156,§2].

The symplectic action. By Theorem 6.4 each matrixA ∈ Sp(2g,Z) is the
action of some element̃A ∈ Mod(Sg). The element̃A acts by conjugation
on the normal subgroupI(Sg) in Mod(Sg). A different choice ofÃ gives an
automorphism ofI(Sg) that differs by conjugation by an element ofI(Sg).
We therefore have a representation

ρ : Sp(2g,Z)→ Out(I(Sg)).
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This representation is quite useful; it pervades the study of I(Sg). For ex-
ample, the abelian groupH∗(I(Sg); Z) is anSp(2g,Z)–module. One can
then use the representation theory of symplectic groups to greatly constrain
the possibilities forH∗(I(Sg); Z); see [108]. The representationρ turns out
to be an isomorphism; see [57, 32, 33].

6.5.1 TORELLI GROUPS ARE TORSION FREE

Theorem 6.8 can be rephrased as a theorem about Torelli groups, giving the
following basic fact aboutI(Sg).

THEOREM 6.12 For g ≥ 1, the groupI(Sg) is torsion free.

Similarly we have thatI(Sg,1) is torsion free. We could also say thatI(S1
g)

is torsion free, whereS1
g is a surface of genusg with one boundary compo-

nent, but of course the entire groupMod(S1
g ) is already torsion free (Corol-

lary 7.3).

6.5.2 EXAMPLES OF ELEMENTS

We can write down several explicit examples of elements ofI(Sg).

1. Dehn twists about separating curves.Each Dehn twist about a separating
simple closed curveγ in Sg is an element ofI(Sg). This is because there
exists a basis forH1(Sg; Z) where each element is represented by an ori-
ented simple closed curve disjoint fromγ. SinceTγ fixes each these curves,
it in particular fixes the corresponding homology classes, and is hence an
element ofI(Sg).

Another way to see thatTγ is an element ofI(Sg) is to apply Proposi-
tion 6.3, which gives that

Tγ(x) = x+ î([γ], x)[γ]

for any x ∈ H1(Sg; Z). Sinceγ is separating, we have[γ] = 0, and so
Tγ(x) = x.

The group generated by Dehn twists about separating simple closed curves
is denotedK(Sg). In the 1970’s Birman asked whetherK(Sg) is equal to all
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of I(Sg), or at least has finite index inI(Sg). To prove that this is not the
case one has to find some invariant to tell that an element ofI(Sg) does not
lie in K(Sg). We explain below Johnson’s construction of such an invariant.

2. Bounding pair maps.A bounding pairin a surface is a pair of disjoint,
homologous, nonseparating simple closed curves. Abounding pair mapis
a mapping class of the form

TaT
−1
b

wherea andb form a bounding pair. Sincea andb are homologous, Propo-
sition 6.3 gives that the images ofTa andTb in Sp(2g,Z) are equal. Thus
any bounding pair map is an element ofI(Sg).

We have seen bounding pair maps once before: the kernel of theforgetful
mapMod(Sg,1) → Mod(Sg) is generated by bounding pair maps. This
follows from Theorem 4.6 together with Fact 4.7 and the fact thatπ1(Sg) is
generated by simple nonseparating loops.

3. Fake bounding pair maps.In verifying that a bounding pair map acts
trivially on homology we never used the fact that the curves in the bound-
ing pair were disjoint—just that they were homologous. ThusTaT

−1
b is an

element ofI(Sg) whenevera andb are homologous. A special case of this
is the mapping class[Ta, Tc], wherêi(a, c) = 0. Indeed

TaTcT
−1
a T−1

c = TaT
−1
Tc(a)

and, by Proposition 6.3, the simple closed curvesa andTc(a) are homolo-
gous.

4. Point pushes and handle pushes.The Birman exact sequence gives us the
point pushing homomorphism

Push : π1(Sg)→ Mod(Sg,1).

Sinceπ1(Sg) is generated by simple loops, and these element map to bound-
ing pair maps inMod(Sg,1) (Fact 4.7), we have that the entire imagePush(π1(Sg))
lies inI(Sg,1).

We would like to make an analogous statement forI(S1
g). Since the map

S1
g → Sg,1 induces a canonical isomorphismH1(S

1
g ; Z) → H1(Sg,1; Z),

the boundary capping homomorphismMod(S1
g ) → Mod(Sg,1) induces a

surjective homomorphismI(S1
g) → I(Sg,1). By Proposition 3.19 and the

fact that Dehn twists about separating curves lie in the Torelli group, we
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obtain a short exact sequence

1→ Z→ I(S1
g)→ I(Sg,1)→ 1

where the kernelZ is generated by the Dehn twist about the boundary ofS1
g .

Recall from from Section 4.2 that we also have a homomorphismπ1(UT (Sg))→
Mod(S1

g ) that makes the following diagram commute.

π1(UT (Sg)) Mod(S1
g )

π1(Sg) Mod(Sg,1)

By the commutativity of the diagram, the fact that the image of π1(Sg) in
Mod(Sg,1) lies inI(Sg,1), the fact that the kernel of the mapπ1(UT (Sg))→
π1(Sg) maps toI(S1

g), and the fact thatI(S1
g) surjects ontoI(Sg,1), we ob-

tain that the image ofπ1(UT (Sg)) in Mod(S1
g ) lies inI(S1

g).

The natural inclusionS1
g → Sg+1 induces an injective homomorphism

Mod(S1
g )→ Mod(Sg+1) that restricts to an injective homomorphismI(S1

g)→
I(Sg+1). Precomposing with the homomorphismπ1(UT (Sg)) → I(S1

g)
we obtain an inclusion

π1(UT (Sg))→ I(Sg+1).

We think of the elements in the image of this map ashandle pushes, obtained
by pushing the(g + 1)st handle around the surfaceSg+1.

6.5.3 A BIRMAN EXACT SEQUENCE FOR THE TORELLI GROUP

The above discussion about point pushes and handle pushes gives the fol-
lowing result, which allows us to translate results back andforth between
the three groupsI(Sg), I(Sg,1), andI(S1

g):

Proposition 6.13 Let g ≥ 2. The forgetful mapSg,1 → Sg induces a short
exact sequence

1→ π1(Sg)→ I(Sg,1)→ I(Sg)→ 1
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and the boundary capping mapS1
g → Sg gives a short exact sequence

1→ π1(UT (Sg))→ I(S1
g)→ I(Sg)→ 1.

6.5.4 THE ACTION ON SIMPLE CLOSED CURVES

Similar to Section 1.3, we can classify the orbits of simple closed curves
in Sg up to the action ofI(Sg). While the statement is perhaps not so
surprising, the proof is more subtle than the usual change ofcoordinates
principle.

To state the result we need the fact that a separating simple closed curve in
Sg (or its isotopy class) induces a splitting ofH1(Sg; Z). By a splitting of
H1(Sg; Z) we mean a decomposition as a direct product of subgroups that
are orthogonal with respect to skew-symmetric bilinear pairing given by al-
gebraic intersection numberî onH1(Sg; Z). A simple closed curveγ that
separatesSg into two subsurfacesS′ andS′′ gives a splitting ofH1(Sg; Z)
into the product of the two subgroupsH1(S

′; Z) andH1(S
′′; Z), each sub-

group consisting of those homology classes supported on oneside ofγ or the
other. We say that two isotopy classes of simple closed curves areI(Sg)–
equivalent if there is an element ofI(Sg) taking one to the other.

The following theorem, observed by Johnson [106,§6], gives that the ob-
vious necessary condition for two simple closed curves onSg to beI(Sg)–
equivalent is also sufficient.

Proposition 6.14 Letc andc′ be two isotopy classes of simple closed curves
in Sg. If c andc′ are separating, then they areI(Sg)–equivalent if and only
if they induce the same splitting ofH1(Sg; Z). If c andc′ are nonseparating,
then they areI(Sg)–equivalent if and only if, up to sign, they represent the
same element ofH1(Sg; Z).

Proof. For both cases, one direction is obvious, and so we only need to
prove that the obvious necessary condition forI(Sg)–equivalence is suffi-
cient. Letγ andγ′ be representative curves for the isotopy classesc and
c′.

Suppose thatc andc′ are separating. LetS1 andS2 be the two embedded
subsurfaces ofSg bounded byγ, and letS′1 andS′2 be the two embedded
subsurfaces bounded byγ′. Up to renumbering, our hypothesis tells us
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thatH1(S1; Z) andH1(S
′
1; Z) are equal as subsets ofH1(Sg; Z). There-

fore, S1 andS′1 have the same genus, and hence are homeomorphic. Fix a
homeomorphic identification ofγ with γ′, and choose any homeomorphism
φ1 : (S1, γ) → (S′1, γ

′) respecting this identification. By Theorem 6.4 and
by the hypothesis, there is a homeomorphismψ1 ∈ Homeo+(S1, γ

′) so that
ψ1 ◦ φ1 is the identity automorphism ofH1(S1; Z) = H1(S

′
1; Z). Here we

are invoking our claim that all of the results in Section 6.3 work for surfaces
with one boundary component. We similarly chooseψ2 ◦ φ2 : S2 → S′2.
Together, the mapsψ1 ◦φ1 andψ2 ◦φ2 induce a homeomorphism ofSg that
takesγ to γ′ and acts trivially onH1(Sg; Z).

Now suppose thatc and c′ are nonseparating. We would like to proceed
similarly to the previous case. One difficulty is that we do not have a sur-
jectivity statement for the action of the stabilizer ofc in Mod(Sg) on the
homology of the surface obtained by cutting alongc. Instead we proceed as
follows.

Let β be any simple closed curve inSg that intersectsγ once. By the ar-
gument in the third proof of Theorem 6.4 there is a simple closed curveβ′

that intersectsγ′ once and is homologous toβ. Let δ be the boundary of
a regular neighborhood ofβ ∪ γ, and letδ′ be the boundary of a regular
neighborhood ofβ′ ∪ γ′. Applying the present proposition to the case of
separating simple closed curves, there is an element ofI(Sg) takingδ to δ′.
SinceI(S1,1) is trivial (Theorem 2.5), it follows that this element ofI(Sg)
takesc to c′, and we are done. 2

The statement of Proposition 6.14 can be sharpened in the case of isotopy
classes of oriented simple closed curves. Two isotopy classes of oriented
nonseparating simple closed curves areI(Sg)–equivalent if and only if they
represent the same element ofH1(Sg; Z). Two isotopy classes of oriented
separating simple closed curves areI(Sg)–equivalent if and only if they
induce the sameordered splittingof H1(Sg; Z), where the ordering of the
factors comes from the fact that the curve has well-defined left and right
sides.

The statement of Proposition 6.14 (and its proof) apply to the cases of sur-
faces with either one boundary or one puncture.



THE SYMPLECTIC REPRESENTATION AND THE TORELLI GROUP 197

6.5.5 GENERATORS FOR THE TORELLI GROUP

Birman and Powell proved thatI(Sg) is generated by the infinite collection
of all Dehn twists about separating simple closed curves andall bounding
pair maps [22, 175]. The general method they used is as follows.

From relations to generators. Let

1→ K → E
ρ→ Q→ 1

be a short exact sequence of groups. Suppose thatE is generated by{e1, . . . , ek},
and thatQ has a presentation with generatorsρ(e1), . . . , ρ(ek) and relations
{ri = 1}, where eachri is a word in the{ρ(ei)}. For eachi let r̃i be the
corresponding word in theei. As elements ofE eachr̃i lies inK. It is easy
to check that the{r̃i} is a normal generating set forK, that is, the set of all
conjugates of allri by elements ofE generateK.

An infinite generating set for I(Sg). Birman’s idea was to apply the
above general fact to the short exact sequence

1→ I(Sg)→ Mod(Sg)→ Sp(2g,Z)→ 1.

Birman determined a finite presentation forSp(2g,Z) and made the remark
that the relators forSp(2g; Z) give rise to generators forI(Sg). Then her
student Powell interpreted each of these generators as products of Dehn
twists about separating curves and bounding pair maps, thusproving that
I(Sg) is generated by (infinitely many) such maps.

Putman has recently shown that the same generating set forI(Sg) can be
derived from methods similar to the ones that we used to show thatMod(Sg)
is generated by Dehn twists; see [178].

Whittling down the infinite generating set. Johnson showed that, for
g ≥ 3, the Dehn twists about separating simple closed curves are not needed
to generateI(Sg). In other words he proved that any such Dehn twist is
a product of bounding pair maps. This can be deduced from the lantern
relation, as shown in Figure 6.4. In the figure the pairs of simple closed
curves(x, b3), (y, b1), and(z, b4) are all bounding pairs and so, using that
fact that theTbi commute with the Dehn twists about all seven simple closed
curves in the picture, the lantern relationTxTyTz = Tb1Tb2Tb3Tb4 can be
written as the desired relation inI(Sg):

(TxT
−1
b3

)(TyT
−1
b1

)(TzT
−1
b4

) = Tb2 .
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The genusof a bounding pair mapTaT
−1
b is the minimum of the genera

of the two components ofSg − {a ∪ b}. A similar argument to the one
just given, also due to Johnson, shows thatI(Sg) is generated by genus 1
bounding pair maps. This implies, by the change of coordinates principle,
thatI(Sg) is normally generated inMod(Sg) by a single genus 1 bounding
pair map.

b1

b2

b3

b4

x

y

z

Figure 6.4 A lantern showing how to write the twist about the separating simple closed curve
a as a product of bounding pair maps.

Finite generation. In his clever and beautiful paper [107] Johnson proved
the following.

THEOREM 6.15 For g ≥ 3 the Torelli groupI(Sg) is generated by a finite
number of bounding pair maps.

While Mod(Sg) can be generated by2g + 1 Dehn twists that can easily
displayed in one figure, we will see below that any generatingset forI(Sg)
must have at leastO(g3) generators (Theorem 6.19). Thus any such gen-
erating set forI(Sg) is not so easy to write in a single figure (consider the
g = 20 case). This indicates the combinatorial complexity neededto prove
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Theorem 6.15. What is particularly remarkable is that forg > 2 Johnson
finds a generating set forI(Sg) with O(2g) elements; even naming that
many elements in a coherent way is not so trivial!

Johnson’s strategy for Theorem 6.15 is as follows. He first produces an
explicit list of bounding pair maps inI(Sg), some of which are genus one,
and shows that the group generated by these is normal inMod(Sg). To
check normality it suffices to check that the conjugate of each bounding
pair map on the list by each Humphries generator forMod(Sg) is a product
of bounding pair maps on the list. Since any single genus one bounding
pair map normally generatesI(Sg) (in Mod(Sg)), this proves the theorem.
Of course, the hard part is coming up with the explicit list. The proof of
Theorem 6.15 would take us too far afield, but we encourage thereader to
read the proof in [107].

While Theorem 6.15 settles the question of finite generationof I(Sg), we
do not have an analogue of the Humphries generating set. In fact, Johnson
has conjectured thatI(Sg) has a generating set withO(g3) elements, as the
rank ofH1(I(Sg); Q) has this order. If this conjecture is true, Johnson’s
generating set withO(2g) elements is far from minimal. In the caseg = 3
Johnson was able to whittle down the cardinality of his generating set for
I(S3) to 35, which is exactly the rank ofH1(I(S3); Q). Johnson conjec-
tures that this should persist in higher genus. However, it is still an open
question even to find a generating set forI(Sg) whose number of elements
is polynomial ing.

Two related open questions are: IsI(Sg) finitely presented forg ≥ 3? Is
K(Sg) finitely generated forg ≥ 3?

Genus two. In genus two the story is quite different. McCullough–Miller
showed thatI(S2) is not finitely generated [142]. Mess sharpened this result
by showing thatI(S2) is an infinitely generated free group, with one Dehn
twist generator for each orbit of the action ofI(S2) on the set of separating
simple closed curves inS2 [151]. Note that there are no bounding pairs in
S2, and soI(S2) is generated by Dehn twists, that is,I(S2) = K(S2).

Non-closed surfaces. For the surfacesSg,1 andS1
g , it follows from Theo-

rem 6.15 and the Birman exact sequences forI(Sg) thatI(Sg,1) is generated
by finitely many bounding pair maps, and thatI(S1

g) is generated by finitely
many bounding pair maps together with the Dehn twist about the boundary
curve ofS1

g .
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6.6 THE JOHNSON HOMOMORPHISM

In this section we explain the Johnson homomorphism and someof its ap-
plications.

6.6.1 CONSTRUCTION

We now describe another of Johnson’s fundamental contributions to our un-
derstanding of the Torelli group, the so-called “Johnson homomorphism”
[105]. This is a surjective homomorphism

τ : I(Sg)→ ∧3H1(Sg; Z),

where∧3H1(Sg; Z) is the third exterior power ofH1(Sg; Z). The mapτ
exactly captures the torsion free part ofH1(I(Sg); Z) (Theorem 6.19). It is
a useful invariant of elements ofI(Sg), as we shall see.

We begin by considering the case ofS1
g , a surface of genusg ≥ 2 with

one boundary component. We do this for simplicity, since we can choose a
basepoint on∂S1

g and so any element ofMod(S1
g) gives an automorphism

of π1(S
1
g ), as opposed to just an outer automorphism.

Let Γ = π1(S
1
g ), which is isomorphic to the free group of rank2g. Let Γ′

denote the commutator subgroup[Γ,Γ] of Γ. By definition, I(S1
g) is the

subgroup ofMod(S1
g ) that acts trivially onΓ/Γ′. Johnson’s key idea is to

look at the action ofI(S1
g) on the quotient ofΓ by the next term in its lower

central series, namely[Γ,Γ′] = [Γ, [Γ,Γ]].

There is a short exact sequence

1→ Γ′/[Γ,Γ′]→ Γ/[Γ,Γ′]→ Γ/Γ′ → 1

which we rewrite as

1→ N → E → H → 1

by simply renaming the groups. TheJohnson homomorphismis the homo-
morphism

τ : I(S1
g)→ Hom(H,N)

given by

τ(f)(x) = f(e)e−1
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wheree is any lift of x ∈ H toE. It is straightforward to check thatτ(f) is
a well-defined homomorphism, and thatτ itself is a homomorphism.

In the literature, and in applications,τ(f) is usually thought of as an element
of ∧3H. This involves a little bit of an algebraic juggle, as follows.

1. There is a homomorphismψ : ∧2H → N , defined as follows. For
a, b ∈ H, we take liftsã andb̃ in E and let

ψ(a ∧ b) = [ã, b̃] ∈ N.

Now extendψ linearly. Note thatSp(2g,Z) acts on both the do-
main and the range ofψ, and it is not hard to prove thatτ is an
Sp(2g,Z)–module homomorphism. Using for example the classical
Witt formula to count dimensions, one can check thatψ is anSp–
module isomorphism. Therefore, Hom(H,N) is naturally isomorphic
to Hom(H,∧2H).

2. Hom(H,∧2H) is canonically isomorphic toH⋆ ⊗ ∧2H. Using the
nondegenerate symplectic form given by algebraic intersection num-
ber, we can canonically identifyH with its dualH⋆. This gives a
canonical isomorphism Hom(H,∧2H) ≈ H ⊗ ∧2H.

3. There is a natural inclusion of∧3H intoH ⊗ ∧2H given by

a ∧ b ∧ c 7→ a⊗ (b ∧ c) + b⊗ (c ∧ a) + c⊗ (a ∧ b)

and we will show below that the image ofτ is exactly∧3H.

Naturality. The action ofMod(S1
g ) onH = H1(S

1
g ; Z) induces an action

of Mod(S1
g) on ∧3H. A crucial and easy to verify property ofτ is the

following naturality property: for any f ∈ I(S1
g) andg ∈ Mod(S1

g ), we
have

τ(gfg−1) = g⋆(τ(f)). (6.1)

Closed and once-punctured surfaces.We will compute below that for the
isotopy classc of ∂S1

g that τ(Tc) = 0. It then follows thatτ : I(S1
g) →

∧3H factors through a homomorphismτ : I(Sg,1)→ ∧3H.

For closed surfacesSg the Johnson homomorphism is a surjective homo-
morphismτ : I(Sg) → ∧3H/H. The inclusion ofH into ∧3H is given
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by

a 7→
(∑

xi ∧ yi
)
∧ a,

wherexi and yi represent a symplectic basis forH = H1(Sg; Z). The
reason that we need to take the quotient∧3H/H is in order forτ to be well-
defined onI(Sg) comes from the fact thatI(Sg) is the quotient ofI(Sg,1)
by the normal subgroupπ1(Sg) (Proposition 6.13). In the computing the
image of a bounding pair map inI(Sg) underτ , we can think of the quotient
byH as accounting for the fact that there is no preferred side of abounding
pair in a closed surface; inS1

g the two subsurfaces cut off by a bounding pair
are distinguished from each other by whether or not they contain ∂S1

g .

We can now deduce Corollary 6.17 for the closed surfaceSg. The analogues
of Theorem 6.18 and Theorem 6.19 also hold for closed surfaces; see [107,
109, 110, 108].

An interpretation via mapping tori. The Johnson homomorphismτ can
also be defined using topology. Letf ∈ I(Sg,1), and think ofSg,1 asSg
with a marked point. We wish to come up with an element of∧3H. Let φ
be a representative off , and consider the mapping torus

Mf =
Sg × [0, 1]

(x, 0) ∼ (φ(x), 1)
.

Sincef ∈ I(Sg,1) it follows thatH1(Mφ; Z) ≈ H1(Sg × S1; Z). The
projection mapSg × S1 → Sg induces a projectionH1(Sg × S1; Z) →
H1(Sg) ≈ Z2g. Composing these maps and then precomposing with the
abelianization homomorphismπ1(Mφ) → H1(Mφ; Z) gives a homomor-
phism

π1(Mφ)→ Z2g.

SinceMφ is aK(π1(Mφ), 1) it follows that this homomorphism is induced
by a continuous based map of spaces

Mφ → T 2g

whereT 2g is the 2g–dimensional torus. This map is well-defined up to
(based) homotopy, and it induces a homomorphism

ψ : H3(Mφ; Z)→ H3(T
2g; Z).
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SinceH3(T
2g; Z) ≈ ∧3(H) the imageψ([Mφ]) of the fundamental class of

Mφ inH3(T
2g; Z) specifies an element of∧3(H). This element is precisely

τ(f). This can be proved with algebraic topology; see [46].

Another interpretation via mapping tori. There is a different way to use
mapping tori in order to obtain a description ofτ(f). Specifically, we will
find a homomorphismI(Sg,1) → Hom(∧3H,Z) ≈ ∧3H that agrees with
τ .

Let x ∈ H. Representx by an oriented multicurveµ in Sg,1. The cylinder
C = µ× [0, 1] lies inSg,1× [0, 1] and hence maps to the mapping torusMφ

whereφ is a representative off . The cylinderC is in general not a closed
surface. However, sinceφ(µ) is homologous toµ, there is an immersed
surfaceR in Sg,1 × {0} ≈ Sg,1 with µ − φ(µ) as its boundary. SinceSg,1
has a marked point the choice ofR is unique. The unionC ∪R is a surface
Σx and so it represents an element[Σx] ∈ H2(Mφ; Z) ≈ H1(Mφ; Z), this
last isomorphism coming from Poincaré duality.

Given anyx ∧ y ∧ z ∈ ∧3H, the cup product

[Σx] ∪ [Σy] ∪ [Σz] ∈ H3(Mφ; Z)

can be paired with the fundamental class[Mφ] to give an element ofZ.
Equivalently one can take the triple (algebraic) intersection Σx ∩ Σy ∩ Σz

to obtain this element ofZ. We have thus constructed a mapI(Sg,1) →
Hom(∧3H,Z) ≈ ∧3H that one can check is a homomorphism, and that
agrees withτ ; see [108].

6.6.2 COMPUTING THE IMAGE OF τ

We now explain how to explicitly calculateτ on certain elements ofI(S1
g)

and compute its image.

The image of a Dehn twist. Let c be the “standard” separating simple
closed curve shown in Figure 6.5. We claim thatτ(Tc) = 0.

To prove this claim we begin by taking the generators{αi, βi} for π1(S
1
g )

shown in Figure 6.5. Letk be the genus of the subsurface ofS1
g cut off by c

and not containing∂S1
g ; in Figure 6.5 this is the surface to the left ofc. We

see thatTc fixesαi andβi for k+1 ≤ i ≤ g. Letγ be the element ofπ1(S
1
g )

shown in the bottom right of Figure 6.5. Forx ∈ {α1, β1, . . . , αk, βk}, we
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find that

Tc(x) = γxγ−1

and so

Tc(x)x
−1 = [γ, x].

But γ is a separating simple closed curve, and soγ ∈ Γ′, so that[γ, x] ∈
[Γ,Γ′]. Thus, we have[γ, x] = 0 ∈ ∧2H, and soτ(Tc) = 0.

By the change of coordinates principle and the naturality property ofτ (for-
mula (6.1)) it follows thatτ(Tc′) = 0 for any separating simple closed curve
c′ in S1

g . We thus have

K(S1
g ) ≤ ker(τ).

... ...

... ...

... ...

... ...

c d

e

δ

ǫ

γ = δǫ−1

αk

βk

Figure 6.5 The simple closed curvesc andd, and the elements ofπ1(S
1
g) used to compute

τ (Tc) andτ (TdT
−1
e ).

The image of a bounding pair map. As in the case of Dehn twists, in
order to understand the image of an arbitrary bounding pair map it suffices
to computeτ(TdT−1

e ) for th “standard” bounding pair{d, e} shown in Fig-
ure 6.5.

Let f = TdT
−1
e and suppose that the bounding pair{d, e} has genusk; that

is, the subsurface ofS1
g cut off byd∪e and not containing∂S1

g has genusk.
It is straightforward to compute directly he induced actionof f on π1(S

1
g )

by computing the action on each generatorαi andβi of π1(S
1
g ). Doing this

we obtain:
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f(αi) = δαiδ
−1 i ≤ k f(βk+1) = βk+1

f(βi) = δβiδ
−1 i ≤ k f(αi) = αi i ≥ k + 1

f(αk+1) = δǫ−1αk+1 f(βi) = βi i ≥ k + 1

where δ and ǫ are the elements ofπ1(S
1
g ) shown in the bottom left of

Figure 6.5. From here we can write down the productf(x)x−1 for each
x ∈ {αi, βi}. Recall thatf(x)x−1 lies inN and that it corresponds to an
element of∧2H. In the calculation, we will use the fact that

δǫ−1 =
k∏

i=1

[αi, βi]

and the fact that the homology classes[δ] and [βk+1] are equal. Denoting
by↔ the correspondence between elements ofN and∧2H via the isomor-
phism described above, we have:

f(αi)α
−1
i = [δ, αi] ↔ [βk+1] ∧ [αi] i ≤ k

f(βi)β
−1
i = [δ, βi] ↔ [βk+1] ∧ [βi] i ≤ k

f(αk+1)α
−1
k+1 = δǫ−1 ↔

k∑

i=1

[αi] ∧ [βi]

f(βk+1)β
−1
k+1 = 1 ↔ 0

f(αi)α
−1
i = 1 ↔ 0 i ≥ k + 1

f(βi)β
−1
i = 1 ↔ 0 i ≥ k + 1

This gives thatτ(f), as an element ofH ⊗ ∧2H is:

τ(f) =
k∑

i=1

([βi]⊗ ([βk+1] ∧ [αi])− [αi]⊗ ([βk+1] ∧ [βi]))

+[βk+1]⊗
(

k∑

i=1

[αi] ∧ [βi]

)

=

k∑

i=1

([αi]⊗ ([βi] ∧ [βk+1]) + [βi]⊗ ([βk+1] ∧ [αi]) + [βk+1]⊗ ([αi] ∧ [βi]))

=

(
k∑

i=1

[αi] ∧ [βi]

)
∧ [βk+1].
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In summary we have shown that

τ(TdT
−1
e ) =

k∑

i=1

xi ∧ yi ∧ z

where z ∈ H is the homology class[d] = [e] and x1, y1, . . . , xk, yk, z
form a (degenerate) symplectic basis for the homology of thecomponent of
S1
g − (d ∪ e) not containing the basepoint ofπ1(S

1
g ).

The image ofI(S1

g
). Choosingk = 1 in the above computation gives that

the wedge product

[α1] ∧ [β1] ∧ [β2]

lies in the image ofτ : I(S1
g) → ∧3H. We will now use the naturality

property (6.1) together with the fact thatMod(S1
g ) surjects ontoSp(2g,Z)

to show thatτ surjects onto∧3H.

Assume thatg ≥ 3. By Theorem 6.4, there is somef ∈ Mod(S1
g ) so thatf∗

maps the pair([α1], [α3]) to the pair([α1] + [β1]− [β3], [α3]− [β1] + [β3])
and fixes all other basis elements ofH. Then

f∗([α1] ∧ [β1] ∧ [β2]) = [α1] ∧ [β1] ∧ [β2]− [β1] ∧ [β2] ∧ [β3].

Since we have already shown that[α1] ∧ [β1] ∧ [β2] lies in the image of
τ , it follows from the naturality property ofτ that [β1] ∧ [β2] ∧ [β3] does
as well. Applying factor swaps and factor rotations gives that every wedge
productx ∧ y ∧ z is in the image ofτ , wherex, y, z ∈ {[αi], [βi]}. Since
such elements span∧3H, this completes the proof thatτ is surjective when
g ≥ 3. We leave the case ofg = 2 as an exercise.

We have therefore proved the following result of Johnson.

Proposition 6.16 If g ≥ 2 thenτ(I(S1
g)) = ∧3H.

There is another way to prove the slightly weaker fact thatτ(I(S1
g))⊗Q =

∧3H ⊗Q. LetHQ = H ⊗Q. Then the vector space∧3HQ decomposes as
a direct sum of irreducibleSp(2g,Q)-modules as follows:

∧3HQ = ∧3HQ/HQ ⊕HQ.

Since these two summands are irreducible, and sinceτ satisfies the natu-
rality property (6.1), we could prove thatτ is a surjection onto∧3H (after
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tensoring withQ) by finding one element withτ–image in the first sum-
mand and one element withτ–image in the second summand, and then to
apply Schur’s lemma. Note that∧3H is a small, non-obviously embedded
subspace of∧2H ⊗H. How did Johnson know to prove that the image ofτ
is contained in this subspace? Well, he knew that the image ofτ has to be a
direct sum ofSp–invariant subspaces, so after computing a few elements in
the image he might have guessed which subspaces would be needed.

6.6.3 SOME APPLICATIONS

The Johnson homomorphismτ is the most important invariant in the study
of the Torelli group. Here we give two example applications.

The kernel of τ . As K(S1
g ) is contained in the kernel ofτ , and since the

image ofτ is infinite, and indeed the image of any bounding pair map is
infinite, we immediately deduce the following.

Corollary 6.17 If g ≥ 3, thenK(S1
g ) has infinite index inI(S1

g). In fact,
no bounding pair map or any of its nontrivial powers lies inK(S1

g ).

Thus, by using a purely algebraically defined “invariant”τ , Johnson de-
duced a purely topological statement, namely that no nontrivial power of
any bounding pair can be written as a product of Dehn twists ofseparat-
ing curves. Before Johnson’s work Chillingworth had already shown that
K(Sg) 6= I(Sg) [45]. In the paper [109] Johnson actually proved the fol-
lowing much deeper result.

THEOREM 6.18 If g ≥ 3 thenker(τ) = K(S1
g ).

In other words the kernel ofτ , which is defined purely algebraically, is
simply the groupK(S1

g ), which is defined purely topologically.

The abelianization of the Torelli group. That fact thatτ : I(S1
g)→ ∧3H

is surjective immediately implies that the abelianizationH1(I(S1
g ); Z) must

contain an isomorphic copy of∧3H. It turns out thatτ captures the entire
torsion-free part ofH1(I(S1

g); Z), but there is more to the story. Johnson
proved the following [110].
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THEOREM 6.19 Letg ≥ 2. Then

H1(I(S1
g ); Z) ≈ ∧3H × (Z/2Z)N

where

N =

(
2g

3

)
+

(
2g

2

)
+

(
2g

1

)
+

(
2g

0

)
.

The∧3H in the theorem is exactly what is detected by the Johnson homo-
morphism. The torsion part is detected by the so-called Birman–Craggs–
Johnson homomorphisms, which are defined using the Rochlin invariant,
an invariant coming from the theory of 3–manifolds. See Johnson’s lovely
survey paper [108] for a discussion.

A filtration of the mapping class group. Let S be eitherSg or S1
g and

let Γ = π1(S). The symplectic representation ofMod(S) describes the
action ofMod(S) onH1(S; Z) = Γ/Γ′ whereΓ′ = [Γ,Γ]. The kernel of
this representation is the Torelli groupI(S). The Johnson homomorphism
describes the action ofI(S) on the quotientΓ/[Γ′,Γ]. By Theorem 6.18 the
kernel of this map isK(S). One would like to continue this line of analysis
toK(S) and beyond.

To this end we consider thelower central seriesof Γ = π1(S), which is the
sequence of groups

Γ = Γ1 ⊃ Γ2 ⊃ · · ·
defined inductively by

Γ1 = Γ and Γi = [Γ,Γi−1].

Since eachΓi in the lower central series ischaracteristic, that is, fixed by
Aut(Γ), there is a natural homomorphismAut(Γ) → Aut(Γ/Γi) that de-
scends to a homomorphism

Ψi : Out(Γ)→ Out(Γ/Γi+1).

As explained in Chapter 8, the (outer) action ofMod(S) on π1(S) gives a
homomorphismMod(S) → Out(π1(S)). (The Dehn–Nielsen–Baer theo-
rem say that this map is an isomorphism whenS is closed.)

We define thekth Torelli groupIk(S) to be the kernel ofΨk restricted to
Mod(S). We have already seen the following.

I0(S) = Mod(S) I1(S) = I(S) I2(S) = K(S)
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It is a theorem of Magnus that the intersection of theΓi is trivial [134, 63].
Using this fact, Bass and Lubotzky proved that the intersection of theIk(S)
is trivial and so theIk(S) give afiltration of I(S), that is, a descending se-
quence of normal subgroups that intersect in the identity [12]. This filtration
of I(S) is called theJohnson filtration. In the same way that Torelli group
captures some mysterious aspects of the mapping class group, we can think
of the Johnson filtration as probing even more deeply.



Chapter Seven

Torsion

In this chapter we investigate finite subgroups of the mapping class group.
After explaining the distinction between finite order mapping classes and
finite order homeomorphisms, we then turn to the problem of determining
what is the maximal order of a finite subgroup ofMod(Sg). We will show
that for g ≥ 2, finite subgroups have order at most84(g − 1), and cyclic
subgroups have order at most4g+ 2. We will also see that there are finitely
many conjugacy classes of finite subgroups inMod(S). At the end of the
chapter, we prove thatMod(Sg) is generated by finitely many elements of
order two.

7.1 FINITE ORDER MAPPING CLASSES VERSUS FINITE ORDER HOME-

OMORPHISMS

In this section we will see that problems about finite order mapping classes
can be converted to (easier) problems about finite order homeomorphisms.

7.1.1 NIELSEN REALIZATION

Assumeg ≥ 2 and suppose thatG < Homeo+(Sg) is a finite subgroup. We
will prove in Theorem 6.8 below that the natural projectionHomeo+(Sg)→
Mod(Sg) restricted toG is injective. That is, any finite subgroup ofHomeo+(Sg)
is isomorphic to a finite subgroup ofMod(Sg).

What about the converse? Even the case of a single element is interesting.
Supposef ∈ Mod(S) has orderk, and supposeφ ∈ Homeo+(S) is any
representative off . It follows from the definition ofMod(S) thatφk is iso-
topic to the identity. The question is whether or notφ can be chosen so that



TORSION 211

φk is exactly the identity inHomeo+(S). The following classical theorem,
due to Fenchel and Nielsen, answers this question in the affirmative.

THEOREM 7.1 Supposeχ(S) < 0. If f ∈ Mod(S) is an element of finite
order k, then there is a representativeφ ∈ Homeo+(S) so thatφ has order
k. Further,φ can be chosen to be an isometry of some hyperbolic metric on
S.

Our proof of Theorem 7.1 relies on basic properties of Teichmüller space,
and so we relegate it to Section 13.2. The following theorem of Kerckhoff is
a generalization of Theorem 7.1 from finite cyclic groups to arbitrary finite
groups [118]. Its proof is much harder than the proof of Theorem 7.1 and is
beyond the scope of this book.

THEOREM 7.2 (Nielsen realization theorem)Supposeχ(S) < 0 and sup-
poseG < Mod(S) is a finite group. Then there exists a finite group
G̃ < Homeo+(S) so that the natural projectionHomeo+(S) → Mod(S)

restricts to an isomorphism̃G → G. Further, G̃ can be chosen to be a
subgroup of isometries of some hyperbolic metric onS.

In other words, every finite subgroup ofMod(S) comes from a finite sub-
group ofHomeo+(S).

Mapping class groups of surfaces with boundary are torsion free. Re-
call that aframeat a pointx ∈ S is a basis for the tangent space atx. If
∂S 6= ∅ then any isometry that fixes∂S pointwise must clearly fix each
frame at each point of∂S. Since an isometry of a surface is determined
by what it does to a point and a frame, it follows that any such isometry is
equal to the identity homeomorphism. We thus have the following corollary
of Theorem 7.1.

Corollary 7.3 If S is a compact surface with∂S 6= ∅ then Mod(S) is
torsion free.

Isometries of the torus. SinceMod(T 2) ≈ SL(2,Z), torsion inMod(T 2)
is the same as torsion inSL(2,Z). The groupSL(2,Z) has8 nontrivial
conjugacy classes of finite order elements. There are elements of 2, 3, 4,
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and 6, given by the matrices
(
−1 0

0 −1

)
,

(
0 −1
1 −1

)
,

(
0 −1
1 0

)
, and

(
0 1
−1 1

)

and their inverses. Each of these matrices can be realized asan isometry
of either the Euclidean square torus or the Euclidean hexagonal torus, cf.
Section 12.2.

Isometries of punctured spheres. Let S0,n be a sphere withn ≥ 3
punctures and letf ∈ Mod(S0,n) be a finite order element. By Theo-
rem 7.1, there is a hyperbolic metric onS0,n, and a representativeφ ∈
Homeo+(S0,n) of f so thatφ acts by isometries. In particular,φ is a fi-
nite order homeomorphism. What is more, we can fill in the punctures of
S0,n and so regardφ as a finite order homeomorphism of the 2–sphereS2.

Now, any finite order homeomorphismf of S2 is topologically conjugate to
an isometry ofS2 in the standard round metric; see, e.g. [124,§2.2] . When
f is a diffeomorphism, one can see this by averaging a metric toobtain an
f -invariant metric, and then pulling back thisf -invariant metric to the round
metric, which one can do by the uniformization theorem. The conjugation
of f by the uniformizing map will then act by isometries on the round metric
onS2.

Any orientation-preserving isometry of the round metric onS2 is a rotation.
Therefore, up to taking powers, there are exactly three conjugacy classes of
finite order elements ofMod(S0,n) whenn ≥ 4, since there are either 0,
1, or 2 punctures on the axis of rotation. Whenn = 3, there are only two
nontrivial conjugacy classes, since any element ofMod(S0,3) that fixes two
punctures must also fix the third.

7.1.2 DETECTING TORSION WITH THE SYMPLECTIC REPRESENTATION

Using Theorem 7.1 we can now prove Theorem 6.8, which states that if f ∈
Mod(Sg) has finite order, then its image underΨ : Mod(Sg) → Sp(2g,Z)
is nontrivial.

Proof of Theorem 6.8.For g = 1 the theorem follows immediately from
Theorem 2.5, so assumeg ≥ 2. By Theorem 7.1 the mapping classf is
represented by an elementφ ∈ Diff+(Sg) of ordern, where1 < n < ∞.
Choose any Riemannian metrich on Sg. Averageh by takingh + φ∗h +
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· · · + (φn−1)∗h, which is aφ–invariant Riemannian metric onSg. Thusφ
acts as an isometry in this metric.

Consider any fixed pointx ∈ Sg of φ, if one exists. Sinceφ is an isometry it
is determined by its derivativeDφx atx, which is a2×2 orthogonal matrix.
Sinceφ is orientation-preserving the matrixDφ has determinant1 . Sinceφ
is nontrivialDφx is a nontrivial rotation, and sox is an isolated fixed point
of φ of index1.

Sinceφ is a continuous map with isolated fixed points we can apply the
Lefschetz fixed point theorem, which says in this case that the sumM(φ)
of the indices of the fixed points ofφ is equal to theLefschetz numberL(φ),
which is defined as

L(φ) =

2∑

i=0

(−1)iTrace(φ⋆ : Hi(Sg; Z)→ Hi(Sg; Z))

= 1− Trace(φ⋆ : H1(Sg; Z)→ H1(Sg; Z)) + 1.

Since each fixed point ofφ has index1 it follows thatM(φ) ≥ 0, so that
L(φ) ≥ 0. But sinceg ≥ 2 the matrixφ∗ cannot be the identity, for then its
trace would be at least4, givingL(φ) < 0, a contradiction. ThusΨ(f) = φ∗
is nontrivial, as desired. 2

7.2 ORBIFOLDS, THE 84(g − 1) THEOREM, AND THE 4g + 2 THEO-

REM

By rotating a flat torusX in one circle factor by2π/n one obtains an isom-
etry ofX of any ordern. In contrast, the possible isometries of hyperbolic
surfaces are highly constrained. In this section we will prove two theorems
along these lines. The first result was proved in 1893 by Hurwitz. It bounds
the order of any finite group of hyperbolic isometries of a genus g ≥ 2
surface.

THEOREM 7.4 (84(g − 1) theorem) If X is a closed hyperbolic surface
of genusg ≥ 2, then

| Isom+(X)| ≤ 84(g − 1).

One remarkable aspect of Theorem 7.4 is that the number84 appears (why
84?), and yet the given bound is sharp in the sense that the84(g − 1) bound
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is realized for infinitely manyg; see the discussion below.

The following theorem was proved in 1895 by Wiman [209].

THEOREM 7.5 (4g + 2 theorem) LetX be a closed hyperbolic surface of
genusg ≥ 2. Then any element ofIsom+(X) has order at most4g + 2.

The upper bound of Theorem 7.5 is attained for everyg ≥ 2: we simply
realizeSg as a regular hyperbolic(4g+2)–gon with angle sum2π and with
opposite sides identified, and we consider the rotation by one “click.”

Combining Theorem 7.2, Theorem 7.4, and Theorem 7.5 gives the follow-
ing.

Corollary 7.6 Let g ≥ 2. The order of any finite subgroup ofMod(Sg) is
at most84(g − 1), and the order of any finite cyclic subgroup ofMod(Sg)
is at most4g + 2.

Since Theorem 7.1 is proved in Section 13.2, this book contains a complete
proof of the second statement of Corollary 7.6.

7.2.1 THE ISOMETRY GROUP OF A CLOSED HYPERBOLIC SURFACE IS FI -
NITE

A first step towards obtaining upper bounds on the orders of finite subgroups
of isometry groups of surfaces is to show that these groups are finite to begin
with.

Proposition 7.7 LetX be a hyperbolic surface homeomorphic toSg with
g ≥ 2. ThenIsom(X) is finite in any hyperbolic metric.

Proof. The isometry group of any compact Riemannian manifold is a com-
pact topological group.1 This follows easily from the Arzela–Ascoli the-
orem. It therefore suffices to prove thatIsom(X) is discrete or, what is
the same thing, that the connected component inIsom(X) of the identity

1It is a theorem of Myers–Steenrod that the isometry group of acompact Riemannian
manifold is in fact a Lie group, but we will not need this.
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is trivial. Since the topology onIsom(X) agrees with the subspace topol-
ogy inherited fromHomeo+(Sg), it is enough to prove thatIsom(X) ∩
Homeo0(Sg) = {1}.

Suppose thatφ ∈ Isom(X) ∩ Homeo0(Sg). This says precisely thatφ ∈
Isom(X) is isotopic to the identity. Thenφ has a lift toIsom(H2) that is
a bounded distance from the identity map ofH2. By the classification of
hyperbolic isometries, any such isometry is equal to the identity. Thusφ is
the identity, as desired. 2

Proposition 7.7 is simply not true for the torus: the standard square torus has
infinitely many isometries. Indeed, the isometry group contains a copy of
S1 × S1 ≈ T 2. On the other hand, these isometries all represent the trivial
element ofMod(T 2). In general, ifX is any flat torus, then we still have
thatIsom(X) is compact. From this it follows that the projection

Isom+(X)→ Mod(X) = Mod(T 2)

has finite image.

7.2.2 ORBIFOLDS

As the hypothesis of Theorem 7.4 we are given a closed hyperbolic surface
X of genusg ≥ 2. The basic strategy of the proof of Theorem 7.4 is to
study the quotient space

Y = X/ Isom+(X).

WhenIsom+(X) acts freely onX the quotientY is itself a hyperbolic sur-
face. However, elements ofIsom+(X) can have fixed points inX, so that it
is not even clear thatY is a manifold (we will prove below that it is). Since
Isom+(X) is a finite group forg ≥ 2 (Proposition 7.7), the spaceY has a
well-defined area given by

Area(Y ) = Area(X)/| Isom+(X)|.

By the Gauss–Bonnet theorem, we haveArea(X) = 2π(2g − 2). Thus, if
we find a universal lower bound onArea(Y ), we obtain a universal upper
bound on the order ofIsom+(X). Theorem 7.10 gives thatArea(Y ) ≥
π/21, and we will use this to easily Theorem 7.4.

In order to prove thatArea(Y ) ≥ π/21 we will need to better understand the
geometry of quotients of hyperbolic surfaces by (possibly non-free) actions
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of finite groups. This is best accomplished via the theory of hyperbolic
orbifolds.

A 2–dimensional (orientable) hyperbolic orbifold2 is a quotientX/G, where
X is an orientable surface with hyperbolic metric andG is a subgroup of the
finite groupIsom+(X). Our main goal is to find an Euler characteristic for
orbifolds, to prove a Gauss–Bonnet theorem for orbifolds, and to use these
results to show that there is a universal lower bound ofπ/21 for the area
of any 2–dimensional orientable hyperbolic orbifold. As explained above,
applying this lower bound to the orbifoldY = X/ Isom+(X) gives the
84(g − 1) theorem.

Orbifold fundamental group. By theorbifold fundamental group, of an
orbifold X we mean the deck transformation group of the universal cover
X̃ ≈ H2. Elements of the orbifold fundamental group ofX can be repre-
sented by loops inX.

Cone points and signature. Let Y be any2–dimensional hyperbolic orb-
ifold. Any point y ∈ Y has a neighborhood isometric to the quotient of an
open ball inH2 by a finite group of rotationsFy of H2. Under this isometry
the pointy is mapped to the fixed point ofFy. This follows from the fact
that any finite subgroup ofIsom+(H2) is a finite group of rotations fixing
some point. IfFy is trivial theny is called aregular pointof Y ; if Fy is not
trivial then y is called acone point of order|Fy|. There are finitely many
cone points on a 2–dimensional hyperbolic orbifold.

If X is a 2–dimensional hyperbolic orbifold where the underlying topolog-
ical surface (the surface obtained by forgetting the extra structure of the
cone points) is homeomorphic toSg, and where the cone points have orders
p1, p2, . . . , pm, then we define thesignatureof X to be the(m + 1)–tuple
(g; p1, p2, . . . , pm).

Orbifolds from hyperbolic triangle groups. We can use triangles inH2 to
build examples of 2–dimensional orientable hyperbolic orbifolds as follows.
Consider a triangleT in H2 with anglesπ/p, π/q, andπ/r, wherep, q, r ∈
N and1/p + 1/q + 1/r < 1. Each side ofT can be extended to a unique
geodesic line inH2. Let Γ < Isom(H2) denote the group generated by the
reflections in these 3 geodesic lines. The elements ofΓ that are orientation-
preserving form a subgroupΓ0 of index 2. Note thatΓ0 contains rotations
about the vertices ofT , of ordersp, q andr. By the Selberg lemma [187]

2What we are referring to as an orbifold is sometimes called a “good orbifold”; see [201,
Chapter 13].
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(or by a direct argument)Γ0 contains a normal, torsion-free subgroupΓ1 of
finite index. Note thatΓ1 acts properly discontinuously and cocompactly
on H2, sinceΓ does. SinceΓ1 is torsion free it also acts freely, so that
H2/Γ1 is a closed hyperbolic surface. By basic covering space theory this
surface admits an isometric action by the finite groupΓ0/Γ1 with quotient
H2/Γ0. ThusH2/Γ0 is a2-dimensional (orientable) hyperbolic orbifold. It
has signature(0; p, q, r).

We will see that the combinatorial data of signature is enough to determine
the hyperbolic area of a 2–dimensional hyperbolic orbifold. This is essen-
tially the content of the Gauss–Bonnet theorem for orbifolds, explained be-
low.

In order to get to that point, we will first need to find an Euler characteristic
for orbifolds. This invariant should agree with the classical Euler character-
istic when evaluated on surfaces, and should be multiplicative with respect
to coverings. Of course the key issue here is to find such a definition that
gives a well-defined number; this is not trivial to do since there are many
coverings of and many finite group actions on hyperbolic surfaces. In order
to give the definition we will use the notion of orbifold covering maps.

Orbifold covering maps. By an isometryof a 2–dimensional hyperbolic
orbifold X, we mean an isometry of the metric spaceX. Such an isometry
neccessarily is an isometry ofX−{cone points} thought of as a Riemannian
manifold, and it takes cone points to other cone points of thesame order.

A mapX → Y between 2–dimensional hyperbolic orbifolds is aregular
d–fold orbifold covering mapif it is a quotient map by an orderd group of
orientation-preserving isometries ofX.

For example, ifZ is a hyperbolic surface, andH�G < Isom+(Z), then the
orbifold X = Z/H covers the orbifoldY = Z/G, sinceY is the quotient
of X byG/H:

X = Z/H

Z

Y = Z/G
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Consider ad–fold orbifold coveringπ : X → Y . Thedegree ofπ at a point
x is the order of the cone pointπ(x) divided by the order of the cone point
x. The sum of the degrees ofπ at the preimages of a given pointy ∈ Y is
always equal tod. In other words, if the preimage of a cone point of orderp
is a collection of cone points inX of ordersq1, . . . , qk, then

k∑

i=1

p/qi = d.

One way to see that this equality holds is to notice thatπ is a true covering
map away from the cone points, and to consider a regular pointclose toy.

By summing over all cone points inY , we have that ifX has signature
(h; q1, . . . , qn) andY has signature(g, p1, . . . , pm) and thatX → Y is a
d–fold cover, then

n∑

i=1

1

qi
= d

m∑

i=1

1

pi
. (7.1)

The Riemann–Hurwitz formula. We want to find an orbifold Euler char-
acteristic; that is, a function of the signature of an orbifold that is multiplica-
tive under orbifold covers.

Consider the 2–dimensional hyperbolic orbifoldY with signature(g; p1, p2, . . . , pm).
We think of constructingY by starting with a closed surface of genusg, re-
movingm open disks, and gluing in “fractions of disks.” This leads tothe
Riemann–Hurwitz formula, an Euler characteristic for 2–dimensional ori-
entable hyperbolic orbifolds. We define

χ(Y ) = (2− 2g) −m+

m∑

i=1

1/pi (Riemann–Hurwitz formula)

First note thatχ(Y ) clearly agrees with the classical Euler characteristic
whenY has no singular points.

Proposition 7.8 (Multiplicativity of orbifold Euler chara cteristic) If π :
X → Y is ad–fold orbifold cover, then we have

χ(X) = dχ(Y )

Proof. Denote the signatures of the orbifoldsX andY by (h; q1, . . . , qn)
and(g; p1, p2, . . . , pm), respectively. LetY ◦ be the complement inY of dis-
joint open neighborhoods of the cone points ofY , and letX◦ = π−1(Y ◦).
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Note thatX−X◦ is an open neighborhood of the cone points inX, and that
π|X◦ : X◦ → Y ◦ is ad–fold covering map of surfaces. We now compute:

χ(X) = (2− 2h) − n+
n∑

i=1

1

qi

= χ(X◦) +

n∑

i=1

1

qi

= dχ(Y ◦) + d

m∑

i=1

1

pi

= d((2 − 2g) −m) + d
m∑

i=1

1/pi

= dχ(Y )

The first and fifth equalities follow from the Riemann–Hurwitz formula.
The third equality follows from (7.1) and the multiplicativity of the Euler
characteristic for surfaces. The second and fourth equalities follow from the
fact that deleting an open disk from a surface reduces Euler characteristic
by one. This completes the proof. 2

The orbifold Gauss–Bonnet formula. The classical Gauss-Bonnet for-
mula for closed hyperbolic surfacesX gives thatArea(X) = −2πχ(X).
For an orbifoldY that is the quotient of a hyperbolic surfaceX by a group
G of isometries, the areaArea(Y ) is Area(X)/|G| (this agrees with the
area ofY −{cone points}, thought of as a Riemannian manifold). With this
generalized notion of area and the generalized notion of Euler characteristic
χ for orbifolds, the Gauss–Bonnet formula extends to hyperbolic orbifolds.

Proposition 7.9 (Orbifold Gauss–Bonnet formula) If Y is a2–dimensional
hyperbolic orbifold with signature(g; p1, p2, . . . , pm) then

Area(Y )=−2πχ(Y )

=−2π

(
(2− 2g) −

m∑

i=1

(1− 1/pi)

)
.

Proof. Verifying this formula is easy, given the Gauss–Bonnet theorem for
surfaces and the multiplicativity of the orbifold Euler characteristic (Propo-
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sition 7.8). Indeed, ifY = X/G, we have

Area(Y ) =
Area(X)

|G| = −2π
χ(X)

|G| = −2πχ(Y ).

2

The smallest 2–dimensional hyperbolic orbifold. Armed with the orb-
ifold Gauss-Bonnet formula, we are now able to find a lower bound on the
area of any 2–dimensional hyperbolic orbifold. As noted at the start of this
section, this will give the desired upper bound on the order of Isom+(X).

Theorem 7.10 If Y is any compact 2–dimensional (orientable) hyperbolic
orbifold thenχ(Y ) ≤ −1/42. Equivalently,Area(Y ) ≥ π/21. Further, the
orbifold with signature(0; 2, 3, 7) is the unique 2–dimensional hyperbolic
orbifold with Euler characteristic−1/42.

The fact thatχ(Y ) ≤ −1/42 is equivalent toArea(Y ) ≥ π/21 follows
immediately from the orbifold Gauss-Bonnet formula (Proposition 7.9). To
construct the orbifold with signature(0; 2, 3, 7), simply choose any triangle
in H2 with anglesπ/2, π/3, andπ/7, consider the groupΓ generated by
the reflections in the unique lines containing its sides, andtake the quotient
of H2 by the index two subgroup ofΓ consisting of orientation-preserving
isometries.

Proof. We begin with a simple but useful observation. Any cone pointhas
order at least2. Thus for each cone point of orderp, the corresponding term
1− 1

p from the Riemann–Hurwitz formula is at least1/2.

Assume thatX is a2–dimensional orientable hyperbolic orbifold withχ(X) ≥
−1/42. We will rule out all possibilities forX except the hyperbolic orb-
ifold with signature(0; 2, 3, 7). We accomplish this with a case-by-case
analysis, applying the Riemann-Hurwitz formula repeatedly.

We can immediately rule out thatX has no cone points since in this case
χ(X) is a negative integer, and so is less than−1/42. We can also dispense
with all orbifoldsX of genus greater than 1, since in this caseχ(X) ≤ −2.
Similarly, any orbifoldX of genus 1 must have at least one cone point in
order to be hyperbolic, and henceχ(X) ≤ −1/2. The case thatX has
genus 0 and more than four cone points can be eliminated sincein this case
χ(X) ≤ 2− 5 · 1/2 = −1/2.
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Consider the case whenX is genus 0 with four cone points. IfX has sig-
nature(0; 2, 2, 2, 2) thenχ(X) = 0, contradicting the fact thatX is hyper-
bolic. If any of the four cone points ofX has order greater than 2, then

χ(X) ≤ 2− 3 · 1/2 − 2/3 = −1/6 < −1/42.

We are now reduced to checking orbifoldsX with genus 0 and three cone
points. If 3 is the smallest order of a cone point ofX then eitherχ(X) =
2− 3 · 2/3 = 0, contradicting the fact thatX is hyperbolic, or

χ(X) ≤ 2− 2 · 2/3 − 3/4 = −1/12 < −1/42.

Thus we can assume thatX has at least one cone point of order 2. We know
thatX cannot have two cone points of order 2, for otherwiseχ(X) > 0.
If X had no cone point of order 3 thenχ(X) ≥ 2 − 1/2 − 2 · 3/4 = 0 (a
contradiction) or

χ(X) ≤ 2− 1/2 − 3/4− 4/5 = −1/20 < −1/42.

It now remains to check orbifoldsX of signature(0; 2, 3, p). It is easy
to check that the smallestp for which χ(X) < 0 is p = 7. If p > 7
thenχ(X) < −1/42. Combining all of the observations above we see that
χ(X) < −1/42 for every hyperbolic orbifold except for the hyperbolic
orbifold of signature(0; 2, 3, 7), which has Euler characteristic−1/42. 2

7.2.3 PROOF OF THE 84(g − 1) THEOREM

As explained above, the84(g − 1) theorem follows rather directly from the
inequality of Theorem 7.10.

Proof of the84(g − 1) theorem.Let G = Isom+(X). By Proposition 7.7,
the groupG is finite. Thus,X/G is a 2–dimensional orientable hyperbolic
orbifold. By Theorem 7.10, we have

Area(X/G) ≥ π/21,

and by the orbifold Gauss–Bonnet formula, this becomes

2π(2g − 2)

|G| ≥ π

21
,

which gives the result. 2
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7.2.4 PROOF OF THE 4g + 2 THEOREM

Let X be a closed hyperbolic surface of genusg. In this subsection we
prove Wiman’s theorem (Theorem 7.5) that every element ofIsom+(X) has
order at most4g + 2. As explained above, this bound is attained for every
g ≥ 1, by considering the rotations of the(4g+2)–gon about its center. The
quotient ofX by this cyclic group of rotations is a 2–dimensional orientable
hyperbolic orbifold of signature(0; 2, 2g + 1, 4g + 2).

Let G be a cyclic subgroup ofIsom+(X). To prove that|G| ≤ 4g + 2
we will apply a case-by-case analysis similar to the proof ofthe84(g − 1)
theorem. In order to get a better upper bound than84(g − 1) for |G|, we
will of course have to exploit the fact that the orbifold covering mapX →
Y = X/G is cyclic.

Lemma 7.11 Let X → Y be an orbifold covering with cyclic covering
groupG < Isom+(X). Suppose that signature ofY is (0; p1, . . . , pm).
Then for any1 ≤ i ≤ m:

lcm(p1, . . . , pi−1, pi+1, . . . , pm) = |G|

That is, the least common multiple of the orders of anym− 1 cone points is
equal to|G|.

Proof. The covering group over any 2–dimensional hyperbolic orbifold of
genus0 withm cone points is generated by simple loops that go around any
m − 1 of the cone points. This is analogous to the fact that fundamental
groups of punctured spheres are generated by such loops. A simple loop
going around a cone point of orderpi represents an element of orderpi in
the covering group. The lemma now follows from the fact that the order
of a cyclic group is the least common multiple of the orders ofany set of
generators. 2

Proof of the4g + 2 theorem.LetX be a closed hyperbolic surface of genus
g ≥ 2, letG < Isom+(X) be a cyclic subgroup, and letX → Y = X/G
be the induced orbifold covering map. Say that the orbifold signature ofY
is (h; p1, . . . , pm). Since the orbifold Euler characteristic is multiplicative
(Proposition 7.8) we haveχ(X)/|G| = χ(Y ), which we write as

2g − 2

|G| = −χ(Y ). (7.2)
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The proof proceeds as follows. We systematically go throughall possibili-
ties for the signature ofY . For each signature that is not(0; 2, 2g+1, 4g+2),
we will either show that the signature cannot possibly be thesignature of a
quotient ofX, or we will show that|G| < 4g+ 2. Sometimes the latter will
be accomplished by showing that−χ(Y ) = (2g− 2)/|G| is at least12 (note
that(2g − 2)/(4g + 2) < 1

2 ).

First suppose thath ≥ 1. By the Riemann–Hurwitz formula we have

−χ(Y ) = 2h− 2 +

m∑

i=1

(
1− 1

pi

)
≥

m∑

i=1

(
1− 1

pi

)
.

If h = 1 thenm > 0 (otherwiseY is not hyperbolic) and so−χ(Y ) ≥ 1/2.
If h ≥ 2 then2g − 2 ≥ 2 and so−χ(Y ) ≥ 2 > 1/2. Thus it remains to
consider orbifolds of signature(0; p1, . . . , pm), and so we can write

−χ(Y ) = −2 +

m∑

i=1

(
1− 1

pi

)
. (7.3)

Suppose thatm ≥ 5. Again, since(1 − 1
pi

) ≥ 1
2 for eachi we have

−χ(Y ) ≥ 1
2 . It follows easily from the Riemann–Hurwitz formula that

a 2–dimensional hyperbolic orbifold of genus 0 must have at least 3 cone
points. Thus we may assume thatm = 3 orm = 4.

First we treat the casem = 4. In this case (7.2) and (7.3) give

2g − 2

|G| = 2−
(

1

p1
+

1

p2
+

1

p3
+

1

p4

)

Say thatp1 ≤ p2 ≤ p3 ≤ p4. If p3 ≥ 4 thenp4 ≥ 4, and we again find
−χ(Y ) ≥ 1

2 . If p3 = 3 thenp1 ≤ 3 andp2 ≤ 3, and solcm(p1, p2, p3)
is equal to 3 or 6. Applying Lemma 7.11 then gives that|G| is equal to 3
or 6. In either case|G| < 4g + 2 sinceg ≥ 2. Finally, if p3 = 2 then
p1 = p2 = p3 = 2, and Lemma 7.11 gives that|G| = 2.

It remains to consider orbifolds of signature(0; p1, p2, p3). Now (7.2) and
(7.3) give

2g − 2

|G| = 1−
(

1

p1
+

1

p2
+

1

p3

)
(7.4)

As above, we assumep1 ≤ p2 ≤ p3. We deal with two subcases, according
to whether or notp1 dividesp2.
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If p1 dividesp2 then lcm(p1, p2) = p2, and Lemma 7.11 givesp2 = |G|.
Lemma 7.11 also giveslcm(p2, p3) = p2. Sincep3 ≥ p2 we havep2 =
p3 = |G|. Substituting|G| for p2 andp3 in (7.4) and simplifying, we obtain

2g = |G|
(

1− 1

p1

)
.

Since1
2 ≤ 1− 1

p1
< 1, it follows that2g < |G| ≤ 4g.

Finally, we treat orbifolds of signature(0; p1, p2, p3) wherep1 does not di-
vide p2. If p1 ≥ 6, then (7.4) gives−χ(Y ) ≥ 1

2 , and so we may assume
p1 ≤ 5; in particular,p1 is either 2, 3, 4, or 5. An elementary case-by-
case argument using Lemma 7.11 then gives that|G| = lcm(p1, p2) is equal
to p3 (this means thatG has a fixed point at the cone point of orderp3).
Substituting|G| for p3 in (7.4) and simplifying, we obtain

2g − 1 = |G|
(

1− 1

p1
− 1

p2

)
. (7.5)

If p1 ≥ 4 then the right hand side of (7.5) is at least|G|/2, and so|G| ≤
4g − 2. If p1 = 3 then Lemma 7.11 gives thatp2 = |G|/3. Plugging in to
(7.5) then gives|G| = 3g + 3, which is strictly less than4g + 2 for g ≥ 2.
Finally, if p1 = 2 then Lemma 7.11 implies thatp2 = |G|/2, and we find
that |G| = 4g + 2. This is exactly the case where the quotient orbifold has
signature(0; 2, 2g + 1, 4g + 2), as desired. 2

Combined with the results of Section 10.5, our proof of the4g + 2 theorem
really proves a stronger result, namely that (up to isometry) there is only one
hyperbolic structureX onSg that admits a symmetry of order4g + 2, and
moreover the corresponding element ofMod(Sg) is unique up to conjugacy
(cf. Theorem 7.14 below).

7.3 REALIZING FINITE GROUPS AS ISOMETRY GROUPS

The84(g − 1) theorem gives a restriction on on those finite groups that can
act effectively by isometries on some hyperbolic surface ofgenusg ≥ 2.
One can ask for a sort of converse: can any given group be realized as a
group of isometries of some closed hyperbolic surface? If so, what is the
smallest genus of such a surface?
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THEOREM 7.12 LetG be any finite group. ThenG can be realized as a
subgroup ofMod(Sg) for someg ≥ 2. In factG is a subgroup ofIsom+(X)
for some hyperbolic surfaceX ≈ Sg.

We give two proofs of Theorem 7.12, one using geometric grouptheory and
one using covering spaces.

First proof of Theorem 7.12.LetG be a nontrivial finite group, and letΓ be
the Cayley graph ofG with respect to any generating set. LetSg be the
surface obtained as follows. We start by taking one torus foreach vertex of
Γ. Then, for each edge ofΓ, we perform a connect sum operation on the
corresponding tori. The result is a closed surfaceSg. SinceG is nontrivial,
the graphΓ has at least two vertices, and sog ≥ 2.

The action byG on Γ on the left by automorphisms induces an action of
G on Sg by orientation-preserving homeomorphisms. We prove in The-
orem 6.8 below that the natural projectionHomeo+(Sg) → Mod(Sg) is
faithful when restricted to any finite subgroup. (Alternatively, to see that the
action is faithful we can notice that the action ofG onH1(Sg; Z) is faithful,
since there is a torus for each vertex ofΓ, and each torus carries a nontrivial
subspace ofH1(Sg; Z).)

As mentioned above, any finite groupG of homeomorphisms ofSg, where
g ≥ 2, preserves some hyperbolic metric onSg: one just averages any met-
ric to obtain aG–invariant metric, uniformizes that metric, then conjugates
theG action by this uniformizing map to obtain aG–invariant hyperbolic
metric. 2

We note that it is possible to perturb anyG–invariant hyperbolic metric
within the space of hyperbolic metrics so thatG = Isom+(X) for some
hyperbolic metricX.

Second proof of Theorem 7.12.LetS0,n+1 be a sphere withn+1 punctures,
wheren is the size of some generating set forG. Sinceπ1(S0,n+1) is a
free group onn letters, it surjects ontoG, and so there is a covering map
S′ → S0,n+1 with covering groupG. We can fill in the punctures ofS′ to
get a closed surfaceSg on whichG acts effectively by homeomorphisms.
(An alternative way to obtain that the action ofG is effective is to modify
the surfaceSg by adding “extra” handles equivariantly; it is then clear that
each element ofG acts nontrivially on the first homology of the resulting
surface.) As in the previous proof, this proves the theorem. 2
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For a classical treatment of the problem of understanding finite group ac-
tions on surfaces, see [40, Chapter XII].

It is natural to ask how often the bound of84(g − 1) in Theorem 7.4 is
realized. It is a classical fact that it is realized for infinitely manyg and
not realized for infinitely manyg. One can find infinitely manyg ≥ 2 for
which there is a closed, genusg hyperbolic surfaceX with | Isom+(X)| =
84(g − 1) as follows. Consider the quotient ofH2 by the congruence group
PSL(2,Z)[7] (see Chapter 6 below), and fill in the punctures of the result-
ing surface. This gives a closed surface admitting a hyperbolic metric. This
surfaceX is known as theKlein quartic surface. It has genus3. A straight-
forward but detailed analysis gives that

| Isom+(X)| = 168 = 84(3 − 1).

The groupPSL(2,Z)[7] acts on the Farey complex, and the resulting tri-
angulation on the Klein quartic surface is exactly the fundamental domain
for the action of the isometry group. Examples of surfaces inhigher genus
realizing the84(g − 1) bound are obtained by simply taking normal covers
of this one. Larsen proved the remarkable result that the frequency ofg for
which the bound84(g − 1) is attained is the same as the frequency of the
perfect cubes in the integers [125].

7.4 CONJUGACY CLASSES OF FINITE SUBGROUPS

We have seen above that a finite subgroup ofHomeo+(Sg) gives rise to an
orbifold covering mapX → Y , whereX is a hyperbolic surface homeo-
morphic toSg. If we have two orbifold coveringsX → Y , andX ′ → Y ′

whereX,X ′ ≈ Sg, then a necessary condition for the covering groups to be
conjugate inHomeo+(Sg) is thatY andY ′ have the same signature. How-
ever, this is not sufficient, even in the case whereY andY ′ have no cone
points. Indeed, we also need that the maps from the orbifold fundamental
groups ofY andY ′ to the deck group are the same, up to precomposition
by an automorphism of the orbifold fundamental group.

By the Riemann–Hurwitz formula, there are finitely many orbifolds that can
be covered by a fixedSg. The fundamental group of each such orbifold has
finitely many homomorphisms onto some fixed finite group. Finally, by
the orbifold Gauss–Bonnet formula and the fact that area is multiplicative
under orbifold covers, the order of the deck transformationgroup ofSg over
a fixed orbifold is completely determined. We thus deduce thefollowing.
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Theorem 7.13 Let g ≥ 2. There are finitely many conjugacy classes of
finite subgroups inHomeo+(Sg). In particular, there are finitely many con-
jugacy classes of finite order elements inHomeo+(Sg).

If we then quote the Nielsen realization theorem (Theorem 7.2), we obtain
the following.

Theorem 7.14 Let g ≥ 2. There are finitely many conjugacy classes of fi-
nite subgroups inMod(Sg). In particular, there are finitely many conjugacy
classes of finite order elements inMod(Sg).

Uniqueness of hyperelliptic involutions. In Chapter 2 we said that the
element ofMod(Sg) obtained by reflecting a regular(4g + 2)–gon through
its center is called a hyperelliptic involution. A more sophisticated definition
of a hyperelliptic involutionis that it is an order two element ofMod(Sg)
that acts by−Id onH1(Sg; Z). In what follows we take this new definition
of a hyperelliptic involution.

As an illustration of the above criterion for distinguishing conjugacy classes
of finite subgroups, we have the following.

Proposition 7.15 Letg ≥ 1. Any two hyperelliptic involutions inMod(Sg)
are conjugate.

Proof. First note that the quotient orbifold corresponding to a hyperelliptic
involution must have genus zero, otherwise the involution permutes han-
dles ofSg and hence does not act by−Id onH1(Sg; Z). By the Riemann–
Hurwitz formula, the quotient has2g + 2 cone points of order two. The in-
volution is then determined by the homomorphism from this orbifold funda-
mental group toZ/2Z. But each generator must map nontrivially toZ/2Z,
for otherwise the cover, which is supposed to beSg, would have cone points.
Therefore, there is only one possible homomorphism, and hence one conju-
gacy class of hyperelliptic involutions. 2

The element ofMod(Sg) obtained by reflecting a(4g + 2)–gon through
its center has order two, and it acts by−Id onH1(Sg; Z). The element of
Mod(Sg) depicted in Figure 2.3 also has these properties, and so it, too, is
a hyperelliptic involution. By Proposition 7.15, these mapping classes are
conjugate.
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Proposition 7.15 implies that we could alternatively definehyperelliptic in-
volutions as the (homotopy classes of) order two homeomorphisms with
2g + 2 fixed points.

Recall from the discussion after Theorem 3.10 that the hyperelliptic invo-
lutions in Mod(T 2) and Mod(S2) are central. So in these cases the hy-
perelliptic involution is not only unique up to conjugacy, but is completely
unique. Forg ≥ 3, there are infinitely many hyperelliptic involutions in
Mod(Sg).

7.5 GENERATING THE MAPPING CLASS GROUP WITH TORSION

We conclude this chapter with the following curious theoremof Feng Luo
[129]. By aninvolution in a group we simply mean any element of order 2.

THEOREM 7.16 For g ≥ 3 the groupMod(Sg) is generated by finitely
many involutions.

Proof. Theorem 4.1 states thatMod(Sg) is generated by finitely many Dehn
twists about nonseparating simple closed curves. So to prove the theorem
it suffices to show that every Dehn twist about a nonseparating curve is a
product of involutions. By the change of coordinates principle and Fact 3.7,
any two twists about nonseparating curves are conjugate, soit suffices to
prove that any specific such twist is the product of involutions.

Recall from Section 5.1 that, sinceg ≥ 3, we can find a lantern relation

TxTyTz = TaTbTcTd

where each of the 7 simple closed curves in the relation is nonseparating (cf.
Figure 5.5). What is more, we can arrange that each ofx ∪ a, y ∪ b, and
z ∪ c is nonseparating.

To prove the theorem, we only need to show thatTd is a product of involu-
tions. Using the fact that each ofTa , Tb, andTc commutes with each ofTx,
Ty, andTz, we can rewrite the above lantern relation as

(TxT
−1
a )(TyT

−1
b )(TzT

−1
c ) = Td.

The theorem is now reduced to showing that if{u, v} is a pair of simple
closed curves inSg whereu∪v is nonseparating, thenTuT−1

v is a product of
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involutions. Indeed, it then follows from the change of coordinates principle
that each ofTxT−1

a , TyT
−1
b , andTzT−1

c is a product of involutions, and then
so isTd.

Let u andv be curves inSg as above. We claim that there is an involution
f ∈ Mod(Sg) interchangingu andv. Indeed, there is an involution ofSg
interchanging the simple closed curvess andt in Figure 7.1. Our claim then
follows from the change of coordinates principle.

s t

Figure 7.1 Rotation byπ is an involution ofSg interchangings andt

Sincef(u) = v and sincef = f−1, we can use Fact 3.7 to write

TuT
−1
v = Tu(fT

−1
u f).

By simply changing the parentheses on the right hand side of the last equa-
tion we have

TuT
−1
v = (TufT

−1
u )f.

We know thatf is an involution by assumption, and soTufT−1
u is an invo-

lution since it is conjugate tof . ThusTuT−1
v is a product of two involutions,

and we are done. 2

Luo asked if there was a universal bound on the number of torsion elements
needed to generateMod(Sg). Korkmaz showed thatMod(Sg) can actually
be generated by two torsion elements, which is obviously optimal [121].
Building on work of Brendle–Farb, Kassabov proved thatMod(Sg) is gen-
erated by 4 involutions wheng ≥ 7 [31, 113]. NowMod(Sg) does not have
a finite index cyclic subgroup, so it is not generated by 2 involutions. The
question of whether or notMod(Sg) can be generated by three involutions
remains open.



Chapter Eight

The Dehn–Nielsen–Baer theorem

The Dehn–Nielsen–Baer theorem states thatMod(Sg) is isomorphic to an
index two subgroup of the groupOut(π1(Sg)) of outer automorphisms of
π1(Sg). This is a beautiful example of the interplay between topology and
algebra in the mapping class group. It relates a purely topological object,
Mod(Sg), to a purely algebraic one,Out(π1(Sg)). Further, these are related
via hyperbolic geometry!

8.1 STATEMENT OF THE THEOREM

We begin by defining the objects in the statement of the theorem.

Extended mapping class group.LetS be a surface without boundary. The
extended mapping class group, denotedMod±(S), is the group of isotopy
classes of all homeomorphisms ofS, including the orientation-reversing
ones.1 The groupMod(S) is an index two subgroup ofMod±(S). There is
a homomorphismMod±(S)→ Z/2Z which records whether or not an ele-
ment is orientation preserving or not, and we have the short exact sequence:

1→ Mod(S)→ Mod±(S)→ Z/2Z→ 1.

For anyS, there is an order2 element ofMod±(S) that reverses orientation,
and so this sequence is split.

The reason we do not define the extended mapping class group for a sur-
face with boundary is that any element ofHomeo+(S, ∂S) is necessarily
orientation-preserving.

1For the surfacesS0,1 andS0,2, we must be careful to defineMod±(S) as the group of
isotopy classes of homeomorphisms; for these surfaces, every homeomorphism is homotopic
to an orientation-preserving homeomorphism.



THE DEHN–NIELSEN–BAER THEOREM 231

As a first example, we haveMod±(S2) ≈ Z/2Z. Also, it follows from the
fact thatMod(T 2) ≈ SL(2,Z) (Theorem 2.5) that

Mod±(T 2) ≈ GL(2,Z).

Similarly, we have:

Mod±(S0,3)≈Σ3 × Z/2Z

Mod±(S0,4)≈PGL(2,Z) ⋉ (Z/2Z× Z/2Z)

Mod±(S1,1)≈GL(2,Z)

We remark that, the way we have defined things, we do not automatically
have a definition of the extended mapping class group for a surfaceS with
boundary, since a homeomorphism that is the identity on∂S is necessarily
orientation preserving.

Outer automorphism groups. For a groupG, let Aut(G) denote the
group of automorphisms ofG. For anyh ∈ G, there is an associatedinner
automorphismIh : G→ G given by

g 7→ hgh−1

for all g ∈ G. ForΦ ∈ Aut(G) andh ∈ G, we have

Φ ◦ Ih ◦ Φ−1 = IΦ(h).

Thus the inner automorphisms form a normal subgroup ofAut(G), called
the inner automorphism groupof G, denotedInn(G).

Theouter automorphism groupof G is defined as the quotient

Out(G) = Aut(G)/ Inn(G).

In other words,Out(G) is the group of automorphisms ofG, considered up
to conjugation. Note that while an element ofOut(G) does not act on the
set of elements inG, it does act on the set of conjugacy classes of elements
in G.

A natural homomorphism. Let S be a surface withχ(S) ≤ 0. The
universal cover ofS is contractible, and soS is aK(π1(S), 1) space. As
mentioned in the proof of Theorem 2.5, we thus have a correspondence:
{

Free homotopy classes of
(unbased) mapsS → S

}
←→

{
Conjugacy classes of homo-
morphismsπ1(S)→ π1(S)

}
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Let p ∈ S. Given a mapφ : S → S, and a pathγ from p to φ(p), we obtain
a homomorphismφ∗ : π1(S, p) → π1(S, p) as follows. For a loopα based
atp, we set

φ∗([α]) = [γ ∗ φ(α) ∗ γ−1].

For fixedφ, different choices ofγ give rise to mapsφ∗ that differ by conju-
gation.

If φ is a homeomorphism then it is invertible, and soφ∗ is an automorphism.
It follows that we have a well-defined homomorphism

σ : Mod±(S)→ Out(π1(S))

which is injective by the correspondence given above. We have the follow-
ing remarkable theorem.

THEOREM 8.1 (Dehn–Nielsen–Baer)Letg ≥ 1. The homomorphism

σ : Mod±(Sg) −→ Out(π1(Sg))

is an isomorphism.

As noted above, the proof of Theorem 8.1 reduces to the statement thatσ is
surjective. The original proof of this is due to Dehn, although Nielsen was
the first to publish a proof [163]. Baer was the first to prove injectivity.

Note that in the caseg = 1 the Dehn–Nielsen–Baer theorem recovers the
fact thatMod±(T 2) ≈ GL(2,Z). Note too that the statement of the theorem
does not hold wheng = 0 since

Mod±(S2) ≈ Z/2Z 6≈ 1 ≈ Out(π1(S
2)).

Action on the fundamental class.The action ofMod±(Sg) onH2(Sg; Z) ≈
Z and the action ofOut(π1(Sg)) onH2(π1(Sg); Z) ≈ Z are related by the
Dehn–Nielsen–Baer theorem in the sense that the following diagram is com-
mutative.2

An element ofMod±(Sg) is orientation preserving if and only if the induced
element ofOut(H2(Sg; Z)) is trivial. This gives an algebraic characteriza-
tion of Mod(Sg) insideMod±(Sg): it is the subgroup ofOut(π1(Sg)) that
acts trivially onH2(π1(Sg); Z).

2For a groupG, we can defineHk(G; Z) asHk(X; Z), whereX is anyK(G, 1) space;
see Chapter 5.
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Mod±(Sg)
≈

Out(π1(Sg))

Z/2Z ≈ Out(H2(Sg; Z))
≈

Out(H2(π1(Sg); Z))

The case of punctured surfaces.The Dehn–Nielsen–Baer theorem does
not hold as stated for surfaces with punctures. For example,let S0,3 be the
thrice-punctured sphere. We haveπ1(S0,3) ≈ F2, the free group on two
generators. Also, it is a theorem of Nielsen thatOut(F2) ≈ GL(2,Z);
see [130, Proposition 4.5] or [19,§5.3]. ThusOut(π1(S0,3)) ≈ GL(2,Z),
but Mod±(S0,3) is isomorphic to the finite groupΣ3 × Z/2Z (cf. Proposi-
tion 2.3).

For punctured surfaces, we will see in Theorem 8.8 below thatMod±(S) is
isomorphic to the subgroup ofOut(π1(S)) that preserves the collection of
conjugacy classes of elements corresponding to punctures of S (the primi-
tive parabolic elements).

8.2 THE QUASI-ISOMETRY PROOF

Dehn’s original proof of the Dehn–Nielsen–Baer theorem uses the notion of
quasi-isometry. Again, the goal is to show that each elementof Out(π1(Sg))
is induced by an element ofMod±(Sg). The key step is to show that an
element ofOut(π1(Sg)), which a priori preserves only algebraic proper-
ties/objects, must in fact preserve topological ones. For example, the first
step in the proof will be to prove that an element ofOut(π1(Sg)) must
respect the topological property of whether or not two the free homotopy
classes of two simple closed curves have geometric intersection number
zero. We will prove this by studying the behavior ofπ1(Sg) “at infinity”
in H2.

8.2.1 METRICS ON π1(S)

Let G be a group with a fixed finite generating setS. The Cayley graph
Γ(G,S) for G with respect toS is the abstract graph with a vertex for each
elementg ∈ G and an edge between the verticesg andgs if s ∈ S or if
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s−1 ∈ S. The groupG acts onΓ(G,S) on the left by graph automorphisms.

There is a natural metric onΓ(G,S) given by taking each edge to have
length 1 and putting thepath metricon Γ(G,S), whereby the distance be-
tween two points is the length of the shortest path between them. Restricting
this metric to the vertices ofΓ(G,S) gives aG–invariant metric onG, called
the word metriconG with respect toS. For g ∈ G, the distancedS(1, g)
is called theword lengthof g. By left invariance, for anyg, h ∈ G, the
distancedS(g, h) is the word length ofg−1h.

For a surfaceS with χ(S) < 0, another way to get a metric onπ1(S)
is to choose a covering mapH2 → S that endowsS with a hyperbolic
metric (recall that, by “hyperbolic metric,” we mean a complete, finite-area
Riemannian metric with constant curvature−1). If we fix a basepoint in
S, its set of lifts toH2 are in bijection with elements ofπ1(S). We can
therefore define thehyperbolic distancebetween two elements ofπ1(S) as
the hyperbolic distance between the corresponding lifts.

Clearly, the word metric onπ1(S) depends on the choice of generating set,
and the hyperbolic metric onπ1(S) depends on the choice of covering map.
We would like to understand what properties of the metric do not depend on
these choices. In short, the answer is that all choices give metrics that “look
the same, up to a universally bounded stretch, at large scales.” This brings
us to the notion of quasi-isometry.

8.2.2 QUASI-ISOMETRIES

A function f : X → Y between metric spaces(X, dX ) and (Y, dY ) is a
quasi-isometric embeddingif there are constantsK andC so that

1

K
dX(x, x′)− C ≤ dY (f(x), f(x′)) ≤ KdX(x, x′) + C

for any choice ofx andx′ in X. We say thatf is aquasi-isometryif there
is a constantD so that theD–neighborhood off(X) is equal toY . In this
case we say thatX andY arequasi-isometric. It is not hard to check that
quasi-isometry is an equivalence relation on metric spaces.

There is a more symmetric definition of quasi-isometry, as follows. Two
metric spaces(X, dX) and(Y, dY ) are quasi-isometric if and only if there
are mapsf : X → Y andf : Y → X, and constantsK,C, andD such that

dY (f(x), f(x′)) ≤ KdX(x, x′) +C dX(f(y), f(y′)) ≤ KdY (y, y′) +C
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and

dX(f ◦ f(x), x) ≤ D dY (f ◦ f(y), y) ≤ D
for all x, x′ ∈ X andy, y′ ∈ Y .

As a first exercise one can show that, given two word metrics onthe same
finitely generated groupG, the identity mapG → G is a quasi-isometry.
This fact also follows from the first statement of Theorem 8.2; see Corol-
lary 8.3 below.

8.2.3 THE FUNDAMENTAL OBSERVATION OF GEOMETRIC GROUP THEORY

The following theorem, sometimes called the Milnor–Švarc lemma, is one
of the most basic theorems in geometric group theory. It firstappeared in
the work of Efremovic̆ [53],̆Svarc [197], and Milnor [154].

Recall that the action of a groupG on a topological spaceX is properly
discontinuousif, for each compactK in X, the set{g ∈ G : (g ·K)∩K 6=
∅} is finite. LetX be some metric space. The spaceX is proper if closed
balls inX are compact. Ageodesicin X is a distance-preserving map of a
closed interval intoX. Finally,X is ageodesic metric spaceif there exists
a geodesic connecting any two points inX.

THEOREM 8.2 (Fundamental oberservation of geometric group theory)
LetX be a proper geodesic metric space, and suppose that a groupG acts
properly discontinuously onX via isometries. If the quotientX/G is com-
pact, thenG is finitely generated, andG is quasi-isometric toX. More
precisely, there is a word metric forG so that, for any pointx0 ∈ X the
map

G→ X
g 7→ g · x0

is a quasi-isometry.

One example of the phenomenon described in Theorem 8.2 is given by the
action by deck transformations of a compact Riemannian manifold on its
universal cover.

Proof. Let x0 be some fixed basepoint ofX. Since the action ofG onX is
properly discontinuous, the metric onX induces a metric onX/G. Indeed,
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the distance between two points in the quotient is the infimumof the dis-
tances between any two of their preimages; the proper discontinuity implies
the infimum is a minimum. AsX/G is compact, it has finite diameterR. It
follows thatX is covered by theG–translates ofB = B(x0, R), the ball of
radiusR aboutx0. Let

S = {g ∈ G : g 6= 1 andg ·B ∩B 6= ∅}.

By the properness ofX and the proper discontinuity of the action ofG on
X, the setS is finite.

Let d denote the metric onX. We define

λ = max
s∈S

d(x0, s · x0) and r = inf{d(B, g ·B) | g /∈ S ∪ {1}}.

Note that, since the action ofG is properly discontinuous, and sinceX is
proper,r is actually a minimum.

If r = 0, thenG is finite, and the theorem is trivial in this case. So we may
assumer > 0.

Let g ∈ G. AsX is geodesic, it is in particular path connected. Given a
path fromx0 to g · x0, we can choose pointsx1, . . . , xn = g · x0 along this
path so thatd(xi, xi+1) < r. Since the{g · B} coverX, we may choose
g1, . . . , gn ∈ G so thatxi ∈ gi · B. If we setg0 = 1 andsi = g−1

i−1gi, we
have thats1s2 · · · sn = g. We have

d(si ·B,B) = d(g−1
i−1gi · B,B) = d(gi · B, gi−1 ·B) ≤ d(xi, xi−1) < r.

By the definition ofr we see thatsi ∈ S ∪ {1} for all i. ThusS generates
G, andG is finitely generated.

We will now show that the mapg 7→ g ·x0 defines a quasi-isometric embed-
dingG → X, whereG is given the word metric associated toS. In other
words we will show that forg1, g2 ∈ G we have

1

λ
d(g1 · x0, g2 · x0) ≤ dS(g1, g2) ≤

1

r
d(g1 · x0, g2 · x0) + 1.

SinceG acts by isometries on itself and onX, this is equivalent to the
statement that

1

λ
d(x0, g · x0) ≤ dS(1, g) ≤

1

r
d(x0, g · x0) + 1

for anyg ∈ G (substituteg−1
1 g2 for g). In our definition of a quasi-isometric

embedding, one can takeK = max{λ, 1
r} andC = 1. The constantC
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cannot be taken to be 0 because, for instance,g could be in the stabilizer of
x0.

The inequality 1
λd(x0, g · x0) ≤ dS(1, g) follows immediately from the

triangle inequality, the definitions ofS andλ, and that fact thats ∈ S if and
only if s−1 ∈ S. Thus “short” paths inG give rise to “short” paths inX.

We must now show that “short” paths inX correspond to “short” paths in
G. Precisely, we will prove the inequalitydS(1, g) ≤ 1

rd(x0, g · x0) +
1. The argument is a souped-up version of the argument thatS generates
G. Let g ∈ G. SinceX is geodesic we may find a geodesic of length
d(x0, g · x0) connectingx0 to g · x0. Let n be the smallest integer strictly
greater thand(x0, g · x0)/r, so n ≤ d(x0, g · x0)/r + 1. We can find
pointsx1, . . . , xn−1, xn = g · x0 in X so thatd(xi, xi+1) < r for 0 ≤
i ≤ n − 1. Since theG–translates ofB coverX, we can choose elements
1 = g0, g1 . . . , gn−1, gn = g of G so thatxi ∈ gi · B. If we setsi = g−1

i−1gi
theng = s1 · · · sn. Again, by the definition ofr, we havesi ∈ S, and so the
word length ofg is at mostn. In summary, we have

d(1, g) ≤ n ≤ 1

r
d(x0, g · x0) + 1,

which is what we wanted to show.

By the definition ofR, theR–neighborhood of the image ofG is all ofX,
and so the quasi-isometric embeddingG→ X is a quasi-isometry. 2

Applications to Cayley graphs. Any Cayley graph for a finitely generated
group is a proper, geodesic metric space. Thus, by considering the action of
a groupG on an arbitrary Cayley graph forG, we obtain the following fact.

Corollary 8.3 For any two word metrics on a finitely generated groupG,
the identity mapG→ G is a quasi-isometry.

The following corollary of Corollary 8.3 represents the first step in our proof
of the Dehn–Nielsen–Baer theorem.

Corollary 8.4 Any automorphism of a finitely generated group is a quasi-
isometry.

By Corollary 8.3, we do not need to specify which word metric we are using
in the statement of Corollary 8.4.
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Proof. Let Φ : G → G be an automorphism of a finitely generated group
G, and letS be a finite generating set forG. SinceΦ is an automorphism,
we have thatΦ−1(S) = {Φ−1(s) : s ∈ S} is a finite generating set forG.
What is more, we have:

dS(Φ(g),Φ(h)) = dΦ−1(S)(g, h).

In other words, the amount word-length inG is stretched under the mapΦ
is equivalent to the amount of stretch word length undergoeswhen changing
the finite generating set. The result now follows immediately from Corol-
lary 8.3. 2

Combining Theorem 8.2 and Corollary 8.3, we have that any twoword met-
rics onπ1(Sg) are quasi-isometric, and forg ≥ 2, each word metric is quasi-
isometric to each hyperbolic metric onπ1(Sg). What is more, the quasi-
isometry in each case is the identity map. In other words, there is only one
natural metric onπ1(Sg) up to the equivalence relation of quasi-isometry.
Thus in our arguments we will be able to switch back and forth between
word metrics and hyperbolic metrics. For instance, Corollary 8.4 is proved
using the word metric, and then it is applied in the proof of Lemma 8.5,
where we use a hyperbolic metric onπ1(Sg).

Now that we have a well-defined metric onπ1(Sg), we can begin our study
of its large scale behavior.

8.2.4 LINKING AT INFINITY

Let S be a hyperbolic surface. We say that an element ofπ1(S) is hyper-
bolic if the corresponding deck transformation is a hyperbolic isometry of
H2. Recall that the axis of a hyperbolic elementα of π1(S) has a pair of
endpoints∂α lying in ∂H2. Two hyperbolic elementsα, β of π1(S) are
linked at infinityif ∂α and∂β are linked in∂H2 ≈ S1; that is, if the pair
∂α separates the pair∂β (and vice versa).

A priori this notion depends on the choice of hyperbolic metric onS. One
can prove that actually the property of being linked at infinity is independent
of the choice of metric. For simplicity, though, we will use afixed covering,
so there is no ambiguity.
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Lemma 8.5 Let g ≥ 2 and letH2 → Sg be a fixed covering map. LetΦ
be an automorphism ofπ1(Sg), and letγ and δ be nontrivial elements of
π1(Sg). Then the elementsΦ(γ) andΦ(δ) are linked at infinity if and only
if γ andδ are linked at infinity.

Proof of Lemma 8.5.SinceSg is a closed hyperbolic surface all nontrivial
elements are hyperbolic, and so it makes sense to talk about linking at in-
finity. BecauseΦ is invertible, it suffices to show that ifγ and δ are not
linked at infinity, thenΦ(γ) andΦ(δ) are not linked at infinity. Also, we
may assume thatγ andδ do not share an axis, since having the same axis
is equivalent to having equal (nontrivial) powers, and thisproperty is pre-
served by the automorphismΦ.

By Corollary 8.4,Φ is a quasi-isometry ofπ1(Sg). Say that, with respect to
the hyperbolic metric coming from the fixed coveringH2 → Sg, the quasi-
isometry constants areK ≥ 1 andC ≥ 0. LetD be the diameter of some
fixed fundamental domain forπ1(Sg) in H2.

Fix someR > 0. Letx0 be a fixed basepoint forH2, and consider the orbit

Oγ = {γk · x0 : k ∈ Z}

Sinceγ and δ are hyperbolic isometries ofH2, we may choose anN =
N(R) so that each point of

OδN = {(δN )k · x0 : k ∈ Z, k 6= 0}

has distance at leastR from each point ofOγ . Note thatOδN is not the orbit
of x0 underδN since it is missing the pointx0.

Sinceγ andδ are not linked at infinity (and do not share an axis), we can
connect the points ofOγ by an infinite piecewise-geodesic path, where each
segment of the path connects two points in the orbit ofx0 that lie in adja-
cent fundamental domains, and where each point of the path has a distance
at leastR from each point ofOδN . We can denote such a path by its set
of vertices, say{αi}. We can likewise connect the points ofOδN by a
piecewise-geodesic path{βi} where eachβi is in the orbit ofx0, so that the
path{βi} stays a hyperbolic distance at leastR from the path{αi}, and so
that consecutive verticesβi andβi+1 lie in adjacent fundamental domains.
The condition on adjacency implies that, for both paths, thelength of each
geodesic segment is at most2D (any pair of points in adjacent fundamen-
tal domains have distance at most2D). The vertices of the two paths are
identified with particular elements ofπ1(Sg).
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x0
γx0

γ2x0

γ−1x0

γ−2x0

δNx0δ−Nx0

γ

δ

Figure 8.1 Left: the polygonal paths constructed in the proof of Lemma 8.5; right: polygo-
nal paths that are linked at infinity.

Assume, for the purposes of contradiction, that the hyperbolic isometries
Φ(γ) and Φ(δ) are linked at infinity. It follows that the polygonal paths
{Φ(αi)} and{Φ(βi)} have to cross. SinceΦ is a quasi-isometry with con-
stantsK andC, each geodesic segment of{Φ(αi)} and{Φ(βi)} has length
at mostK(2D) +C. But if these paths cross, two of the geodesic segments
themselves must cross—see the right hand side of Figure 8.1.Now, each
segment has at least one endpoint whose distance from the crossing point is
less than or equal to(K(2D) + C)/2, and so these two endpoints lie at a
distance of at mostK(2D) + C.

What we have now is that there exist elementsα, β ∈ π1(Sg) with d(α, β) ≥
R andd(Φ(α),Φ(β)) ≤ K(2D) + C. By choosingR large enough, say,
R > 2DK2 + 2CK, we obtain a contradiction with the assumption thatΦ
is a quasi-isometry with constantsK andC. Thus it must be the case that
Φ(γ) andΦ(δ) are not linked at infinity, and we are done. 2

Sides. In addition to linking, we can also talk about two hyperbolic
elementsα, β ∈ π1(S) being on the sameside of a hyperbolic element
γ ∈ π1(S). That is, ifα andβ are unlinked withγ (and do not share an axis
with γ), then their axes either lie on the same side of the axis forγ or they
do not. One can also formulate this notion purely topologically at infinity,
in terms of the endpoints of the axes on∂H2.

Again, to simplify the discussion, we restrict our attention to a fixed cover-
ing spaceH2 → S instead of proving that this notion is independent of the
covering space.
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Corollary 8.6 Let g ≥ 2 and letH2 → Sg be a fixed covering map. LetΦ
be an automorphism ofπ1(Sg). If α, β, andγ are elements ofπ1(Sg) with
distinct axes, then the axes forΦ(α) andΦ(β) lie on the same side ofΦ(γ)
if and only if the axes forα andβ lie on the same side of the axis forγ.

Proof. The axes forα andβ lie on the same side of the axis forγ if and
only if there is an elementδ ∈ π1(Sg) that is linked at infinity withα and
β, but not withγ. Apply Lemma 8.5 (alternatively, Corollary 8.7). 2

8.2.5 THE INDUCED HOMEOMORPHISM AT INFINITY

Lemma 8.5 suggests an elegant way to think aboutΦ, namely, through an
induced actionΦ∗ on ∂H2 ≈ S1. While this point of view is conceptually
important, it is not actually needed in the proof of the Dehn–Nielsen–Baer
theorem.

We now define the action ofΦ∗ on∂H2. If γ is an element ofπ1(Sg), then
the forward endpoint of the (oriented) axis ofγ in H2 is identified with a
point γ∞ ∈ ∂H2. We define

Φ∗(γ∞) = (Φ(γ))∞.

This definesΦ∗ on a dense set of points in∂H2. Note thatΦ∗ is well-defined
on this set because the axes of two elements ofπ1(Sg) can only share an
endpoint at infinity if they share a common power. Indeed thisargument
proves thatΦ∗ is a bijection.

The following corollary uses Lemma 8.5 to prove thatΦ∗ in fact extends
to a self-homeomorphism of∂H2. While not needed for our proof of the
Dehn–Nielsen–Baer theorem, we state it because it is interesting in its own
right, and it is a fundamental idea in the study of surfaces; indeed, this idea
underlies much of Nielsen’s work. Also, we will apply this corollary in
Sections 4.2 and 5.5.

Corollary 8.7 Let g ≥ 2. Any automorphismΦ of π1(Sg) induces a home-
omorphism of∂H2.

In fact a much more general statement is true: any quasi-isometry of H2 in-
duces a homeomorphism of∂H2. Corollary 8.7 is simpler to prove because
we can make full use of the algebraic structure ofπ1(Sg).
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Proof of Corollary 8.7.By postcomposing with a rotation of∂H2, we can
assume thatΦ∗ fixes some point of∂H2. We delete this point and consider
the restriction ofΦ∗ to the complementary open interval. SinceΦ preserves
the properties of being linked and unlinked (Lemma 8.5), it follows that the
mapΦ∗ on this interval is strictly monotonic.

Thus the induced map on the interval is a homeomorphism on thesubset of
∂H2 corresponding to the set of points

Γ∞ = {γ∞ : γ ∈ π1(Sg)}.

Sinceπ1(Sg) acts cocompactly onH2, it follows thatΓ∞ is dense in∂H2,
and soΦ∗ extends uniquely to a homeomorphism of∂H2. 2

8.2.6 FINISHING THE PROOF

We can now prove the Dehn–Nielsen–Baer theorem.

Proof of the Dehn–Nielsen–Baer theorem.As discussed above, we need only
prove that the homomorphismσ : Mod±(Sg)→ Out(π1(Sg)) is surjective.
Let any[Φ] ∈ Out(π1(Sg)) be given, and letΦ be a representative automor-
phism. Also, fix once and for all a covering mapH2 → Sg.

Let (c1, . . . , c2g) be a chain of isotopy classes of simple closed curves in
Sg. As in Section 1.3, this means thati(ci, ci+1) = 1 and i(ci, cj) = 0
otherwise. For concreteness, we take the curves shown in theleft hand side
of Figure 8.2. Orient eachci so that each algebraic intersection number
î(ci, ci+1) is +1.

Recall that free homotopy classes of oriented curves inSg correspond to
conjugacy classes of elements ofπ1(Sg); eachci is the conjugacy class of
the elementγi shown in the right hand side of Figure 8.2.

�
�
�
�c1

c2 c3 c4

Figure 8.2 A chain on a genus 2 surface (left) and representatives in the fundamental group
(right). The labelsγ1, γ2, andγ3, and γ4 on the right hand side should be
inferred.
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SinceΦ is an automorphism ofπ1(Sg), it acts on the set of conjugacy classes
of π1(Sg). We claim that{Φ(ci)} is also a chain of isotopy classes of simple
closed curves, and that the algebraic intersectionsî(Φ(ci),Φ(ci+1)) are all
+1 or all−1. We prove this claim in four steps:

1. Φ(ci) is a simple closed curve for eachi.

2. i(Φ(ci),Φ(cj)) = 0 for |i− j| > 1.

3. i(Φ(ci),Φ(ci+1)) = 1 for eachi.

4. î(Φ(ci),Φ(ci+1)) does not depend oni.

Each of the four steps will follow from Lemma 8.5 (or Corollary 8.7). For
Step 1, recall that a conjugacy class of a primitive element of π1(Sg) has a
simple representative if and only if each pair of representatives for the class
is not linked at infinity (cf. the proof of Proposition 1.6). Now simply note
that, as proved in Lemma 8.5,Φ∗ preserves whether or not axes are linked.
We could just as well note that the property of being linked atinfinity is
clearly preserved by any homeomorphism of∂H2, and thatΦ induces a
homeomorphismΦ∗ : ∂H2 → ∂H2, as proved in Corollary 8.7.

Similarly, for Step 2, we use the fact that two conjugacy classes have ge-
ometric intersection number 0 if and only if any pair of representatives is
unlinked at infinity, and this latter property is preserved by Φ∗. For Step
3 we use the followingΦ∗–invariant characterization of when two con-
jugacy classes have representatives with geometric intersection number 1
(plus Lemma 8.5):

Two conjugacy classesa andb have geometric intersection number 1 if and
only if for some representativeα of a that is linked at infinity with a given
representativeβ of b, the set of representatives ofa that are linked at infinity
with β is precisely{βkαβ−k : k ∈ Z}, .

Step 4 is more intricate. It suffices to prove that given threeconjugacy
classesa, b, and c with i(a, b) = i(b, c) = 1 and i(a, c) = 0, we can
characterize the agreement of the signs ofî(a, b) with î(b, c) in terms of
data we know to be preserved byΦ. Letα, β, andγ be any representatives
for a, b, andc so that the axes forα andγ are disjoint, and the axis forβ
intersects each of the axes forα andγ once each. Now note the following.

With the above notation,̂i(a, b) has the same sign asî(b, c) if and only if the
axes forαβα−1 andγβγ−1 lie on different sides of the axis forβ.
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Replacinga, b, andc with ci, ci+1, and ci+2, we apply Lemma 8.5 and
Corollary 8.6 to complete Step 4, thus proving the claim.

By the change of coordinates principle, more precisely by Example 6 in
Section 1.3, there is a homeomorphismφ that fixes the basepoint ofπ1(Sg)
and satisfiesφ∗(ci) = Φ∗(ci) (with orientation) for eachi. Hereφ∗ andΦ∗
denote the induced actions on (conjugacy classes of) elements ofπ1(Sg).

To complete the proof of the theorem we must now prove that themapping
class[φ], acting onπ1(Sg), induces the outer automorphism[Φ]. Since the
representativesγi generateπ1(Sg), it suffices to show that there is an inner
automorphismIα of π1(Sg) so that

Iα ◦ φ−1
∗ ◦ Φ(γi) = γi

for eachi. We will use the notationIβ for the inner automorphism ofπ1(Sg)
given byγ 7→ βγβ−1.

Note that it is simply not true in general that if an automorphism of a group
fixes the conjugacy class of each generator, then it is an inner automorphism.
As an example, take the free group on{x, y, z} and consider the automor-
phism given byx 7→ yxy−1, y 7→ y, andz 7→ z.

We will use the fact that the particular representativesγi of the ci shown
in Figure 8.2 form a “chain” in the sense that the lifts ofγi and γi+1 to
H2 are linked at infinity for eachi. This follows from the fact thatγi and
γi+1 are linked on the surface; more precisely, if we take a small closed
neighborhood of the basepoint ofπ1(Sg), γi and γi+1 are linked on the
boundary of this neighborhood. Arbitrary lifts ofci andci+1 may or may
not be linked at infinity.

Denoteφ−1
∗ ◦Φ byF . Sinceφ induces an automorphism ofπ1(Sg), we see

thatF still preserves linking at infinity. Again, the goal is to findan element
α so thatIα ◦ F is the identity automorphism ofπ1(S).

SinceF (ci) = ci with orientation for alli, we have in particularF (c1) = c1,
and soF (γ1) = α−1

1 γ1α1 for someα1 ∈ π1(Sg). Thus,

Iα1
◦ F (γ1) = γ1.

We know thatF (c2) = c2, that Iα1
◦ F preserves linking at infinity, and

thatγ1 andγ2 are linked. It follows from the characterization of conjugacy
classes with geometric intersection number 1 given above thatIα1

◦F (γ2) =
γ−k1 γ2γ

k
1 for somek ∈ Z. Therefore

Iγk
1
α1
◦ F (γ1) = Iγk

1
◦ Iα1

◦ F (γ1) = γ1
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and

Iγk
1
α1
◦ F (γ2) = Iγk

1
◦ Iα1

◦ F (γ2) = γ2.

We can now see inductively thatIγk
1
α1
◦ F (γi) = γi for eachi ≥ 3, and so

Iγk
1
α1

is the desired inner automorphism. Indeed, sinceγ1 andγ2 are both

fixed byIγk
1
α1
◦ F , it follows that each element of{γl1γ2γ

−l
1 } is fixed. But

sinceγ3 is linked withγ2, it is characterized inπ1(Sg) by the properties that

it is linked with γ2, and that it “lies between”γl2γ1γ
−l
2 andγl+1

2 γ1γ
−(l+1)
2

for some particularl. Thusγ3 is fixed byIγk
1
α1
◦ F and, by induction, each

γi for i > 3 is also fixed (the inductive step forγi uses that bothγi−1 and
γi−2 are fixed). We have thus found the required inner automorphism, and
so the proof is complete. 2

8.2.7 THE PUNCTURED CASE

There is a version of the Dehn–Nielsen–Baer theorem for punctured sur-
faces, as follows. LetOut⋆(π1(S)) be the subgroup ofOut(π1(S)) con-
sisting of elements that preserve the set of conjugacy classes of the simple
closed curves surrounding individual punctures. Note thatthese conjugacy
classes are precisely the primitive conjugacy classes thatcorrespond to the
parabolic elements ofIsom(H2).

THEOREM 8.8 Let S = Sg,p be a hyperbolic surface of genusg with p
punctures. Then the natural map

Mod±(S)→ Out⋆(π1(S))

is an isomorphism.

The proof of this more general theorem follows the same outline as in the
proof of the closed case (Theorem 8.1). We content ourselvesto point out
the two main differences.

1. In the caseS = Sg, we knew automatically that any automorphism of
π1(Sg) must send hyperbolic elements to hyperbolic elements since
all nontrivial elements ofπ1(Sg) are hyperbolic. IfS is not closed
then an arbitrary automorphism ofπ1(S) can exchange hyperbolic el-
ements with parabolic elements. But the fact that we consider Out⋆(π1(S))
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instead ofOut(π1(S)) in the statement of Theorem 8.8 exactly ac-
counts for this.

2. The mapπ1(S)→ H2 given by taking the orbit inH2 of a single point
is not a quasi-isometry. To remedy this, we truncateS by deleting a
small neighborhood of each puncture. We can choose the neighbor-
hoods to be small enough so that the preimage inH2 of the truncated
surface is a connected spaceX. If we endowX with the path metric,
then the action ofπ1(S) onX satisfies the conditions of Theorem 8.2
and soπ1(S) is quasi-isometric toX.

The proof of Lemma 8.5 now proceeds similarly as before. Points are
farther inX than they are inH2, so there is no problem in choosingN
so that the setsOγ andOδN are far apart. Also, there is no obstruction
to choosing the paths{αi} and{βi}. If {Φ(αi)} and{Φ(βi)} were
to cross, we would still have a short path inX between two vertices
of the paths, which would give the desired contradiction.

We already mentioned the theorem of Nielsen thatOut(F2) ≈ GL(2,Z).
Thus, we have

Out(F2) ≈ GL(2,Z) ≈ Mod±(S1,1).

In the language of Theorem 8.8, this means that the groupOut⋆(π1(S1,1)) is
the entire groupOut(π1(S1,1)). In other words, every element of the outer
automorphism group ofF2 = 〈x, y〉 preserves the conjugacy class[x, y].
ThusGL(n,Z), Mod±(S), andOut(Fn) can be viewed as three different
generalizations of the same group.

Once-punctured versus closed.The Dehn–Nielsen–Baer theorem can be
used to relate the groupMod(Sg) to the groupMod(Sg,1), whereSg,1 is the
genusg ≥ 2 surface with one marked point. This is done by the follow-
ing isomorphism of exact sequences, where each square is a commutative
diagram:

The first row is the usual relationship between the automorphism group
and outer automorphism group of any group. For the second row, notice
that π1(Sg) clearly lies in the kernel of the natural mapMod±(Sg,1) →
Mod±(Sg); that is, pushing the basepoint around a loop is isotopic to the
identity onSg (of course this such an isotopy will not leave fixed the marked
point). We will prove in Section 4.2 that this is the entire kernel. The re-
sulting short exact sequence, namely, the second row in the diagram, is a
special case of the Birman exact sequence.
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1 Inn(π1(Sg))

≈

Aut(π1(Sg))

≈

Out(π1(Sg))

≈

1

1 π1(Sg) Mod±(Sg,1)

≈

Mod±(Sg) 1

Out⋆(π1(Sg,1))

The isomorphismInn(π1(Sg)) ≈ π1(Sg) is equivalent to the statement that
π1(Sg) has trivial center, and the isomorphismOut(π1(Sg)) ≈ Mod±(Sg)
is the Dehn–Nielsen–Baer theorem. Now, there certainly is amapMod±(Sg,1)→
Aut(π1(Sg)) that makes the diagram (as described so far) commutative—
simply choose the basepoint forπ1(Sg) to be the marked point. The five
lemma then tells us that the middle vertical map is an isomorphism from
Mod±(Sg,1) to Aut(π1(Sg)).

Finally, we examine the isomorphismOut⋆(π1(Sg,1))→ Aut(π1(Sg)). At
first it seems odd to have an outer automorphism group of a surface group
be the same as the automorphism group of another surface group. However,
givenφ ∈ Out⋆(π1(Sg,1)) we get an element ofAut(π1(Sg)) by taking the
unique representative automorphism ofφ that fixes the loop corresponding
to the puncture (not just up to conjugacy), and this gives thedesired isomor-
phism.

8.3 TWO OTHER VIEWPOINTS

In this section we provide two other proofs of the Dehn–Nielsen–Baer the-
orem; one inspired by3–manifold theory (adapted from [89, Thm 13.6])
and one using harmonic maps. There are various other proofs,each involv-
ing a different kind of mathematics. For example in Theorem 1.8 of [42]
Calegari exploits the relationship between simple closed curves onSg and
HNN extensions ofπ1(Sg) to give an inductive argument for the Dehn–
Nielsen–Baer theorem. Zieschang–Vogt–Coldewey give a combinatorial-
group-theoretical proof in [211,§5.6], and Seifert gives an elementary cov-
ering space argument in [186].

Let S be a surface withχ(S) < 0. SinceS is aK(π1(S), 1) space, every
outer automorphism ofπ1(S) is induced by some (unbased) mapS → S.
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By the Whitehead theorem and the fact thatπi(S) = 0 for i > 1, we have
that this self-map ofS is a homotopy equivalence. Thus, for the surjectiv-
ity part of the Dehn–Nielsen–Baer theorem, it suffices to show that every
homotopy equivalence ofS is homotopic to a homeomorphism ofS.

THEOREM 8.9 If g ≥ 2 then any homotopy equivalenceφ : Sg → Sg is
homotopic to a homeomorphism.

We give two approaches to Theorem 8.9 below, one topologicaland one
analytical.

8.3.1 THE TOPOLOGICAL APPROACH : PANTS DECOMPOSITIONS

Recall that apair of pantsis a compact surface of genus 0 with three bound-
ary components. LetS be a compact surface withχ(S) < 0. A pair of pants
decompositionof S, or pants decompositionof S, is a collection of disjoint
simple closed curves inS with the property that when we cutS along these
curves, we obtain a disjoint union of pairs of pants. Equivalently, a pants de-
composition ofS is a maximal collection of disjoint, essential simple closed
curves inS with the property that no two of these curves are isotopic.

We can easily prove the equivalence of the two definitions of apants decom-
position. First, suppose we have a collection of simple closed curves that
cutsS into pairs of pants. We immediately see that every curve is essen-
tial since there are no disk components when we cutS. Further, since any
simple closed curve on a pair of pants is either homotopic to apoint or to
a boundary component, it follows that the given collection is maximal. For
the other direction, suppose we have a collection of disjoint, nonisotopic
essential simple closed curves inS. If the surface obtained fromS by cut-
ting along these curves is not a collection of pairs of pants,then it follows
from the classification of surfaces and the additivity of Euler characteris-
tic that one component of the cut surface either has positivegenus or is a
sphere with more than three boundary components. On such a surface there
exists an essential simple closed curve that is not homotopic to a boundary
component. Thus the original collection of curves was not maximal.

A pair of pants has Euler characteristic−1. If we cut a surface along a
collection of disjoint simple closed curves, the cut surface has the same
Euler characteristic as the original surface. Thus, a pantsdecomposition of
S cutsS into−χ(S) pairs of pants. It follows that, for a compact surfaceS
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of genusg with b boundary components, a pants decomposition forS has

−3χ(S)− b
2

= 3g + b− 3

curves. Indeed, each pair of pants has three boundary curvesand, aside from
the curves coming from∂S, these curves match up in pairs to form curves
in S. In particular, a pants decomposition ofSg for g ≥ 2 has3g−3 curves,
cuttingSg into 2g − 2 pairs of pants.

First proof of Theorem 8.9.We modify φ in steps by homotopies until it
is a homeomorphism; at each stage, the resulting map will be called φ.
Choose some pants decompositionP of Sg consisting of smooth simple
closed curves. We first approximateφ by a smooth map that is transverse to
P. By choosing a close–enough approximation we can assume that the ap-
proximation is homotopic toφ. By transversality we have thatφ−1(P) is a
collection of simple closed curves. If any component ofφ−1(P) is inessen-
tial we can homotopeφ to remove that component since such a curve bounds
a disk, and we can use that disk to define the homotopy.

Sinceφ induces an automorphism onπ1(Sg) it takes primitive conjugacy
classes inπ1(Sg) to primitive conjugacy classes inπ1(Sg). Thus the restric-
tion of φ to any particular component ofφ−1(P) has degree±1 as a map
S1 → S1. We can therefore homotopeφ so that it restricts to a homeomor-
phism on each component ofφ−1(P).

Sinceφ is a homotopy equivalence it has degree±1, and soφ is surjective.
It follows that φ−1(P) has at least3g − 3 components. If it had more,
then two such components would necessarily be isotopic, andthe annulus
between them would give rise to a homotopy ofφ reducing the number of
components ofφ−1(P).

At this pointφ is a homeomorphism on each component ofφ−1(P), andφ
maps each component ofSg − φ−1(P) to a single component ofSg −P. It
therefore suffices to show that ifR andR′ are pairs of pants, and ifφ : R→
R′ is a continuous map such thatφ|∂R is a homeomorphism, then there is a
homotopy ofφ to a homeomorphismR→ R′, so that the homotopy restricts
to the identity map on∂R.

Let X be the union of three disjoint arcs inR′, one connecting each pair
of boundary components. Note that it must be thatR′ − (∂R′ ∪ X) is
homeomorphic to a disjoint union of two open disks. Again, wemay assume
thatφ is smooth, and soφ−1(X) is a properly embedded 1–manifold with
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boundary lying in∂R. If any component ofφ−1(X) is closed, then it is
necessarily nullhomotopic (since all nonperipheral simple closed curves on
a pair of pants are nullhomotopic), and we may modifyφ by homotopy to
remove this component.

Sinceφ|∂R is assumed to be a homeomorphism, and so it takes distinct
boundary components to distinct boundary components,φ−1(X) consists
of exactly three arcs, one for each pair of boundary components ofR. We
can modifyφ so that it restricts to a homeomorphism on each component of
X. By the Alexander lemmaφ is homotopic to a homeomorphism. 2

8.3.2 THE ANALYTIC APPROACH : HARMONIC MAPS

We now give an analytic proof of Theorem 8.9. While this proofrelies on
the machinery of harmonic maps, it is conceptually straightforward.

A harmonic mapbetween Riemannian manifolds is one that minimizes the
energy functional

E(f) =

∫

µ
‖Df‖2.

Second proof of Theorem 8.9.If we endowS with a hyperbolic metric, then
it is a theorem of Eells–Sampson and Shibata that, with respect to this met-
ric, there is a harmonic maph in the homotopy class ofφ [52, 190].

Sinceh is a homotopy equivalence, we must have that the degree ofh is±1.
We now apply the (highly nontrivial) theorem that any harmonic map of de-
gree 1 is a diffeomorphism (Shibata proved the harmonic map is a homeo-
morphism [190], which is all we need, and it follows from workof Lewy
[127] and Heinz [88] that the harmonic map is in fact a diffeomorphism).2



Chapter Nine

Braid groups

In this chapter we give a brief introduction to Artin’s classical braid groups
Bn. While Bn is just a special kind of mapping class group, namely that
of a multi-punctured disk, the study ofBn has its own special flavor. One
reason for this is that multi-punctured disks can be embedded in the plane,
so that elements ofBn lend themselves to specialized kinds of pictorial
representations.

9.1 THE BRAID GROUP: THREE PERSPECTIVES

The notion of a mathematical braid is quite natrual and classical. For in-
stance this concept already appears in Gauss’s study of knots in the early
nineteenth century (see [177]), and Hurwitz’s 1891 paper onRiemann sur-
faces [97]. The first rigorous definition of the braid group was given by
Artin in 1925 [6].

In this section we give three equivalent ways of thinking about the braid
group, starting with Artin’s classical definition. We will then explain how
to go back and forth between the different points of view.

9.1.1 BRAIDED STRINGS

Let p1, . . . , pn be distinguished points in the complex planeC. A braid is a
collection ofn pathsfi : [0, 1]→ C× [0, 1], 1 ≤ i ≤ n, calledstrands, and
a permutationf of {1, . . . , n} such that each of the following holds:

· the strandsfi([0, 1]) are disjoint

· fi(0) = pi
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Figure 9.1 Left: a sample 3–braid. Right: the product of two 3–braids.

· fi(1) = pf(i)

· fi(t) ∈ C× {t}

See the left-hand side of Figure 9.1 for a typical example of abraid on three
strands. In our pictures, we drawt = 0 as the top of the braid.

A braid (f1(t), . . . , fn(t)) is determined by itsbraid diagram, which is the
picture obtained by projecting the images of thefi to the planeR× [0, 1]. In
order that this picture carry all of the information, we mustindicate which
strands are passing over which other strands at the crossings, as in Fig-
ure 9.1.

Thebraid group onn strands, denotedBn, is the group of isotopy classes of
braids. The key is that strands are not allowed to cross each other during the
isotopy. It also follows from the definitions that an isotopyof braids fixes
the set{pi} × {0, 1} and is level-preserving.

The product of the braid(f1(t), . . . fn(t)) with the braid(g1(t), . . . , gn(t))
is the braid(h1(t), . . . , hn(t)), where

hi(t) =

{
fi(2t) 0 ≤ t ≤ 1/2

gf(i)(2t− 1) 1/2 ≤ t ≤ 1.

In other words, to multiplyf, g ∈ Bn one takes braid representatives for
f andg, scales their heights by1/2, then stacks the braid corresponding
to f on top of that corresponding tog, thus giving a braid representative
for fg ∈ Bn. See the right-hand side of Figure 9.1 for an example of
braid multiplication. In that picture we use the typical convention ofnot
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rescaling the vertical direction (this makes it possible todraw increasingly
complicated braids).

The inverse of a given braid is obtained by taking its reflection either through
the planeC×{0} or through the planeC×{1}. See Figure 9.2. Notice that
the resulting composition is isotopic to the trivial braid,thus showing that
the two braids are indeed inverses.

Figure 9.2 A braid (above the dotted line) and its inverse (below).

For1 ≤ i ≤ n − 1 let σi ∈ Bn denote the braid whose only crossing is the
(i+1)st strand passing in front of theith strand, as shown in Figure 9.3. We
claim that the groupBn is generated by elementsσ1, . . . , σn−1 . The claim
follows immediately from the fact that any braidβ can be isotoped so that
its finitely many crossings occur at different horizontal levels (i.e. different
values oft). Reading off the crossings inβ from top to bottom then givesβ
as a product of theσi’s and their inverses.

We remark that if in the definition ofBn we allow an isotopy between two
braids to pass throughn–tuples(f1(t), . . . , fn(t)) that satisfy all parts of the
definition of a braid except the conditionfi(t) ∈ C× {t} then the resulting
group is the same.
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......

Figure 9.3 A generatorσi for the braid group: the(i + 1)st strand passes in front of theith.

9.1.2 FUNDAMENTAL GROUPS OF CONFIGURATION SPACES

Let Cord(S, n) denote the configuration space ofn distinct, ordered points
in a surfaceS:

Cord(S, n) = S×n − BigDiag(S×n)

whereS×n is then–fold cartesian product ofS and BigDiag(S×n) is the
big diagonalof S×n, that is, the subset ofS×n where at least two coordi-
nates are equal. The symmetric groupΣn acts onS×n by permuting the
coordinates. This action clearly preserves BigDiag(S×n) and thus induces
an action ofΣn by homeomorphisms onCord(S, n). Since the action ofΣn

permutes then coordinates and since these coordinates are always distinct
for points inCord(S, n), we see that this action is free. The quotient space

C(S, n) = Cord(S, n)/Σn

is just the configuration space ofn distinct, unordered points inS. Since
C(S, n) is the quotient of a manifold by a free action (by homeomorphisms)
of a finite group, it follows thatC(S, n) is a manifold.

It is almost immediate from the definitions that

Bn ≈ π1(C(C, n)).

Indeed, since each strand of a braid is a mapfi : I → C×I with fi(t) ∈ C×
{t}, we can think of eachfi as a mapI → C, and this identification gives
the isomorphism. Said another way, the intersection of any slice C × {t}
with any braid is a point inC(C, n), and so the full collection of slices
gives an element ofπ1(C(C, n)). In this way, we can think of a braidσ =
(f1(t), . . . , fn(t)) as tracing out a loop ofn–point configurations inC ast
increases from0 to 1.

The generatorσi of Bn described above corresponds to the element of
π1(C(C, n)) given by the loop ofn–point configurations inC where the
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Figure 9.4 A standard generator ofBn in the configuration space model.

ith and(i + 1)st points switch places by moving in a clockwise fashion, as
indicated in see Figure 9.4, and the othern− 2 points remain fixed.

The configuration spaceCord(C, n) can also be written as

Cord(C, n) = Cn −
⋃

i<j

{(z1, . . . , zn) : zi = zj}.

ThusCord(C, n) is acomplex hyperplane arrangement, that is, the comple-
ment of a finite union of hyperplanes inCn. Since

Bn = π1(C(C, n)) = π1(C
ord(C, n))/Σn

the groupBn is also isomorphic to the fundamental group of the quotient of
a complex hyperplane complement the action ofΣn.

SinceCord(C, n) is a space oforderedn-tuples, there is a map

ψn : Cord(C, n)→ Cord(C, n − 1)

defined by “forgetting the last point.” The fiberψ−1
n (x1, . . . , xn−1) is clearly

Cord((C − (x1, . . . , xn−1)), 1) ≈ C − (x1, . . . , xn−1). Fadell–Neuwirth
[55] proved that

C− (x1, . . . , xn−1)→ Cord(C, n)→ Cord(C, n− 1)

is a fibration (what is more, it is a fibration with section). Note thatC −
(x1, . . . , xn−1) is aspherical, i.e., all of its higher homotopy groups vanish.
An application of the homotopy long exact sequence of a fibration gives by
an inductive argument thatCord(C, n) is aspherical for everyn ≥ 1. Since
C(C, n) is finitely covered byCord(C, n), all of its higher homotopy groups
vanish as well. ThusC(C, n) is aK(Bn, 1) space.

9.1.3 MAPPING CLASS GROUP OF A PUNCTURED DISK

Finally we describeBn as a mapping class group. LetDn be a closed disk
D2 with n marked points. ThenBn is also isomorphic to the mapping class



256 CHAPTER 9

group ofDn:

Bn ≈ Mod(Dn) = π0(Homeo+(Dn, ∂Dn)).

The isomorphism betweenMod(Dn) andπ1(C(C, n)) ≈ Bn can be de-
scribed as follows. Letφ be a homeomorphism ofD2 that leaves invariant
the set ofn marked points. If we forget that the marked points are distin-
guished thenφ is just a homeomorphism ofD2 fixing ∂D2 pointwise, so by
the Alexander lemmaφ is isotopic to the identity. Throughout any such iso-
topy the marked points move around the interior ofD2 (which we identify
with C) and return to where they started, thus effecting a loop inC(C, n).
We have thus produced a braid. We will prove in Theorem 9.1 below that
this association gives a well-defined homomorphismBn → Mod(Dn), and
that this is in fact an isomorphism.

Under the isomorphismBn ≈ Mod(Dn) each generatorσi corresponds to
the homotopy class of a homeomorphism ofDn that has support a twice-
punctured disk and is described on this support by Figure 9.5. We denote
such ahalf-twist asHα, and we can think ofα as either a simple closed
curve with two punctures in its interior or a simple proper arc connecting
two punctures.

a a

Figure 9.5 A half-twist.

9.1.4 SURFACE BRAID GROUPS AND MAPPING CLASS GROUPS

We have given three different ways of thinking about the braid group. We
have already seen that the first two are equivalent. Now we prove that both
are equivalent to the third. Specifically, we will prove the isomorphism

π1(C(C, n)) ≈ Mod(Dn).

To do this we will require a generalization of the Birman exact sequence
that is also due to Birman [23]. In the process we will need to consider the
fundamental groupπ1(C(S, n)) for an arbitrary surfaceS. This group is
call then–stranded surface braid group ofS .
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Let S be a compact surface, perhaps with finitely many punctures, but with
no marked points. LetS∗ denoteS with n marked pointsx1, . . . , xn in the
interior. We are using both punctures and marked points hereto distinguish
the two, as they will play different roles. As in Section 4.2,there is a forget-
ful homomorphismMod(S∗)→ Mod(S) given by “forget that the marked
points are marked.” As in the proof of Theorem 4.6, there is a fiber bundle

PHomeo+(S, {x1, . . . , xn})→ PHomeo+(S)→ C(S◦, n)

whereS◦ denotes the interior ofS and where byPHomeo+(S, {x1, . . . , xn})
we mean the group of orientation-preserving homeomorphisms ofS that fix
the set{x1, . . . , xn} and fix the boundary ofS pointwise. As a consequence,
we obtain the following generalization of the Birman exact sequence.

THEOREM 9.1 (Birman exact sequence, generalized)LetS be a surface
without marked points and withπ1(Homeo+(S, ∂S)) = 1. LetS∗ be the
surface obtained fromS by markingn points in the interior ofS. Then the
following sequence is exact:

1 −→ π1(C(S, n))
Push−→ Mod(S∗)

Forget−→ Mod(S) −→ 1.

Recall that the hypothesisπ1(Homeo+(S, ∂S)) = 1 holds wheneverχ(S)
is negative (Theorem 1.14). Also note that we have replacedC(S◦, n) with
C(S, n) in the statement of Theorem 9.1 since these spaces are homotopy
equivalent.

When n = 1 Theorem 9.1 reduces to the usual Birman exact sequence
(Theorem 4.6) sinceC(S, 1) ≈ S. WhenS = D2 Theorem 9.1 gives an
exact sequence

1→ π1(C(D2, n))→ Mod(Dn)→ Mod(D2)→ 1.

SinceMod(D2) is trivial (Lemma 2.1) andπ1(C(D2, n)) ≈ π1(C(C, n)) ≈
Bn, it follows thatBn ≈ Mod(Dn). Note that sinceπ1(Homeo+(C)) ≈ Z,
Theorem 9.1 doesnot give thatBn ≈ Mod(C− {n points}).

Spherical braid groups. As in the case of Theorem 4.6, the fiber bundle
picture still gives us information in the case whereπ1(Homeo+(S, ∂S)) is
nontrivial. We still have a point-pushing mapπ1(C(S, n)) → Mod(S∗),
but the kernel of this map is isomorphic to the image ofπ1(Homeo+(S)) in
π1(C(S, n)).

Consider for instance the caseS = S2. The groupπ1(C(S2, n)) is called
the spherical braid group onn strands. The groupHomeo+(S2) has the
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homotopy type ofSO(3) [192], and soπ1(Homeo+(S2)) ≈ Z/2Z. When
n ≥ 2, this group maps nontrivially intoπ1(C(S2, n)). Combining this
with the fact thatMod(S2) = 1 gives a short exact sequence

1→ Z/2Z→ π1(C(S2, n))→ Mod(S0,n)→ 1 (9.1)

The nontrivial element of the kernel in (9.1) is given by rotating the n
marked points by a2π twist. In S2 × [0, 1] the points trace outn paths,
as shown in Figure 9.6 for the casen = 3. This is a nontrivial elementα of
π1(C(S2, n)) because there is no way to untangle the strands in the figure.
The image ofα in Mod(S0,n) is a Dehn twist about a simple closed curve
that surrounds all of the punctures, which is the trivial mapping class. How-
ever, the4π twist α2 is trivial in π1(C(S2, n)). The fact that the spherical
braidα2 can be unravelled is an example of the so-called “belt trick.”

Figure 9.6 The nontrivial element of the kernelπ1(C(S2, n)) → Mod(S2 − n points).

9.2 BASIC ALGEBRAIC STRUCTURE OF THE BRAID GROUP

In this section we investigate some of the basic algebraic properties ofBn.

A finite presentation. In his seminal paper on braid groups [6], Artin gives
the following presentation forBn.

Bn = 〈σ1, . . . , σn−1|σiσi+1σi = σi+1σiσi+1 for all i,

σiσj = σjσi for |i− j| > 1〉

Here, and in general with braid groups, we use algebraic notation: the
element on the left of a word comes first (for the given presentation this
does not matter).
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We can see in Figure 9.7 that the given relations hold inBn. Note that
the relationσiσi+1σi = σi+1σiσi+1 corresponds to the type 3 Reidemeister
move from knot theory. In fact it is possible to derive the above presentation
for Bn using the fact that any two planar diagrams for a given knot differ by
a finite sequence of Reidemeister moves; see [114, Theorem 1.6]. Another
derivation of the presentation is given in [59, Théorème 5]

=
......

=

Figure 9.7 Relations in the braid group: thecommuting relationand thebraid relation.

Computations. It follows from the presentation ofBn that:

B1 = 1

B2≈Z

B3≈ ˜SL(2,Z)

where ˜SL(2,Z) is the central extension

1→ Z→ ˜SL(2,Z)→ SL(2,Z)→ 1.

The abelianization. It is easy to see from the presentation ofBn that the
abelianization ofBn is Z, and that thisZ is generated by the image of anyσi
under the abelianization mapBn → Z (cf. Section 5.1). The abelianization
mapBn → Z is the so-called “length homomorphism” which counts the
“signed word length” of elements ofBn in terms of the standard generators.

Torsion freeness.SinceDn is a surface with boundary, Corollary 7.3 im-
plies thatBn is torsion free for anyn. If G is a group with nontrivial tor-
sion, then anyK(G, 1) space must be infinite dimensional [86, Proposition
2.45]. Therefore, the fact thatBn is torsion free also follows from the fact
thatC(C, n) is a finite-dimensionalK(Bn, 1).

The center. For n ≥ 3 the braid groupBn has an infinite cyclic center
Z(Bn) generated by

z = (σ1 · · · σn−1)
n.
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Note thatZ(B2) = 〈σ1〉. Figure 9.8 demonstrates thatz is indeed central.

From the point of view of mapping class groups,z corresponds to the Dehn
twist about the boundary ofDn. This Dehn twist commutes with the stan-
dard half-twist generators forBn, and so we again see thatz is central.

g g=

Figure 9.8 Twisting the box by2π along the vertical axis takes the braidzg to the braidgz.

We now prove that〈z〉 is the entire center ofBn. There is a homomor-
phismBn → Mod(S0,n+1) obtained by capping the boundary ofDn with
a once-punctured disk. By Proposition 3.19 the kernel of this homomor-
phism is〈z〉. Now, any surjective homomorphism between groups takes
central elements to central elements. SinceZ(Mod(S0,n+1)) is trivial (cf.
Section 3.4), it follows thatz generatesZ(Bn).

Braid group modulo center. The previous paragraph gives that the quo-
tient Bn/Z(Bn) is isomorphic to the indexn subgroup ofMod(S0,n+1)
consisting of elements that fix one distinguished puncture.By taking the
distinguished puncture to be the point at infinity, we see that this is the same
as the mapping class group of then–times punctured plane. One can also
derive this description ofBn/Z(Bn) from the long exact sequence used in
the proof of Theorem 9.1 and the fact thatπ1(Homeo+(R2)) ≈ Z.

Roots of central elements.In Section 7.1.1 we classified all finite order
elements of the mapping class group of a multi-punctured sphere: they are
all conjugate to Euclidean rotations of the sphere. By our above description
of Bn/Z(Bn), roots of central elements inBn correspond to finite order
elements in the subgroup ofMod(S0,n+1) consisting of elements that fix
some distinguished puncture. Therefore, up to powers, any root of a central
element ofBn is conjugate to one of the elements shown in Figure 9.9. In
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Figure 9.9 Two views of each of the types of roots of central elements.

terms of the generators forBn, the first root is given byσ1 · · · σn−1, and the
second is given byσ2

1σ2 · · · σn−1.

9.3 THE PURE BRAID GROUP

Thepure braid groupPBn is the kernel of the homomorphism fromBn to
the permutation groupΣn given by the definition off above:

1→ PBn → Bn → Σn → 1

In other words, a pure braid is a braid where each strand begins and ends at
the same point ofC. A small variation of Theorem 9.1 gives the following
isomorphisms:

PBn ≈ π1(C
ord(C, n)) ≈ PMod(Dn).

Generators. Artin proved thatPBn is generated by the elements

ai,j = (σj−1 · · · σi+1)σ
2
i (σj−1 · · · σi+1)

−1
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for 1 ≤ i < j ≤ n. Since eachai,j is the conjugate of a square of a
half-twist, we see that eachai,j is a Dehn twist about a simple closed curve
surrounding exactly two punctures. In fact we can see exactly which simple
closed curves. Ifσ2

i corresponds to the Dehn twistTci then(σj−1 · · · σi+1)
−1

corresponds to the mapping classf = H−1
cj−1
· · ·H−1

ci+1
andai,j corresponds

to the mapping classfTcif
−1 = Tf(ci) (note that we have passed to func-

tional notation). The effect off on ci is shown in Figure 9.10. We seeai,j
is the Dehn twist about a simple closed curve that surrounds theith andjth
punctures.

One can derive the above generating set forPBn ≈ PMod(Dn) from the
Birman exact sequence, as in our proof of Theorem 4.9.

...

...

...

Figure 9.10 Writing the generators of the pure braid group.

The center. The central elementz of Bn is also an element ofPBn. For
the same reason as before (the Alexander method),z generates the center of
PBn. It is not at all obvious how to writez in terms of the generators{ai,j}
for PBn. We claim that

z = (a1,2 a1,3 · · · a1,n) · · · (an−2,n−1 an−2,n) (an−1,n).

We now prove this claim. We think of the product on the right hand side as
a productg1g2 · · · gn−1, where

gi = ai,i+1 ai,i+2 · · · ai,n.
In terms of configuration spaces,gi is the element obtained by pushing the
ith point around the(i + 1)st point, around the(i + 2)nd point, etc., all
the way up to thenth point. The orientations of these paths agree, and so
this loop inC(C, n) is isotopic to the loop that pushes theith point around
the lastn − i points all at once. In the mapping class group, this push map
(see Section 4.2) is equal to the product of two Dehn twists:Tdi−1

T−1
di

(see
Figure 9.11). We then have that the productg1g2 · · · gn−1 is equal to

(Td0T
−1
d1

)(Td1T
−1
d2

) · · · (Tdn−1
T−1
dn

).
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. . .. . .

didi−1

Figure 9.11 The simple closed curvesdi anddi−1.

All terms in this expression cancel except the first, which isthe Dehn twist
about∂Dn, and the last, which is trivial (it is the Dehn twist about a simple
closed curve with one puncture in its interior). This provesour claim.

A finite presentation. Artin’s original presentation forPBn is consider-
ably more complicated than that forBn. We give here a slightly modified
version of his presentation:

PBn ≈ 〈ai,j | [ap,q, ar,s] = 1 p < q < r < s

[ap,s, aq,r] = 1 p < q < r < s

ap,raq,rap,q = aq,rap,qap,r = ap,qap,raq,r p < q < r

[ar,sap,ra
−1
r,s , aq,s] = 1 p < q < r < s〉

Each of the relations in this presentation can be viewed as a type of commu-
tation relation. The four diagrams in Figure 9.12 show the configurations of
arcs that appear in the four types of relations.

Figure 9.12 Relations forPBn.

The first two relations are the familiar commutations of Dehntwists about
disjoint simple closed curves. The third relation corresponds to the relation
TxTyTz = TyTzTx, which we discussed in Section 5.1 as a consequence
of the lantern relation. By Facts 3.7 and 3.9, we can rephrasethe fourth
and final relation as follows: if we twist the(p, r) arc about the(r, s) arc,
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the result—namely, the dotted arc in Figure 9.12—is disjoint from the(q, s)
arc.

It is possible to refine the above presentation forPBn so all of the relations
are disjointness relations and lantern relations.

A splitting. One important (and non-obvious) fact aboutPBn that can be
deduced from the above presentation is thatPBn splits as a direct product
over its center:

PBn ≈ PBn/Z(PBn)× Z

The mapPBn → PBn/Z(PBn) is the natural quotient map and the map
PBn → Z is the one defined bya1,2 7→ 1 andai,j 7→ 0 otherwise (the
choice ofa1,2 is noncanonical). The latter map is well-defined because all
of the defining relations forPBn are commutations, and it is surjective since
z 7→ 1. We can also think of the mapPBn → Z geometrically as the map
PBn → PB2 obtained by forgettingn− 2 of the strands.

The homomorphismBn/Z(Bn)→ Mod(S0,n+1) identifiesPBn/Z(PBn)
isomorphically withPMod(S0,n+1), and so we have

PBn ≈ PMod(S0,n+1)× Z.

The abelianization.Another consequence of the fact that all of the defining
relations forPBn are commutations is that the abelianization ofPBn is a
free abelian group with one generator for each generator ofPBn;. Thus

H1(PBn; Z) ≈ Z(n
2).

A decomposition. Since the pure braid group can be thought of as the
pure mapping class group of then–times punctured disk, we can apply the
Birman exact sequence (Theorem 9.1), which in this context takes the form

1→ Fn−1 → PBn → PBn−1 → 1

whereFn−1 is the fundamental group of the disk withn−1 punctures, which
is the free group onn−1 letters. There is a natural splittingPBn−1 → PBn
obtained by adding an extra strand, and so we see thatPBn ≈ PBn−1 ⋉
Fn−1. What is more, by repeating this argument, we see thatPBn is an
iterated extension of free groups.

This splitting ofPBn follows from the Theorem of Fadell–Neuwirth that
the mapCord(C, n)→ Cord(C, n− 1) is a fiber bundle with section.
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9.4 BRAID GROUPS AND SYMMETRIC MAPPING CLASS GROUPS

Besides the relation to mapping class groups of punctured spheres, braid
groups arise in the study of the mapping class groups of higher genus sur-
faces.

Let S1
g be a surface of genusg with one boundary component. We define a

homomorphismψ : Bn → Mod(S1
g ) for n ≤ 2g + 1 as follows. Choose

a chain of simple closed curves{αi} in S1
g , that is, a collection of simple

closed curves satisfyingi(αi, αi+1) = 1 for all i and i(αi, αj) = 0 oth-
erwise. We then defineψ via ψ(σi) = Tαi . By the disjointness relation
(Fact 3.9) and the braid relation (Proposition 3.11) for Dehn twists, the map
ψ does indeed define a homomorphism. We will prove below thatψ is in-
jective. Even without knowing injectivity,ψ is useful because it allows us
to transfer relations fromBn to Mod(S1

g ).

ι

Figure 9.13 The Birman–Hilden double cover

9.4.1 THE BIRMAN –HILDEN THEOREM

Let ι be the order two element ofHomeo+(S1
g ) as shown in Figure 9.13,

and letSHomeo+(S1
g ) be the centralizer inHomeo+(S1

g ) of ι:

SHomeo+(S1
g) = CHomeo+(S1

g )(ι).

The groupSHomeo+(S1
g ) is called the group of orientation-preservingsym-

metric homeomorphismsof S1
g . Thesymmetric mapping class groupis the

group

SMod(S1
g) = SHomeo+(S1

g)/isotopy,
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that is, the subgroup ofMod(S1
g) that is the image ofSHomeo+(S1

g ).

The homeomorphismι has2g + 1 fixed points inS1
g . The quotient ofS1

g

by 〈ι〉 is a topological diskD2g+1 with 2g + 1 cone points of order two,
with each cone point coming from a fixed point ofι. Since the elements of
SHomeo+(S1

g ) commute withι, they descend to homeomorphisms of the
quotient disk. Also, by the commutativity, they must preserve the set of
2g + 1 fixed points ofι, and so there is a homomorphism

SHomeo+(S1
g)→ Homeo+(D2g+1).

This homomorphism is easily seen to be injective. It is actually an isomor-
phism of topological groups since any element ofHomeo+(D2g+1) can be
lifted to SHomeo+(S1

g ). We thus have:

SHomeo+(S1
g )/symmetric isotopy = π0(SHomeo+(S1

g ))
≈ π0(Homeo+(D2g+1))
= Mod(D2g+1)
≈ B2g+1

We would like to show thatSMod(S1
g ) ≈ B2g+1. Since

SHomeo+(S1
g)/symmetric isotopy≈ B2g+1

this amounts to showing that if two symmetric homeomorphisms ofS1
g are

isotopic then they must actually be symmetrically isotopic. Birman–Hilden
proved that this is indeed the case [26].

THEOREM 9.2 Using the above notation,SMod(S1
g ) ≈ B2g+1.

We will give a proof of Theorem 9.2 at the end of the section.

As an illustration of Theorem 9.2, takeg = 1. The theorem of Birman–
Hilden tells us that

Mod(S1
1) = SMod(S1

1) ≈ B3 ≈ Mod(D3).

The Birman–Hilden theorem also holds for surfaces with 2 (symmetric)
boundary components that are interchanged byι (see the top right of Fig-
ure 9.15), and so we have

SMod(S2
g ) ≈ B2g+2.
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This implies

SMod(S2
g)/Z(SMod(S2

g )) ≈ B2g+2/Z(B2g+2),

which in the caseg = 1 gives

PMod(S1,2) ≈ B4/Z(B4).

From this isomorphism we obtain thatMod(S1,2) ≈ B4/Z(B4) × Z/2Z,
where the last factor is generated by the hyperelliptic involution ι.

Dehn twists and half-twists. Let α be a simple closed curve inS1
g that is

fixed byι, and letN be a neighborhood ofα that is fixed byι. The restriction
of ι to N is a rotation that switches the two boundary components, and
N = N/ι is a disk with two cone points of order two. The Dehn twistTα
commutes withι|N , and hence descends to a homeomorphism ofN . The
induced homeomorphism ofN is nothing other than the half-twist about the
arc that is the image ofα in N (the half-twist interchanges the two cone
points). See the bottom arrow of Figure 9.14.

Figure 9.14 The Dehn twist about the core of the annulus covers the half-twist in the disk
with two punctures/marked points.

In the other direction, we see that any Dehn twistTγ in B2g+1 either lifts
to the square of a Dehn twist, a product of two Dehn twists, or the square
root of a Dehn twist, depending on whether the preimage ofγ in S1

g has
two isotopic components, two nonisotopic components, or one component
(equivalently, whetherγ surrounds two punctures, an odd number of punc-
tures greater than 1, or an even number of punctures greater than 2).
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9.4.2 DERIVING RELATIONS IN Mod(Sg) FROM RELATIONS IN Bn

The connection between the braid relation inMod(S1
g) and the braid relation

in the braid group is now apparent. Ifα andβ are the arcs inD3 shown in
the bottom left of Figure 9.15, then the half-twistsHα andHβ satisfy the
braid relation inB3. Via the Birman–Hilden theorem, these half-twists lift
to the Dehn twistsTeα andTeβ

in Mod(S1
1) (see the top left of Figure 9.15),

which also satisfy the braid relation.

αα ββ

α̃α̃

β̃

β̃

γ

γ̃

δδ

δ̃ δ̃1

δ̃2

Figure 9.15 The braid relation and the chain relations via the Birman–Hilden theorem

Our next goal is to explain the chain relations. Recall the relation (σ1σ2)
3 =

z, whereσ1 andσ2 are the standard generators forB3 andz generates the
centerZ(B3). Via the isomorphismB3 ≈ Mod(D3), this relation becomes
(HαHβ)

3 = Tδ, whereα, β, andδ are the arcs and the curve inD3 shown in
the bottom left of Figure 9.15. Via the isomorphismB3 ≈ SMod(S1

1), the
Dehn twistTδ corresponds to a “half-twist” about the curveδ̃ in S1

1 shown
in the top left of the figure; this mapping class is achieved byholding the
boundary fixed and twisting the rest of the surface halfway around. So if
we want to get a relation inSMod(S1

1) between full Dehn twists, we should
consider the relation(HαHβ)

6 = T 2
δ in Mod(D3). In SMod(S1

g ), this
corresponds to the relation(TeαTeβ

)6 = Teδ
, where the curves are as shown in

the top left of Figure 9.15. This is precisely the 2–chain relation.

Similarly, the relation(HαHβHγ)
4 = Tδ inB4 (see the bottom right of Fig-

ure 9.15) corresponds to the relation(TeαTeβ
Teγ)

4 = Teδ1
Teδ2

in SMod(S2
1).

This is exactly the 3–chain relation. The otherk–chain relations are ob-
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tained similarly.

Comparing with Figure 9.9 (and the surrounding discussion), we see that
thek–chain relation in the mapping class group corresponds to a rotation of
orderk + 1 in the punctured disk.

If instead of using the factorization(σ1 · · · σk)k+1 of z ∈ Z(Bk+1) we use
the factorization(σ2

1σ2 · · · σk)k = z, we obtain the alternate chain relations
discussed in Section 4.4.

We also mention that the star relation comes from an embedding of the
Artin group of typeD4 into the mapping class group of a torus with three
boundary components [173].

Closed surfaces.For closed surfaces the Birman–Hilden theorem takes the
form

SMod(Sg)/〈ι〉 ≈ Mod(S0,2g+2)

whereS0,2g+2 is a sphere with2g + 2 marked points. Birman–Hilden
used this version of their theorem in order to obtain the presentation for
Mod(S2) given in Section 5.1. Since (the homotopy class of) ofι is central
in Mod(S2) we have

Mod(S2)/〈[ι]〉 = SMod(S2)/〈[ι]〉 ≈ Mod(S0,6).

Certain relations inMod(Sg) can also be interpreted from this point of view.
For instance the hyperelliptic relation inMod(Sg) (see Section 5.1) be-
comes the relation inMod(S0,2g+2) that pushing a puncture around a simple
loop surrounding all of the other punctures is the trivial mapping class; the
other side of the loop is a disk.

9.4.3 PROOF OF THE BIRMAN –HILDEN THEOREM

Here we give a new proof of the Birman–Hilden theorem. Our proof is
combinatorially flavored, relying on the bigon criterion and the Alexander
method. For concreteness, we deal with the case of a closed surfaceSg with
g ≥ 2. At the end, we discuss various other surfaces for which the proof
applies.

Below, when we say that two symmetric simple closed curves are symmet-
rically isotopic, we mean that they are isotopic through symmetric simple
closed curves.
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Lemma 9.3 Let g ≥ 2, and letα andβ be two symmetric nonseparating
simple closed curves inSg. If α andβ are isotopic, then they are symmetri-
cally isotopic.

This lemma is not true for the torus, since there exist simpleclosed curves
that are isotopic but pass through different fixed points ofι.

Proof. Let α andβ denote the images ofα andβ in S0,2g+2 ≈ Sg/〈ι〉. As
aboveα andβ are simple proper arcs inS0,2g+2. Any isotopy between these
arcs will lift to a symmetric isotopy betweenα andβ.

We can modifyα by a symmetric isotopy so that it is transverse toβ. We
claim thatα cannot be disjoint fromβ. Indeed, for thenα andβ are disjoint,
including endpoints. But such arcs cannot correspond to isotopic curves in
Sg. Indeed, any arcγ that shares an odd number of endpoints withα and an
even number of endpoints withβ lifts to a simple closed curveγ in Sg with
i(α, γ) odd andi(β, γ) even.

Sinceα is isotopic toβ andα ∩ β 6= ∅, the bigon criterion gives thatα and
β form a bigonB. We assume thatB is an innermost bigon. Asα andβ are
both fixed byι, we have thatι(B) is another innermost bigon in the graph
α ∪ β.

Note that we cannot haveι(B) = B. One way to see this is thatB lies
to one particular side ofα, andι takesα to α, reversing its orientation. It
follows that the image ofB in S0,2g+2 is an innermost bigonB betweenα
andβ. What is more, sinceι(B) 6= B, there are no fixed points ofι in B,
and hence no marked points ofS0,2g+2 in B.

The bigonB can either have 0, 1, or 2 of its “vertices” on marked points
of S0,2g+2. In the first two cases, we can modifyα by isotopy in order to
remove the bigon, reducing the intersection number ofα with β. In the last
case, sinceB is innermost, we see thatα ∪ β is a simple loop bounding a
disk, and we can pushα ontoβ. Removing bigons inductively, we see that
α is isotopic toβ, and this isotopy lifts to a symmetric isotopy betweenα
andβ. 2

We say that two symmetric homeomorphisms ofSg aresymmetrically iso-
topic if they are isotopic through symmetric homeomorphisms, i.e., they lie
in the same component ofSHomeo(Sg).
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Proposition 9.4 Let g ≥ 2 and letφ,ψ ∈ SHomeo+(Sg). If φ andψ are
isotopic, then they are symmetrically isotopic.

Proof. It suffices to treat the caseψ is the identity, since any symmetric
homotopy fromφ ◦ ψ−1 to identity gives a symmetric homotopy fromφ to
ψ. Letφ denote the induced homeomorphism ofS0,2g+2.

Let (γ1, . . . , γ2g+1) be a chain of nonseparating symmetric simple closed
curves inSg. By assumptionφ is isotopic to the identity, and so for eachi
the curveφ(γi) is isotopic toγi. By Lemma 9.3, we have thatφ(γi) is sym-
metrically isotopic toγi for eachi. If γi andφ(γi) are the images inS0,2g+2

of γi andφ(γi), then the last sentence implies that for eachi the arcφ(γi) is
isotopic toγi. What is more, each such isotopy must fix the endpoints of the
arcs throughout, and must avoid the marked points ofS0,2g+2 throughout
(if the interior of an arc were to cross a marked point inS0,2g+2, then its
preimage inSg would fail to be simple). Applying the Alexander method
to the collection of arcsγi in S0,2g+2, we conclude thatφ is isotopic to the
identity. The isotopy induces a symmetric isotopy ofφ to the identity. 2

Proof of the Birman–Hilden theorem.If we compose the natural surjective
homomorphismSHomeo+(Sg) → Homeo+(S0,2g+2) with the projection
of Homeo+(S0,2g+2) → Mod(S0,2g+2), we obtain a surjective homomor-
phismSHomeo+(Sg)→ Mod(S0,2g+2). By Proposition 9.4, the latter fac-
tors through a surjective homomorphism

SMod(Sg) = π0(SHomeo+(Sg))→ Mod(S0,2g+2).

It remains to determine the kernel of this map. Letf ∈ SMod(Sg) and let
φ ∈ SHomeo+(Sg) be a symmetric representative. Letφ be the image of
φ in Homeo+(S0,2g+2). Sincef 7→ 1, we have thatφ is isotopic to the
identity. This isotopy lifts to an isotopy ofφ to either the identity orι. We
thus have

SMod(Sg)/〈[ι]〉 ≈ Mod(S0,2g+2),

as desired. 2

It is straightforward to generalize our proof of the Birman–Hilden theorem.
For instance in the case ofS1

g , we simply use a chain of2g curves. The
quotient ofS1

g by the hyperelliptic involutionι : S1
g → S1

g is a disk with
2g + 1 marked points. Sinceι is not an element ofHomeo+(S1

g , ∂S
1
g ) it



272 CHAPTER 9

does not represent an element ofSMod(S1
g ), and so we obtainSMod(S1

g ) ≈
Mod(D2g+1) ≈ B2g+1, as desired.



PART 2

Teichmüller space and moduli space





Chapter Ten

Teichmüller space

This chapter introduces another main player in our story: the Teichmüller
spaceTeich(S) of a surfaceS. Forg ≥ 2, the spaceTeich(Sg) parametrizes
all hyperbolic structures onSg up to isotopy. After defining a topology on
Teich(S), we give a few heuristic arguments for computing its dimension.
The length and twist parameters of Fenchel and Nielsen are then introduced
in order to prove thatTeich(Sg) is homeomorphic toR6g−6. At the end of
the chapter we prove the9g − 9 theorem, which tells us that a hyperbolic
structure onSg is completely determined by the lengths is assigned to9g−9
isotopy classes of simple closed curves inSg.

In Chapter 12 we will prove thatTeich(S) admits a properly discontinuous
action ofMod(S). The quotientM(S) = Teich(S)/Mod(S) is the moduli
space of Riemann surfaces. The interplay between properties of Teich(S),
properties ofMod(S), and properties of this action provide us with informa-
tion onTeich(S), Mod(S), andM(S). For example in Chapter 13 we will
use the action ofMod(S) on Teich(S) to give a classification of elements
of Mod(S).

10.1 DEFINITION OF TEICHM ÜLLER SPACE

Let S be a compact surface with finitely many (perhaps zero) pointsre-
moved from the interior. We assume for now thatχ(S) < 0. After some
preparation, we will define the Teichmüller space ofS to be the set of
isotopy classes of hyperbolic structures onS. While implicit in the work
of Poincaré and Klein, Teichmüller space was first defined and studied by
Fricke, Fenchel, and Nielsen.

By ahyperbolic structureonS we will mean a diffeomorphismφ : S → X,
whereX is a surface with a complete, finite-area hyperbolic metric with
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totally geodesic boundary. We can record the hyperbolic structureφ : S →
X by the pair(X,φ). The diffeomorphismφ is referred to as themarking,
and eitherX or (X,φ) can be referred to as amarked hyperbolic surface
(depending on whether or not we need to be explicit about the marking).

Two hyperbolic structuresφ : S → X1 andφ2 : S → X2 onS arehomo-
topic if there is an isometryX1 → X2 so that the markingsI ◦φ1 : S → X2

andφ2 : S → X2 are homotopic. This is to say that the following diagram
commutes up to homotopy:

S
φ1 φ2

X1
I

X2

Here, homotopies are allowed to move points in the boundary of X2.

We can then define theTeichm̈uller spaceof S as the set of homotopy classes
of hyperbolic structures onS:

Teich(S) = {hyperbolic structures onS}/homotopy

In slightly different language:

Teich(S) = {(X,φ)}/∼
where two marked hyperbolic surfaces are equivalent if the hyperbolic struc-
tures they define are homotopic.

S2

X1

X2

α

φ1

φ2

φ1(α)

φ2(α)

Figure 10.1 The hyperbolic surfacesX1 andX2 are isometric, butX1 = [(X1, φ1)] and
X2 = [(X2, φ2)] are not the same point ofTeich(S2) since, for example, the
way we have arranged things,ℓX1

(α) is not equal toℓX2
(α).

Teichmüller space as a set of metrics.A markingφ : S → X of course
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gives rise to an actual hyperbolic Riemannian metric onS, namely the pull-
back of the hyperbolic metric onX. Thus, we can also describe Teichmüller
space as the set of isotopy classes of hyperbolic metrics onS:

Teich(S) = HypMet(S)/Diff0(S)

where the action ofDiff0(S) on the set of hyperbolic metrics HypMet(S)
is by pullback. While this second definition is in a sense moredirect—for
instance, there are no auxilliary surfaces required—our first definition will
be easier to use in practice.

Length functions. Let S denote the set of isotopy classes of simple
closed curves inS. The hyperbolic structure onS corresponding to a point
X ∈ Teich(S) is only defined up to isotopy, but this is exactly enough in-
formation to define alength function

ℓX : S → R+.

If X is the equivalence class of the marked hyperbolic surface(X,φ), and
c is an isotopy class of simple closed curves inS, thenℓX(c) is the length
of the unique geodesic inX in the isotopy classφ(c). As we proved in
Proposition 1.3, there is a unique such curve inX realizing this minimum.

Understanding points ofTeich(S) via the length functions they define is a
useful point of view. Indeed, as we will prove in Section 10.7below, if RS

denotes the set of real-valued functions onS, the mapℓ : Teich(S) → RS

given byX 7→ ℓX is injective. Actually, we will prove something much
stronger: an element ofTeich(S) is determined by finitely many coordinates
of the length function.

Change of marking. Given two hyperbolic structuresφ : S → X and
ψ : S → Y on S, there is a bijective correspondence betweenHomeo(S)
andHomeo(X,Y ) given byf ↔ ψ ◦ f ◦ φ−1. The only canonical homeo-
morphismS → S is the identity map. The corresponding canonical home-
omorphismX → Y is thechange of marking mapφ−1 ◦ ψ.

10.2 TEICHMÜLLER SPACE OF THE TORUS

The Gauss–Bonnet theorem implies that any closed hyperbolic surfaceX
has fixed area−2πχ(X). In contrast, a flat metric on the torusT 2 can have
any positive number as its area. Of course any flat metric on the torus can be
multiplied pointwise by a fixed real number so that the area ofthe resulting
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metric equals1. It is thus natural to define the Teichmüller spaceTeich(T 2)
as the set of isotopy classes of unit-area flat structures onT 2.

The spaceTeich(T 2) will serve as a simple example with which we can
compute explicitly, in contrast to the case ofTeich(Sg) with g ≥ 2. As a
first example we have the following.

Proposition 10.1 There is a natural bijective correspondence

Teich(T 2)↔ H2.

We will give two proofs of Proposition 10.1, one using the upper half-plane
model forH2 and one using the open unit disk model.

In the first proof of Proposition 10.1 we will describeTeich(T 2) in terms of
lattices. By alattice in R2, we mean a discrete subgroupΛ of the additive
groupR2 with Λ ≈ Z2. Equivalently a discrete subgroupΛ < R2 is a lattice
if R2/Λ is compact.

Note that theR–span of any pair of generators for the groupΛ is all of
R2. Theareaof a latticeΛ in R2 is the Euclidean area of the torusR2/Λ.
Any lattice inR2 is homothetic to a unique unit area lattice. Recall that a
homothetyof R2 is a mapz 7→ λz for someλ ∈ R+.

We say that a lattice inR2 is markedif it comes equipped with an ordered
set of2 generators. Equivalently, we can say that a lattice inR2 is marked
if it comes with a fixed isomorphism withZ2.

First proof of Proposition 10.1.We proceed in two steps.

Step 1:Teich(T 2)←→ {marked lattices inR2}/∼, where the equivalence
relation is generated by Euclidean isometries and homotheties.

Fix a standard ordered generating set forπ1(T
2). The ordered generating

set for a marked latticeΛ in R2 descends to an ordered generating set for
π1(R2/Λ). It is possible to find a diffeomorphismφ : T 2 → R2/Λ that
takes the first and second generators ofπ1(T

2) to the first and second gen-
erators forπ1(R2/Λ). We can pull back the flat metric onR2/Λ via this
diffeomorphism in order to obtain a flat metric onT 2. We can scale this
metric to obtain a unit-area metric, and hence a point inTeich(T 2).

On the other hand if we start with a point[(X,φ)] ∈ Teich(T 2), where
φ : T 2 → X is a unit-area flat structure, then the metric universal cover of
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X is isometric toR2. The group of deck transformations is a latticeΛ in
R2, and the image underφ of the ordered set of generators forπ1(T

2) is a
marking ofΛ.

Step 2:H2 ↔ {marked lattices inR2}/∼.

Let Λ be a marked lattice inC ≈ R2. We can describeΛ by an ordered pair
of complex numbers(ν, τ), namely, the ordered set of generators coming
from the marking. We think of each of these complex numbers asvectors
in the plane. Staying within the same equivalence class of lattices, we can
scale and rotateΛ so thatν becomes 1. In other wordsΛ is equivalent
to the lattice corresponding to(1, τ). The choice ofτ here is not unique,
since(1, τ) and(1, τ ) correspond to equivalent marked lattices (they differ
by reflection across thex–axis, which is a Euclidean isometry). Reflecting
across thex–axis, we can assumeτ lies in the upper half-plane, which we
identify with H2. The map[Λ] 7→ τ from the set of equivalence classes of
marked lattices toH2 is the desired bijection. 2

For the second proof of Proposition 10.1 we need to discuss how to write
down real-linear mapsR2 → R2 using complex notation. Letf : R2 → R2

be a linear map. We can representf by a matrix

f =

(
a b
c d

)
.

Using complex notation, and settingz = x+ iy, we can rewritef as

f(z) = α z + β z̄

where

α =
(a+ ic)− i(b+ id)

2
and β =

(a+ ic) + i(b+ id)

2
.

Indeed, it is straightforward to check that the latter map sends 1 toa + ic
andi to b+ id. We have

|α|2 − |β|2 = ad− bc = det f.

Thusf is a linear isomorphism if and only if|α| 6= |β| and in this casef is
orientation-preserving if and only if|α| > |β|.

Second proof of Proposition 10.1.We again prove the proposition in two
steps.
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Step 1:Teich(T 2)↔ {orientation-preserving isomorphismsR2 → R2}/∼
where two linear maps are equivalent if they differ by rotation and/or dila-
tion.

This bijection is essentially a restatement of the bijection in step 1 of the
first proof of Proposition 10.1. Indeed a linear map is exactly given by a
marked lattice (the image of the standard basis).

Step 2:H2 ↔ {orientation-preserving isomorphismsR2 → R2}/∼.

Let f : R2 → R2 be an orientation-preserving linear automorphism ofR2.
As above, we can writef uniquely in complex notation

f(z) = α z + β z̄

for someα, β ∈ C. Since multiplication by a complex number is the compo-
sition of a rotation with a dilation, we can postcomposef by multiplication
by α−1, staying in the same equivalence class. We then obtain the linear
map

z 7→ z + µ z̄,

whereµ = β/α. Again, sincef is orientation-preserving, the complex
numberµ lies inside the unit disk inC, and hence gives a point ofH2, via
the upper half-plane model. This process is reversible, so we have exhibited
the desired bijection. 2

The complex numberµ attached to the mapf is called thecomplex dilata-
tion of f . We will see in Chapter 11 thatµ conveys salient information about
the mapf , namely, it records the amount of stretching thatf effects onR2.

There is a third space lurking that is also equivalent toTeich(T 2) andH2,
namely

SL(2,R)/SO(2,R).

Indeed, our description ofTeich(T 2) in Step 1 of the second proof of Propo-
sition 10.1 is equivalent to this quotient: given an orientation-preserving
linear map, we can scale in order to get an element ofSL(2,R). Then, the
rotations inSL(2,R) are exactly the elements ofSO(2,R).

There is a direct way to see the bijectionSL(2,R)/SO(2,R) ↔ H2. The
groupSL(2,R) acts transitively onH2 with point stabilizers isomorphic to
SO(2,R).
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A topology on Teich(T 2). The bijectionTeich(T 2) ↔ H2 induces a
topology onTeich(T 2) by declaring the bijection to be a homeomorphism
(one can check that the various bijections are compatible).We will see
below that this idea generalizes to give a topology onTeich(S) for arbitrary
S.

Sample tori. We explore the dictionary betweenTeich(T 2) andH2 given
by our first proof of Proposition 10.1. To start, the pointsi andi + 1 both
represent the standard lattice inR2. However, the pointi corresponds to the
marking (1, i) whereas the pointi + 1 corresponds to the marking(1, i +
1), and so these are different points ofTeich(T 2). Viewed as marked tori,
both are isometric to the standard square torus, buti corresponds to the
square torus with the standard marking, andi+ 1 corresponds to the square
torus where the marking differs from the standard marking bya Dehn twist.
Similarly, one can check that the pointsni andi/n represent isometric tori
but different points inTeich(T 2) for anyn > 0. Finally, one can check that,
for ǫ ∈ (0, 1), the pointsi andi+ ǫ represent non-isometric tori, and hence
different points inTeich(T 2).

10.3 THE ALGEBRAIC TOPOLOGY

There is an alternate characterization ofTeich(S) which gives rise to a
natural topology onTeich(S), called the algebraic topology. To describe
this characterization we will use a higher genus analogue ofthe description
of Teich(T 2) in terms of marked lattices. We begin with the closed case
S = Sg for g ≥ 2.

Recall thatIsom+(H2) ≈ PSL(2,R) andIsom(H2) ≈ PGL(2,R). A rep-
resentationρ : π1(Sg)→ PSL(2,R) is calledfaithful if it is injective. Such
a representationρ is calleddiscreteif ρ(π1(Sg)) is discrete inPSL(2,R).

The groupPGL(2,R) acts on the spaceDF(π1(Sg),PSL(2,R)) of discrete,
faithful representationsρ : π1(Sg) → PSL(2,R) by conjugation: for each
g ∈ π1(Sg) and eachh ∈ PGL(2,R) we let

(h · ρ)(g) = hρ(g)h−1.

The quotient

DF(π1(Sg),PSL(2,R))/PGL(2,R)
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is the set ofPGL(2,R) conjugacy classes of discrete faithful representations
of π1(Sg) intoPSL(2,R). The following is an analogue of Proposition 10.1.

Proposition 10.2 Letg ≥ 2. There is a natural bijective correspondence:

Teich(Sg)↔ DF(π1(Sg),PSL(2,R))/PGL(2,R).

To make the analogy between Propositions 10.2 and 10.1 more clear, we
can think of an equivalence class of marked lattices inR2 as a discrete,
faithful representation ofπ1(T

2) ≈ Z2 into Isom+(R2), up to conjugation
by Isom(R2) and homothety. Again, the reason that homothety does not
appear in Proposition 10.2 is that the Gauss–Bonnet theoremimplies that
all hyperbolic structures onSg have the same area.

Proof. Let [(X,φ)] ∈ Teich(Sg). There is an isometric identificationη :

X̃ → H2, whereX̃ is the metric universal cover ofX. The groupπ1(X)

acts isometrically and properly discontinuously onX̃. The markingφ iden-
tifiesπ1(Sg) with π1(X), and hence with the group of deck transformations
of X̃. These identifications give rise to a discrete faithful representation
ρ : π1(Sg)→ PSL(2,R).

In determiningρ we made several choices: the choice of(X,φ) in the class
[(X,φ)], the choice ofη, the choice of isomorphismφ∗(π1(Sg))→ π1(X),
and the choice of identification ofπ1(X) with the group of deck trans-
formations ofX̃ . We claim that none of these choices affect the equiva-
lence class ofρ. For example the choice ofη is unique up to postcom-
posing by an element ofIsom(H2). If we replaceη with η ◦ ν, where
ν ∈ Isom(H2) ≈ PGL(2,R), thenρ simply becomesν · ρ. Changing
(X,φ) within its equivalence class is tantamount to changingφ within its
homotopy class. But changingφ by homotopy does not affectρ. One way
to see this is to observe that if we lift any isotopy ofX to X̃ ≈ H2 then
points ofH2 move a uniformly bounded distance and so the induced action
on∂H2 is trivial. On the other hand an isometry ofH2 is determined by its
action on∂H2. Finally, the choices of isomorphisms betweenφ∗(π1(Sg)),
π1(X), and the group of deck transformations are well-defined up toconju-
gation, and so the resultingρ is well-defined up to conjugation.

For the other direction, letρ ∈ DF(π1(Sg),PSL(2,R)). We claim thatρ
is a covering space action onH2. Sinceρ(π1(Sg)) is discrete the action
of ρ(π1(Sg)) on H2 is properly discontinuous. Thus to prove the claim we
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must show that this action is free. If the action ofρ were not free then
the image ofρ would contain a nontrivial elliptic isometry ofH2, that is, a
rotation. Sinceρ is faithful andπ1(Sg) is torsion free, this elliptic element
must have infinite order. This violates the discreteness ofρ. Thus the action
of ρ(π1(Sg)) on H2 must be free.

Sinceρ is a covering space action, it follows thatX = H2/ρ(π1(Sg)) has
fundamental groupπ1(Sg). Thus, by the classification of surfaces,X is
diffeomorphic toSg.

We can recover a homomorphismρ∗ : π1(Sg) → π1(X) from ρ, sinceρ
maps elements ofπ1(Sg) to covering transformations overX, which in turn
correspond to elements ofπ1(X). SinceSg andX areK(π1(Sg), 1) spaces,
it follows that there is a unique homotopy class of homotopy equivalences
fromSg toX that realizes the mapρ∗. But any homotopy equivalenceSg →
X is homotopic to a diffeomorphism (Proposition 8.9 plus Theorem 1.13),
and this diffeomorphism serves as the desired marking.

Suppose we replaceρ by one of itsPGL(2,R) conjugates,ρ′. The resulting
Riemann surfaceX ′ is isometric toX, and it follows that the resulting point
of Teich(Sg) is the same.

The two maps described above are inverses of each other, so the proof is
complete. 2

The topology. There is a natural topology onDF(π1(Sg),PSL(2,R))/PGL(2,R),
which we now describe.

We endowπ1(Sg) with the discrete topology andPSL(2,R) with its usual
topology as a Lie group, and then give the setHom(π1(Sg),PSL(2,R))
the compact-open topology. There is a more concrete way to describe this
topology. Pick a set of2g generators forπ1(Sg). Since a homomorphism
π1(Sg) → PSL(2,R) is determined by where it sends a generating set,
there is a natural inclusion ofHom(π1(Sg),PSL(2,R)) into the direct prod-
uct PSL(2,R)2g of 2g copies ofPSL(2,R). We endowPSL(2,R)2g with
the usual Lie group topology. Then the setHom(π1(Sg),PSL(2,R)) in-
herits the subspace topology. It is straightforward to check that different
choices of generating sets forπ1(Sg) give rise to equivalent topologies on
Hom(π1(Sg),PSL(2,R)). It is also not hard to verify that the two topolo-
gies onHom(π1(Sg),PSL(2,R)) described above give rise to equivalent
topologies.

SinceDF(π1(Sg),PSL(2,R)) is a subset ofHom(π1(Sg),PSL(2,R)) it



284 CHAPTER 10

inherits the subspace topology. Finally, we endow the quotient

DF(π1(Sg),PSL(2,R))/PGL(2,R)

with the quotient topology. We then obtain via Proposition 10.2 a topology
onTeich(Sg) called thealgebraic topologyonTeich(Sg).

In Chapter 11 we will define a metric onTeich(Sg) called the Teichmüller
metric, and we will check that the induced topology onTeich(Sg) is home-
omorphic to the algebraic topology onTeich(Sg).

Continuity of length functions. Let γ ∈ π1(Sg). The function[ρ] 7→
trace(ρ(γ)) is a continuous function onDF (π1(Sg),PSL(2,R))/PGL(2,R).
ForX ∈ Teich(Sg) denote byρX some corresponding representation. Since

ℓX(γ) = 2 cosh−1(trace(ρX(γ))/2)

we have the following consequence of Proposition 10.2.

Proposition 10.3 LetS be any hyperbolic surface, and letc be an isotopy
class of simple closed curves inS. The functionTeich(S)→ R given by

X 7→ ℓX(c)

is continuous.

Non-closed surfaces. The procedure just described for obtaining a topol-
ogy onTeich(S) is more delicate whenS is not closed. The reason is that
there are non-homeomorphic surfaces with the same fundamental group, for
exampleπ1(S0,3) ≈ π1(S1,1) ≈ F2. In these cases we do not simply con-
sider all discrete faithful representations ofπ1(S) into PSL(2,R). Instead,
we consider the subset ofDF(π1(S),PSL(2,R)) consisting of those repre-
sentations corresponding to complete, finite-area hyperbolic surfaces with
geodesic boundary homeomorphic toS. For example this restricts the con-
jugacy class inπ1(S) corresponding to a loop around a puncture to map to
a unipotent element ofPSL(2,R), so that the corresponding isometry ofH2

will be of parabolic type. Indeed, if a loop around a puncturecorresponds
to a hyperbolic isometry, the hyperbolic structure on the surface will have
infinite area.
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10.4 TWO DIMENSION COUNTS

In Section 10.6 we will give a formal proof thatTeich(Sg) ≈ R6g−6 when
g ≥ 2. Before doing this we first arrive at the correct dimension for Teich(Sg)
via two different heuristic counts. This dimension was firststated by Rie-
mann, in his paper on abelian functions [185].

10.4.1 TEICHM ÜLLER SPACE AS A REPRESENTATION SPACE

For the first dimension count we use the bijection betweenTeich(Sg) and
DF(π1(Sg),PSL(2,R))/PGL(2,R) given in Proposition 10.2.

The Lie groupPGL(2,R) is 3–dimensional, and acts onDF(π1(Sg),PSL(2,R))
with 3–dimensional orbits (this is not hard to check). Thus the dimension of
the quotient

DF(π1(Sg),PSL(2,R))/PGL(2,R)

can be computed as the dimension ofDF(π1(Sg),PSL(2,R)) minus 3.

The setDF(π1(Sg),PSL(2,R)) is open inHom(π1(Sg),PSL(2,R)) (see
[207]), so the dimensions of the two spaces are the same, and it suffices to
find the dimension of the latter. Letγ1, . . . , γ2g ∈ π1(Sg) so that

π1(Sg) = 〈γ1, . . . , γ2g|[γ1, γ2] · · · [γ2g−1, γ2g]〉.
A homomorphismρ : π1(Sg) → PSL(2,R) is determined by choosing the
2g imagesρ(γi) ∈ PSL(2,R). However, by the relation

[ρ(γ1), ρ(γ2)] · · · [ρ(γ2g−1), ρ(γ2g)] = I.

we see thatρ(γ2g) is completely determined by the otherρ(γi). This cuts
down on 3 degrees of freedom in our choices of theρ(gi).

We thus arrive at the following count.

Dimension count 1: the space of representations

+6g : Choose elementsρ(γ1), . . . , ρ(γ2g) ∈ PSL(2,R).

−3 : Theρ(γi) must satisfy one relation.

−3 : Conjugate representations are equivalent.

= 6g − 6 total dimensions
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Figure 10.2 The tiling ofH2 by regular octagons.

10.4.2 TEICHM ÜLLER SPACE AS A SPACE OF TILINGS

We define ahyperbolicSg–tile as a geodesic hyperbolic4g–gon with the
following properties

1. The sum of the interior angles is2π.

2. Reading clockwise, the edges are labelled

γ1, γ2, γ1, γ2, . . . , γ2g−1, γ2g, γ2g−1, γ2g.

3. Edges with the same labels have the same hyperbolic length.

If we identify the sides of a hyperbolicSg–tile according to the labels we
obtain a closed hyperbolic surface of genusg.

We will give a bijection betweenTeich(Sg) and equivalence classes ofSg–
tiles, and use this identification to find the dimension ofTeich(Sg).

Fix a collection of simple loops{γ1, . . . , γ2g} in Sg that are based at a com-
mon pointx, that are disjoint away fromx, and that cutSg into a4g–gon
whose labels agree with that of a hyperbolicSg–tile.

Let [(X,φ)] ∈ Teich(Sg). Choose a pathp : [0, 1] → X based atφ(x),
and denotep(1) by p1. We can modifyφ, and hence∪φ(γi), by isotopy by
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pushingφ(x) alongp. If we consider homotopy classes relative top1, the
image of eachφ(γi) has a unique shortest representativeδi. Theδi are all
simple and intersect pairwise only atp1. When we cutX along theδi we
obtain a hyperbolicSg–tile.

The path lifting of eachδi to the universal cover̃X ≈ H2 is a geodesic
segment and the union of the path lifts of all theδi gives a tiling ofH2 by
hyperbolicSg–tiles. See Figures 10.2 and 10.3 for sample tilings ofH2 by
hyperbolicS2–tiles.

There were two choices in passing from[(X,φ)] ∈ Teich(Sg) to anSg–tile:
the representative(X,φ) of the equivalence class[(X,φ)] and the pathp.
The first choice is absorbed into the second. In other words, up to isometries,
modifying (X,φ) by isotopy is equivalent to modifyingφ by isotopy, which
is the same as modifying∪φ(γi) by isotopy. Different choices ofp already
force us to change∪φ(γi) in its free homotopy class. Thus the only choice
we really made is the pathp. It follows from the proof of Theorem 4.6
that theSg–tile for [(X,φ)] only depends on the based homotopy class ofp.
Thus the choice ofp amounts to the choice of a point iñX .

In summary, there is a map fromTeich(Sg) to the set of hyperbolicSg–tiles.
This map is not well-defined, but the ambiguity is exactly accounted for by
X̃ , which is 2–dimensional.

Conversely, given a hyperbolicSg–tile, the spaceX obtained by identifying
the sides in pairs is isometric to a hyperbolic surface that is homeomor-
phic toSg. Moreover, the labeling induces an identification ofπ1(Sg) with
π1(X). As in Section 10.3, there is then a diffeomorphismφ : Sg → X
realizing this isomorphism, which is a marking.

We thus have a bijective correspondence between points ofTeich(Sg) and
the set of equivalence classes of hyperbolicSg–tiles, where two hyper-
bolicSg–tiles are equivalent if they differ by marked, orientation-preserving
isometry and by “pushing the basepoint.” We will count the dimension of
the set of these equivalence classes.

In our dimension count, we will use the fact that given any geodesic polygon
in H2, we can scale the polygon so that its interior angles sum to2π. This is
true because scaling a polygon inH2 continuously varies the interior angle
sum from nearly the Euclidean angle sum (small polygons) to nearly zero
(big polygons). Wheng ≥ 2 the Euclidean angle sum of a geodesic4g–gon
is greater than2π, and so it follows that we can scale any geodesic4g–gon
so that the angle sum is exactly2π.



288 CHAPTER 10

Figure 10.3 Some possible tilings ofH2 coming from hyperbolic structures onS2. These
pictures are sketches of images from the (existing but inactive) web page for the
“Teichmüller Navigator” on the Geometry Center’s web site.

Dimension count 2: the space of tilings

+8g : Choose a set of4g vertices inH2.

−2g : Side lengths must match in pairs.

−1 : Scale so the sum of interior angles is2π.

−3 : Isometric tilings are equivalent.

−2 : Pushing the base point gives different tilings

representing the same point ofTeich(Sg).

= 6g − 6 Total dimensions

10.5 THE TEICHM ÜLLER SPACE OF A PAIR OF PANTS

Let P denote a pair of pants, that is, a compact surface of genus zero with
three boundary components. Recall from Chapter 8 that a pants decompo-
sition of a surfaceS is a maximal collection of pairwise disjoint, pairwise
nonisotopic essential simple closed curves inS. WhenS is given a hy-
perbolic metric, the curves in a pants decomposition can be represented by
geodesics inS.

Decomposing a hyperbolic surfaceS with totally geodesic boundary along
a collection of disjoint geodesics gives another hyperbolic surfaceS′ with
totally geodesic boundary. The surfaceS′ has smaller complexity thanS
in the sense that the number of curves in a pants decomposition for S′ is
strictly less than the number forS. This cutting procedure thus gives us an
inductive method for understanding the hyperbolic structure of a surface.
Since the only geodesic simple closed curves on a hyperbolicpair of pants



TEICHMÜLLER SPACE 289

are the three boundary components, the pair of pants serves as our base case
for the induction.

So our first goal is to determineTeich(P ) for a pair of pantsP . To do this
we will reduce the problem to understanding a certain space of right-angled
hexagons, as we now explain.

Hyperbolic hexagons. By a marked hexagonwe will mean a hexagon
with one vertex distinguished. LetH denote the set of equivalence classes
of marked right-angled geodesic hexagons inH2, where two such hexagons
are equivalent if there is an orientation-preserving isometry of H2 taking one
hexagon to the other, and taking the marked point of the first to the marked
point of the second.

Any space of metrics on a surface isa priori infinite-dimensional. It seems
difficult to find a precise set of constraints on a metric so that the space
of such metrics is finite-dimensional but still not empty. Thus the finite-
dimensionality ofTeich(S) of any compact surface is quite remarkable. At
some point one has to make the jump from an infinite-dimensional space of
possibilities to a finite-dimensional one. The following key proposition is
precisely where this jump occurs.

Proposition 10.4 The mapW : H → R3
+ defined by taking the lengths of

every other side of a hexagon, starting at the marked point and traveling
counterclockwise, is a bijection.

Proof of Proposition 10.4.We will define a two-sided inverseR3
+ → H to

W . That is, given an arbitrary triple(Lα, Lβ, Lγ) ∈ R3
+, we will construct

a marked right-angled hexagonH that is unique up marked orientation-
preserving isometry and that satisfiesW (H) = (Lα, Lβ , Lγ). Throughout,
the reader should refer to Figure 10.4.

There is a basic fact from hyperbolic geometry that we will use: given two
disjoint geodesics inH2 with four distinct endpoints at infinity, there is a
unique geodesic perpendicular to both.

For anyt > 0 let αt andβt be a pair of geodesics inH2 a distancet apart,
and letγ′t be the unique geodesic segment realizing this distance. Letα′t
andβ′t be geodesics on the same side ofγ′t, such thatα′t has a perpendicular
intersection withβt at a distanceLβ away fromγ′t andβ′t has a perpendicular
intersection withαt at a distanceLα away fromγ′t. We further require that
if γ′t is oriented fromαt to βt thenα′t andβ′t lie to the left of theγ′t.
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There is a valuet0 > 0 so thatα′t0 andβ′t0 share an endpoint on∂H2. For
t > t0 let γt be the unique geodesic segment perpendicular toα′t andβ′t.

As t varies fromt0 to infinity, the length ofγt varies continuously from
zero to infinity, so by the intermediate value theorem, thereis at so that the
length ofγt is exactlyLγ .

Trimming geodesics to segments as necessary, and marking the intersection
of αt andα′t, we obtain a right-angled hexagon that represents the desired
point ofH.

In the construction just described we made no choices after the initial choice
of αt andβt. What is more, up to orientation-preserving isometries ofH2,
there is a unique ordered pair of geodesics whose distance from each other
is a given positive length. In other words, even the choices of αt andβt were
unique up to isometries ofH2. It follows that the point ofH we constructed
is uniquely defined, and we have indeed given a two-sided inverse ofW . 2

Lα

Lβ
t

αt

βt

γtβ′t

α′t

γ′t

Figure 10.4 The picture for the proof of Proposition 10.4.

Pairs of pants. Having determinedH we can now show thatTeich(P ) ≈
R3.

Proposition 10.5 LetP be a pair of pants with boundary componentsα1,
α2, andα3. The mapTeich(P )→ R3

+ defined by

X 7→ (ℓX(α1), ℓX(α2), ℓX(α3))

is a homeomorphism.
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Proof. We first establish a bijection betweenTeich(P ) andH, the set of
oriented isometry classes of marked right-angled hyperbolic hexagons.

Let X = [(X,φ)] ∈ Teich(P ), whereX is a hyperbolic surface with totally
geodesic boundary andφ : S → X is a homeomorphism. For each pair of
distinct boundary components ofX there is a unique isotopy class of arcs
connecting them; letδij = δji denote the geodesic representative of the arc
connectingφ(αi) andφ(αj). By the first variation principle each of theδij
is perpendicular to∂X at both of its endpoints. The closures of the two
components ofX −∪δij are hyperbolic right-angled hexagonsH1 andH2.

An application of Proposition 10.4 gives thatH1 andH2 are abstractly iso-
metric since the lengths of theδij determine the hyperbolic structure on
each. LetH be a marked right-angled hexagon inH2 that is the isomet-
ric image of the marked hexagonH1, where the image ofδ13 ∩ φ(α1)
is the marked point, and where the images of theφ(α1)–, φ(α2)–, and
φ(α3)–edges appear in counterclockwise order. The equivalence class of
this hexagon is an element ofH.

On the other hand, given an element ofH, we realize it as a marked hexagon
H in H2, create a second hexagonH ′ by reflectingH over the edge lying
first in the clockwise direction from the marked point, labelthe sides as
in Figure 10.5, and obtain a hyperbolic pair of pantsX by identifying the
pairs of sides labelledδ12 andδ23. Then as the marking we take the unique
isotopy class of diffeomorphismsP → X (remember: isotopies are free on
the boundary) respecting the labels of the boundary components.

We have thus established a bijection betweenTeich(P ) andH. Compos-
ing with the mapW from Proposition 10.4, we obtain a bijection between
Teich(P ) and R3

+. This bijection is a homeomorphism because if two
points ofR3

+ are close, then the corresponding right angled hexagons are
nearly isometric, and so the corresponding representations π1(P ) ≈ F2 →
PSL(2,R) (defined by identifying two side pairs of a doubled hexagon in
H2) are close in the algebraic topology onTeich(P ).

2

Consider the thrice-punctured sphereS0,3, which is homeomorphic to the
interior ofP . An argument similar to that given above shows thatTeich(S0,3)
is a single point. The reason for this is that we can identify the point(s) of
Teich(S0,3) with the space of ideal triangles inH2 (we can think of an ideal
triangle as a hexagon with three degenerate sides); but there is a unique ideal
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α1

α1

α2

α2

α3

α3

H

H ′

δ13

δ23

δ23 δ12

δ12

Figure 10.5 A pair of pants from a marked hexagon.

triangle inH2 up to orientation-preserving isometry sincePGL(2,R) acts
triply transitively on∂H2.

10.6 FENCHEL–NIELSEN COORDINATES

As every closed surface of negative Euler characteristic can be built from
pairs of pants, we can extend Proposition 10.5 to coordinatize Teich(Sg)
for g ≥ 2. Using this idea we will prove the following theorem of Fricke
[65].

For g ≥ 2, Teich(Sg) is homeomorphic toR6g−6.

(We will give an explicit homeomorphism below; see Theorem 10.6.)

The basic idea is to decomposeSg into pairs of pants using3g − 3 simple
closed curves. Then there are3g − 3 “length parameters” that determine
the hyperbolic structure on each pair of pants, and there are3g − 3 “twist
parameters” that determine how the pairs of pants are glued together. Taken
together these6g − 6 coordinates are the Fenchel–Nielsen coordinates [62,
§26.9] forTeich(Sg). We now explain this more precisely.
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10.6.1 LENGTH PARAMETERS AND TWIST PARAMETERS

In order to define the Fenchel–Nielsen coordinates we must first choose a
coordinate system of curvesonSg. This consists of the following data:

· a pants decomposition{γ1, . . . γ3g−3} of oriented simple
closed curves and

· a set{β1, . . . , β3g−3} of seams; that is, a collection of dis-
joint simple closed curves inSg so that the intersection of
the union∪βi with any pair of pantsP determined by the
{γj} is a union of three disjoint arcs connecting the bound-
ary components ofP pairwise.

Given a pants decomposition we can construct seams by first choosing three
disjoint arcs on each pair of pants, and then matching up endpoints in any
fashion. See Figure 10.9 below for an example in the caseg = 2.

Fix once and for all a coordinate system of curves onSg consisting of an
oriented pants decomposition{γi} with seams{βi}.

We define the3g − 3 length parametersof a pointX ∈ Teich(Sg) to be the
ordered(3g − 3)–tuple of positive real numbers

(ℓ1(X), . . . , ℓ3g−3(X)),

whereℓi(X) = ℓX(γi).

According to Proposition 10.5, the length parameters for a point ofTeich(Sg)
determine the isometry types of the2g−2 pairs of pants cut out by the coor-
dinate system of curves forSg. In order to record how these pants are glued
together we introduce the twist parametersθi(X).

Before we begin in earnest with twist parameters, let us makean observa-
tion. Suppose we have two hyperbolic pairs of pants with totally geodesic
boundary, as in the left-hand side of Figure 10.6. If these pairs of pants
have boundary components of the same length, then we can gluethem to-
gether to obtain a compact hyperbolic surfaceX of genus 0 with 4 boundary
components. It is intuitively clear that the isometry type of X depends on
how much we rotate the pairs of pants before gluing. For instance, as Fig-
ure 10.6 indicates, the shortest arc connecting two boundary components of
X changes as we change the gluing instructions. Thus, we have acircle’s
worth of choices for the isometry type ofX. Of course, we care about more
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than just the isometry type—we also care about markings. So the twist pa-
rameters we define on Teichmüller space will be real numbers, but modulo
2π, they are simply recording the angles at which we glue pairs of pants.

twist
glue pull tight

Figure 10.6 The effect of the twist parameter on geodesic arcs. If the twist parameter was
instead taken to be zero, the geodesic arc at the end would be the union of the
two geodesic arcs from the original pairs of pants.

As a first step towards defining the twist parameters, supposethat β is an
arc in a hyperbolic pair of pantsP connecting boundary componentsγ1 and
γ2 of P . We define the twisting number ofβ at γ1 as follows. Letδ be the
unique shortest arc connectingγ1 andγ2. LetN1 andN2 be regular metric
neighborhoods ofγ1 and γ2. We can modifyβ by isotopy (leaving the
endpoints fixed) so that it agrees withδ outside ofN1∪N2; see Figure 10.7.
The twisting numberof β atγ1 is the signed horizontal displacement of the
endpointsβ ∩ ∂N1. The sign is determined by the orientation ofγ1. The
twisting number ofβ atγ2 is defined in the same way.

GivenX = [(X,φ)] ∈ Teich(Sg) we define theith twist parameterθi(X) as
follows: letβj be one of the two seams that crossesγi. On each side of the
φ(γi) geodesic there is a pair of pants, and theφ(βj) geodesic gives an arc
in each of these. Lett andt′ be the twisting numbers of each of these arcs,
on the left and right sides ofφ(γi), respectively. Theith twist parameter of
X is defined to be

θi(X) = 2π
t− t′
ℓX(γi)

.
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γ1

γ2

γ3β

Figure 10.7 Modifying an arc on a pair of pants so that it agrees with a perpendicular arc
except near its endpoints.

Since there were two choices of seamsβj , we need to check that the twist
parameter is well-defined. To see this, we pass to the universal cover of the
neighborhoodNi of φ(γi). As in the proof of Proposition 10.5, the four
geodesic arcs connectingφ(γi) to the boundary components of the adjacent
pairs of pants are perpendicular toφ(γi). Also, on each side ofφ(γi), the
two geodesics lie on diametrically opposed points alongφ(γi). If we mod-
ify the seams as in the definition of the twist parameter, and pass to the
universal cover ofNi, we obtain the picture in Figure 10.8. In the figure
the geodesic arcs are dashed and the modified seams are solid.Each lift
of a seam connects two dashed arcs, and the twist parameter isthe signed
distance between these dashed arcs. Combining the fact thatthe two per-
pendicular arcs lie diametrically opposite to each other onφ(γi) with the
fact that the seams do not cross each other, we see that the twist parameters
computed from the two seams are the same.

Figure 10.8 The universal cover of the annular neighborhoodof aφ(γi).
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10.6.2 FENCHEL –NIELSEN COORDINATES

Now that we have defined the length and twist parameters, we can give the
precise statement of Fricke’s theorem.

Theorem 10.6 Let g ≥ 2 and fix any coordinate system of curves onSg.
The map

FN : Teich(Sg)→ R3g−3
+ × R3g−3

defined by setting

FN(X) = (ℓ1(X), . . . , ℓ3g−3(X), θ1(X), . . . , θ3g−3(X))

is a homeomorphism. In particular,Teich(Sg) ≈ R6g−6.

The ordered set of numbers(ℓ1(X), . . . , ℓ3g−3(X), θ1(X), . . . , θ3g−3(X)) is
are called theFenchel–Nielsen coordinatesof the pointX ∈ Teich(Sg).

Proof. Denote the pants decomposition of the fixed coordinate system of
curves forSg by {γi} and the seams by{βi}.

Let (ℓ1, . . . , ℓ3g−3, θ1, . . . , θ3g−3) ∈ R3g−3
+ × R3g−3. In order to prove that

FN is a bijection, we will find a uniqueX ∈ Teich(Sg) with these Fenchel–
Nielsen coordinates, given with respect to the given coordinate system of
curves. We constructX in four steps.

Step 1. Let Pi,j,k denote the pair of pants1 determined byγi, γj, andγk.
Note thatγi, γj, andγk might not be distinct. By Proposition 10.5 we can
construct a hyperbolic pair of pantsXi,j,k whose boundary components have
lengthsℓi, ℓj, andℓk, and there is only one way to do this up to isometry.
By construction, there is a homeomorphismPi,j,k → Xi,j,k taking eachγi
to a boundary curve of lengthℓi. Via this homeomorphism, the boundary
curves ofXi,j,k inherit orientations from theγi.

Step 2.For eachXi,j,k and each pair of its boundary components, we draw
the unique geodesic arc that is perpendicular to those boundary components.

1This is a slight abuse of notation because wheng = 2 it is possible to have two pairs of
pants determined by the same triple{i, j, k}.



TEICHMÜLLER SPACE 297

For eachm ∈ {i, j, k}, we adjust thisseamas follows: in a small neigh-
borhood of a boundary component corresponding to the left side of γm,
we replace each geodesic arc with an arc that travels along that boundary
component an oriented distance of(θm/2π)ℓm. The result is unique up to
isotopy relative to∂Xi,j,k.

Given a seam inPi,j,k, that is, an intersection of someβk with Pi,j,k, there
is a unique corresponding seam inXi,j,k, namely the arc that connects the
corresponding boundary components.

Step 3.Since the boundary curves and the seams of theXi,j,k are identified
with the boundary curves and seams of thePi,j,k, there is a unique way to
construct a quotient

X =
∐

Xi,j,k/∼

of the disjoint union of theXi,j,k. Specifically, we identify corresponding
boundary components of theXi,j,k, and we do this in such a way that the
corresponding seams match up.

Step 4. We construct a diffeomorphism fromφ : Sg → X that respects
the identifications of the coordinate system of curves. The marked surface
(X,φ) (equivalently, the pullback of the metric onX to Sg) represents the
desired point ofTeich(Sg).

By construction,[(X,φ)] is a point inTeich(Sg) with the desired Fenchel–
Nielsen coordinates. We have thus defined a mapFN ′ : R3g−3

+ ×R3g−3 →
Teich(Sg). It is clear thatFN ′ is an inverse ofFN . That both maps are
continuous is straightforward to check from the definitions. ThusFN is a
homeomorphism, and we are done. 2

10.6.3 FENCHEL –NIELSEN COORDINATES FOR NON -CLOSED SURFACES

Let Sbg be a compact surface of genusg with b boundary components. As-
sume thatχ(Sbg) < 0. As in Section 8.3, a pants decomposition forSbg has
3g − 3 + b curves (boundary curves are not included). Fenchel–Nielsen co-
ordinates forSbg are given by a total of6g − 6 + 3b coordinates. There are
3g−3+2b length parameters, one for each curve of the pants decomposition
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f

γ1

γ2

γ3

f(γ1)f(γ1)

f(γ2)

f(γ2)

f(γ3)f(γ3)

Figure 10.9 Constructing the mapφ : Sg →
‘

Xi,j,k/∼. Here, the second twist parameter
is a small positive number, and the third twist parameter is approximately−2π
(the first is zero).

and one for each boundary curve. There are3g − 3 + b twist parameters,
one for each curve of the pants decomposition. We thus obtain

Teich(Sbg) ≈ R6g−6+3b.

By setting some or all of the length parameters to be zero, we can turn
boundary components into punctures. So ifSg,n is a surface of genusg with
n punctures andχ(Sg,n) < 0 then

Teich(Sg,n) ≈ R6g−6+2n.

Together with our determination ofTeich(T 2) this in particular gives:

Teich(T 2) ≈ Teich(S1,1) ≈ Teich(S0,4) ≈ R2.

What is more, each of these isomorphisms is natural. For example the for-
getful mapS1,1 → T 2 and the quotient mapT 2 → S0,4 identify Fenchel–
Nielsen coordinate systems on the three surfaces.

10.6.4 FENCHEL –NIELSEN COORDINATES FOR THE TORUS

We can define Fenchel–Nielsen coordinates forT 2 using a similar method to
that used for hyperbolic surfaces. Pick a “cylinder decomposition” (instead



TEICHMÜLLER SPACE 299

of a pants decomposition) ofT 2, that is, an oriented simple closed curveγ.
Also choose a “seam,” which in this case is a simple closed curve β in T 2

with i(β, γ) = 1.

(ℓ, 0)

(θ ℓ
2π ,

1
ℓ )

Figure 10.10 The effect of length and twist parameters on theuniversal cover of the corre-
sponding point inTeich(T 2).

The Fenchel–Nielsen coordinates for a pointX = [(X,φ)] ∈ Teich(T 2)
is a pair(ℓ, θ), defined as follows. The length coordinateℓ is the length in
X of any geodesic in the homotopy class ofφ(γ). When we cutX along
any such geodesic, we obtain a flat cylinderX ′. The curveφ(β) becomes
an arc onX ′. The universal cover ofX ′ is isometric toR × 1/ℓ. Any
lift of the arc φ(β) to this cover is an arc, and the twist parameterθ is
given by the horizontal displacement of its two endpoints. Specifically, if
the displacement isd, thenθ = (d/ℓ)2π.

If we identify Teich(T 2) with the upper half-planeH2 via the bijection
given in Proposition 10.1, we can write the Fenchel–Nielsencoordinates
as a mapFN : H2 → R+ × R. Specifically, we have

FN(x, y) = (2πxy, 1/y).

It is instructive to define the inverse mapR+ × R→ H2 ≈ Teich(T 2). Let
(ℓ, θ) ∈ R+ × R. We start by constructing the unique flat, unit-area, right
cylinderX ′ with boundary lengthℓ. Call its boundary componentsδ1 and
δ2. We draw a vertical arcβ′ onX ′, then modifyβ′ by dragging its endpoint
onδ1 an oriented distance(θ/2π)ℓ alongδ1 (see Figure 10.10). We then ob-
tain a torusX by identifyingδ1 andδ2 by the unique orientation-preserving
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isometry that identifies the endpoints ofβ′. There is a homeomorphism
φ : T 2 → X, unique up to isotopy, that sendsγ to the image ofδ1 ∪ δ2 inX
andβ to the image ofβ′ in X. Then(X,φ) represents the desired point in
Teich(T 2). This point ofTeich(T 2) corresponds to the point(θ/2π, 1/ℓ2)
in the upper half-plane.

10.6.5 WOLPERT ’ S MAGIC FORMULA

The Fenchel–Nielsen coordinates(ℓ1, . . . , ℓ3g−3, θ1, . . . , θ3g−3) obviously
depend in an essential way on the choice of coordinate systemof curves. It
follows that the same can be said for the associated1–formsdℓi anddθi on
Teich(Sg). There are infinitely many coordinate systems to choose from,
each giving a different set of coordinates (and thus different associated1–
forms) onTeich(Sg). Wolpert discovered the remarkable fact that the2–
form

ω =

3g−3∑

i=1

dℓi ∧ dθi

onTeich(Sg) actuallydoes notdepend on the initial choice of pants decom-
position inducing the coordinates{(ℓi, θi)}. Wolpert does this by proving
thatω is equal to the so-calledWeil–Petersson formon Teichmüller space.
Since the Weil–Petersson form is defined without any reference to a choice
of pants decomposition (see e.g. [98]), it follows thatω does not depend on
the pants decomposition.

10.7 THE9g − 9 THEOREM

At the beginning of the chapter we described a map

ℓ : Teich(S)→ RS

whereS is the set of isotopy classes of essential curves in the surfaceS. The
map is given byX 7→ ℓX. It would already be interesting to say thatℓ is in-
jective, in other words that a pointX = [(X,φ)] of Teich(S) is completely
determined by the geodesic lengths inX of the simple closed curves inS. In
this section we will show something much stronger: there arefinitely many
simple closed curves inS whose lengths in a marked hyperbolic surface de-
termine the corresponding point ofTeich(S). ForS = Sg the next theorem
states that9g − 9 curves suffice.
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Theorem 10.7 (9g − 9 theorem) There is a collection of simple closed
curves{δ1, . . . , δ9g−9} in Sg so that the map fromTeich(Sg) to R9g−9 given
by

X 7→ {ℓX(δ1), . . . , ℓX(δ9g−9)}

is injective.

Our proof of Theorem 10.7 generalizes to the case of any hyperbolic Sg,n,
where9g − 9 is replaced by3(3g − 3 + n).

It has been shown that in fact there are6g − 5 simple closed curves inSg
whose length determine a point inTeich(Sg). On the other hand, it has also
been shown that no6g − 6 curves suffice; see [73].

Themarked length spectrumof a hyperbolic surfaceX is the functionS →
R that records the lengths of the isotopy classes of simple closed curves
in X. It follows immediately from Theorem 10.7 that the marked length
spectrum ofX–indeed only a finite part of it—determinesX up to isometry.

To begin, we give the technical statement at the heart of the proof of the
9g − 9 theorem, on the convexity of length functions. Then we stateand
prove the9g − 9 theorem, and then we prove the statement about convexity
of length functions.

10.7.1 CONVEXITY OF LENGTH FUNCTIONS

How does the hyperbolic geometry of a genusg ≥ 2 surfaceX change as
one variesX = [(X,φ)] overTeich(Sg)? One specific problem in this di-
rection is to understand, for a given simple closed curveγ in Sg, the function
Teich(Sg)→ R+ defined byX 7→ ℓX(γ).

Fix onSg a pants decomposition{γi} consisting of oriented simple closed
curves. We take this pants decomposition as part of a coordinate system of
curves that gives Fenchel–Nielsen coordinates onTeich(Sg).

Fix any pointX ∈ Teich(Sg), and consider the one-parameter family{Xs :
s ∈ R} of points inTeich(Sg) obtained fromX by varying the twist param-
eters associated to the curveγ = γ1.
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Proposition 10.8 Let b be any isotopy class of simple closed curves onSg
such thati(b, γ) > 0. The functionR→ R+ given by

s 7→ ℓXs(b)

is strictly convex.

10.7.2 PROOF OF THE 9g − 9 THEOREM

Let {γ1, . . . , γ3g−3} be a pants decomposition ofSg, and choose simple
closed curves{β1, . . . , β3g−3} in Sg so thati(βi, γi) > 0 andi(βi, γj) = 0
for i 6= j. We do not require theβi to be disjoint. Letαi = Tγi(βi).

Choose a set of Fenchel–Nielsen coordinates forTeich(Sg) where the coor-
dinate system of curves consists of the pants decomposition{γi} and any set
of seams. ForX ∈ Teich(Sg), we will show that the set{ℓX(αi), ℓX(βi), ℓX(γi)}
determines the Fenchel–Nielsen coordinates ofX.

The length parameters forX are exactly theℓX(γi). It therefore remains
to show that the twist parameters forX are uniquely determined by the
{ℓX(αi), ℓX(βi), ℓX(γi)}. Let Xt be the point ofTeich(S) with the same
length parameters asX and with twist parameterst = (t1, . . . , t3g−3). Up
to a reparametrization ofTeich(Sg), we can assume thatX = X0. We will
show that ifti 6= 0 for somei then eitherℓXt(αi) 6= ℓX(αi) or ℓXt(βi) 6=
ℓX(βi).

Consider the functionsA(t) = ℓXt(α1) andB(t) = ℓXt(β1). Sincei(α1, γj) =
i(β1, γj) = 0 for j 6= 1, both functions are simply functions of the param-
eter t1, which we denote bys. By Proposition 10.8,A(s) andB(s) are
strictly convex, hence so is their sum(A + B)(s). Also, by definition, we
have thatA(s + 2π) = B(s).

AssumeA(s) = A(0) for somes 6= 0. We will show thatB(s) 6= B(0),
i.e.,A(2π) 6= A(2π + s). For concreteness says > 0. SinceA(s) = A(0),
it follows from the strict convexity thatA(t) < A(0) for t ∈ (0, s) and that
A(t) is strictly increasing fort > s. If s < 2π, thens < 2π < 2π + s, and
it follows thatA(2π) < A(2π + s). If s > 2π, then0 < 2π < s < 2π + s,
soA(2π) < A(0) = A(s) < A(2π + s). Finally, if s = 2π, we certainly
cannot haveA(2π) = A(2π + s), for thenA(t) would take the same value
at0, 2π, and4π, violating strict convexity.

We have shown that ift = (t1, . . . , t3g−3) and ℓXt(α1) = ℓX(α1) and
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ℓXt(β1) = ℓX(β1) then t1 = 0. Since the same argument works for the
other twist parameters the theorem is proven.

10.7.3 PROOF OF THE CONVEXITY OF LENGTH FUNCTIONS

As preparation for our proof of Proposition 10.8, we will give a way of com-
paring the lengths of curves inXs versus their lengths inX = X0. Recall that
in our discussion of the Fenchel–Nielsen coordinates, we regardedX as the
equivalence class of a marked hyperbolic surface(X,φ). We constructedX
from a collection of hyperbolic pairs of pantsXi,j,k, whose isometry types
were determined by the length parameters forX. Then we identified the
Xi,j,k along their boundary components, and the amount of rotatingwe did
before gluing was determined by the twist parameters forX. The marking
φ was then constructed using the seams as a guide.

Twist deformations and earthquake maps. Given the above description
of X, we can constructXs as follows. We modify the gluing of theXi,j,k

alongγ by rotating to the left by an angles/2π. The new identification
gives a new hyperbolic surfaceXs. Note thatXs is isometric toXs+2π.
There is then a natural way to modify the markingφ to obtain a marking
φs : Sg → Xs, as we now explain. Abusing notation, letγ denote the
simple closed curves inX andXs marked by the curveγ in Sg (in X is
this exactlyφ(γ), but inXs this curve does not yet have a name). There
is a canonical isometryτ0 : X − γ andXs − γ, since bothX andXs are
obtained by gluing together the same set ofXi,j,k. If we modify τ0 by an
s/2π left-hand twist on the left side ofγ, we obtain a map fromX − γ to
Xs − γ that uniquely extends to a homeomorphismτs : X → Xs. The
marking forXs is thenφs = τs ◦ φ.

Let π : H2 → X be the universal covering. Just asXs is described
by cuttingX along γ and regluing with a twist, the universal covering
πs : H2

s → Xs can be constructed by decomposingH2 along the lifts ofγ,
sliding the pieces to the left by(s/2π)ℓX(γ), and regluing. More precisely,
let H2

s be the metric space obtained fromH2 by the following inductive pro-
cedure. Choose some lift̃γ1 of γ in X̃ = H2. DecomposeH2 into the union
of the open half-space to the left ofγ̃1 and the closed half-space to the right
of γ̃1. We reglue the pieces after translating a distance(s/2π)ℓX(γ) to the
left. Next choose some lift̃γ2 that is adjacent tõγ1 (here, adjacent means
there are no other lifts between the two). We decompose the new space
along theγ̃2 as above and reglue by the same recipe. We can perform this
procedure inductively along all lifts ofγ. At the end we have a new metric
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spaceH2
s. Each point ofH2

s has a neighborhood that is isometric to an open
disk in H2. It follows thatH2

s is globally isometric toH2.

There is a built-in discontinuous map

Es : H2 → H2
s ≈ H2

which is called anearthquake map.

Away from the preimage ofγ, the covering mapπs : H2
s → Xs is given by

πs = τ0 ◦ π ◦ E−1
s

(it is easy to check that this composition is a local homeomorphism).

Computing lengths. We would like to compute the length ofβ in Xs
by looking in H2 as opposed toH2

s. In other words we want to useH2 as
a frame of reference, independent ofs. The image ofβ in Xs under the
marking forXs is φs(β) = τs ◦ φ(β). The preimage of this curve inH2

s

under the covering mapπs = τ0 ◦ π ◦ E−1
s is then

Es ◦ π−1 ◦ τ−1
0 ◦ τs ◦ φ(β)

Let us unwrap this composition. The curveφ(β) is the image ofβ in X
under the marking forX. The mapτ−1

0 ◦ τs : X → X is a discontinuous
map that twists the left hand side ofγ by s/2π. Thus,π−1◦(τ−1

0 ◦τs)◦φ(β)
differs from the preimageπ−1 ◦ φ(β) in H2 by a lift of the partial twist
τ−1
0 ◦ τs. So the preimageπ−1 ◦ (τ−1

0 ◦ τs) ◦ φ(β) consists of a collection
of “broken paths” inH2 that “jump” to the left by(s/2π)ℓX(γ) every time
they approach a lift ofγ from the left; see Figure 10.11. The effect of
Es : H2 → H2

s is to take these broken paths inH2 to continuous paths in
H2
s.

Since Es is a local isometry, we can compute the length of a continuous
path inH2

s by considering its image inH2 under Es, computing the lengths
of each piece of this broken path, and adding up. In particular, if β̂ is a path
lifting of φs(β) to H2

s, then the length of the broken path E−1
s (β̂) is the same

as the length ofφs(β) in Xs.

We can choosêβ to start and end on lifts ofγ in H2
s. There is a deck

transformationDβ of H2
s that corresponds to the conjugacy classφs(β) and

that fixes the lift ofφs(β) containingβ̂. The hyperbolic isometryDβ takes
the start point of̂β to the end point of̂β.
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Now, to find the value ofℓXs(β), we modifyβ̂ by homotopy until length is
minimized. We can perform this homotopy so that the endpoints stay in the
preimage ofγ throughout and so that the start and end points differ byDβ

throughout.

We know that the minimizing path is a geodesic segment that starts and
ends on lifts ofγ, that intersectsi(b, γ) + 1 lifts of γ, and whose endpoints
differ by Dβ . Therefore, the closure of the image of the minimizing path
under E−1

s in H2 is a collection ofi(b, γ) geodesic segmentsδ1, . . . , δi(b,γ) :

[0, 1]→ H2 with the following properties:

1. δi(1) andδi+1(0) lie on a common lift ofγ and differ by a displace-
ment of(s/2π)ℓX(γ) to the left (alsoδi(0) andδi+1(1) lie on distinct
lifts)

2. δ1(0) andδi(b,γ)(1) differ by the mapD′β = E−1
s ◦Dβ ◦ Es

The collection of segments{δi} (thought of as a collection of subsets of
H2) is completely determined by the collection of points{δi(0)}. Indeed,
the other endpoints are determined by the two conditions above.

We have thus reduced the problem of finding the length ofβ in Xs to the
problem of sliding the points{δi(0)} along a fixed collection ofi(b, γ)
geodesics inH2 until the length of the corresponding piecewise geodesic
path is minimized.

Say that the pointδi(0) is restricted to the lift̃γi of γ. We can identify
γ̃1 × · · · × γ̃i(b,γ) with Ri(b,γ). Let

L : Ri(b,γ) × R→ R+

denote the function that takes as input the pointsδi(0) ands, and records
the length of the corresponding piecewise geodesic path.

For a pointz in someγ̃i ≈ R, let ws denote the point that lies an oriented
distance of(s/2π)ℓX (γ) fromw alongγ̃i. We can writeL more concretely
as the function

d(z1, z
±s
2 ) + d(z2, z

±s
3 ) + · · ·+ d(zi(b,γ),D

′
β(z1)

±s)

where eachzi lies in γ̃i ≈ R, and the signs are determined by the orienta-
tions of theγ̃i (all distances are taken inH2).



306 CHAPTER 10

We finally have

ℓXs(b) = inf
{
L(z, s) : z ∈ Ri(b,γ)

}
.

�
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��α̃

lifts of γ

Figure 10.11 Ifeα is the lift of α for the pointX of Teich(Sg), then the broken path is
homotopic to the image ofα in the new pointXs of Teich(Sg) obtained by
varying the twist parameters on one curveγ. At each lift ofγ, the path jumps
to the left a distances.

Finishing the proof. We require the following fact, suggested by Mladen
Bestvina; it is an ingredient in a new proof of the Nielsen realization theorem
due to Bestvina–Bromberg–Fujiwara–Suoto [18].

L EMMA 10.9 Let f : Rm × Rn → R be a strictly convex function. If the
functionF : Rm → R defined by

F (x) = min{f(x, y) : y ∈ Rn}
is well-defined, that is, if the minimum always exists, thenF is strictly con-
vex.

Proof of Proposition 10.8.The starting point is the following basic fact from
hyperbolic geometry (see [34, Chapter II, Proposition 2.2]):
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Let α and β be two disjoint geodesics inH2 parameterized
at unit speed. The functiond : R2 → R given by(s, t) 7→
dH2(α(s), β(t)) is strictly convex.

Givenk+1 disjoint oriented geodesicsαi in H2, each parameterized at unit
speed, we consider the functionf1 : R2k → R given by

f1(x1, y1, . . . , xk, yk) =
k∑

i=1

d(xi, yi)

where eachxi lies inαi and eachyi lies inαi+1. Since strict convexity is
preserved under finite sums, we have thatf1 is strictly convex.

Next, letf2 : R2k × R → R be the function given byf2(x, s) = f1(x) for
anyx ∈ R2k. The functionf2 is strictly convex in every direction except
thes direction, where it is constant.

Restrictf2 to the hyperplane inR2k × R described byxi = ysi−1 (abusing
the previous notation) for2 ≤ i ≤ k, andyk = ψ(x1)

−s, whereψ is some
fixed isometryα1 → αk+1. Call the new functionf3. It is straightforward
to check that this hyperplane is not parallel to thes direction, and sof3 is
strictly convex.

Finally, let F : R → R be the function given byF (s) = inf{f3(x, s)}
wherex is any point on the hyperplane inR2k wheref3 is defined. We have
thatF (s) is strictly convex by Lemma 10.9. But, by the above discussion,
for the appropriate choices of oriented geodesicsαi and isometryψ the
functionF (s) is exactly the functionℓXs(b), and so we are done. 2



Chapter Eleven

Teichmüller geometry

Teichmüller spaceTeich(S) was defined in Chapter 10 as the space of hy-
perbolic structures on the surfaceS modulo isotopy. ButTeich(S) param-
eterizes other important structures as well, for example complex structures
onS modulo isotopy and conformal classes of metrics onS up to isotopy.

We would like to have a way to compare different complex or conformal
structures onS to each other. A natural way to do this is to search for
a quasiconformal homeomorphismf : S → S that is homotopic to the
identity map and that has the smallest possible quasiconformal dilatation
with respect to the two structures. Informally, a homeomorphism with min-
imal dilatation is one that distorts angles least. This problem was solved by
Grötzsch whenS is a rectangle, and for general surfaces by Teichmüller.

After presenting the solution to this extremal problem, we will see how
the least dilatation can be used to define a metric on Teichmüller space,
called the Teichmüller metric. Understanding the basic properties of this
metric, for example determining its geodesics, is important in a number of
problems in low-dimensional topology. In particular, it will play a central
role in Chapter 13, where we present Bers’ proof of the Nielsen–Thurston
classification of surface homeomorphisms.

The underlying objects encoding the solution to the extremal problem are
holomorphic quadratic differentials and their associatedmeasured foliations.
Thus we will spend some time describing these objects.

There are many approaches to the theory of quasiconformal mappings and
Teichmüller theory, each with their own advantages and disadvantages. In
this chapter, we adopt an approach of Bers that is described in the lecture
notes written by Abikoff [1].
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11.1 QUASICONFORMAL MAPS AND AN EXTREMAL PROBLEM

In this section we define quasiconformal maps between surfaces in order
to set up the extremal problem mentioned above. The natural setting for
quasiconformal maps is that of complex structures on surfaces, as opposed
to hyperbolic structures. Thus we begin by explaining the correspondence
between these two types of structures.

11.1.1 COMPLEX STRUCTURES VERSUS HYPERBOLIC STRUCTURES

By a Riemann surfaceX we mean a one–dimensional complex manifold.
This means thatX comes equipped with an atlas of charts toC that has
biholomorphic transition maps, i.e., transition maps are holomorphic with
holomorphic inverses. Two Riemann surfacesX andY are said to beiso-
morphicif there is a biholomorphic homeomorphism between them.

The uniformization theorem gives that any Riemann surface of genusg ≥ 2
is the quotient of the unit disk∆ by a groupΓ of biholomorphic automor-
phisms acting properly discontinuously and freely on∆; see, e.g., [193,
Chapter 9]. Any group of biholomorphic automorphisms of∆ preserves the
hyperbolic metric on∆. Thus∆/Γ has an induced hyperbolic structure,
and conversely, any such hyperbolic structure gives a complex structure on
X. In other words, forg ≥ 2 there is a bijective correspondence:





Isomorphism classes
of Riemann surfaces
homeomorphic toSg



←→





Isometry classes
of hyperbolic surfaces
homeomorphic toSg





Using isothermal coordinates, one can define a complex structure on any
surface endowed with a Riemannian metric. It follows thatTeich(Sg) can
also be identified with the set of conformal classes of Riemannian metrics
onSg.

11.1.2 QUASICONFORMAL MAPS

LetU andV be open subsets ofC, and letf : U → V be a homeomorphism
that is smooth outside of a finite number of points. In Section10.2 we
explained how to write linear mapsR2 → R2 using the notation of complex
analysis. We now apply this idea to describe the differential df .
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Using the usual notation for mapsR2 → R2, we can writef asf(x, y) =
(a(x, y), b(x, y)), wherea, b : R2 → R. Where it is defined, the derivative
df is then the real-linear map

df =

(
ax ay
bx by

)
.

We can also write

df = fx dx+ fy dy

wherefx = (ax, bx) andfy = (ay, by).

Switching to complex notation and settingz = x + iy, we can writefx =
ax + ibx andfy = ay + iby and we can rewritedf as

df = fz dz + fz̄ dz̄

where

fz =
1

2
(fx − ify) and fz̄ =

1

2
(fx + ify)

Recall from Section 10.2 that the quantityµf = fz̄/fz is called the complex
dilatation off .

The condition thatfz̄ ≡ 0 is equivalent to the condition thatf satisfies the
Cauchy–Riemann equations. Thusf is holomorphic if and only iffz̄ ≡
µf ≡ 0. Also, since

|fz|2 − |fz̄|2 = axby − aybx,

we see thatf is orientation-preserving if and only if|fz| > |fz̄|, which is
the same as saying|µf | < 1.

Dilatation. Suppose now that the homeomorphismf : U → V is orien-
tation preserving. Letp be a point ofU at whichf is differentiable. The
dilatation off at p is defined to be

Kf (p) =
|fz(p)|+ |fz̄(p)|
|fz(p)| − |fz̄(p)|

=
1 + |µf (p)|
1− |µf (p)|

The quantitylog(Kf (p))/2 is precisely the distance betweenµf (p) and 0
in the Poincaré disk model ofH2 (this makes sense sincef is orientation-
preserving and so|µf | < 1). Note in particular thatKf (p) ≥ 1.
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The quantityKf (p) can be interpreted as follows. The mapdfp takes the
unit circle inTUp ≈ C to an ellipseE in TVf(p), andKf (p) is the ratio of
the length of the major axis ofE to the length of the minor axis ofE. To
see this, we parameterize the unit circle inC asθ 7→ eiθ for θ ∈ [0, 2π]. The
image of this circle underdfp is then the ellipseE and is determined by the
equationE(θ) = fz(p)e

iθ + fz̄(p)e
−iθ for θ ∈ [0, 2π]. The modulus (i.e.

absolute value) of a pointE(θ) is

|E(θ)| =
∣∣∣fz(p)eiθ + fz̄(p)e

−iθ
∣∣∣ =

∣∣fz(p)
∣∣
∣∣∣1 + µf (p)e

−i2θ
∣∣∣

Since

1− |µf (p)| ≤
∣∣∣1 + µf (p)e

−i2θ
∣∣∣ ≤ 1 + |µf (p)|

it follows that the ratio of the maximum modulus of a point onE to the
minimum modulus of a point onE is preciselyKf (p).

Thedilatation of the mapf is defined to be the number

Kf = supKf (p)

where the supremum is taken over all pointsp wheref is differentiable.
Thus1 ≤ Kf ≤ ∞. If Kf < ∞ we say thatf is a quasiconformalor
Kf–quasiconformalmap between the domainsU andV of C. Note that
biholomorphic maps are conformal with conformal inverses,hence are1–
quasiconformal. The notion of quasiconformal homeomorphism was first
considered by Grötzsch in 1928.

Quasiconformal maps. Let f : X → Y be a homeomorphism between
Riemann surfaces that is smooth outside of a finite number of points. As-
sume further thatf respects the orientations induced by the complex struc-
tures onX andY and thatf−1 is smooth outside of a finite number of
points. Since the transition maps in any atlases forX andY are biholomor-
phic (hence 1–quasiconformal), and since the local expressions for f are
orientation preserving, there is a well-defined notion of the dilatationKf (p)
of f at a pointp ∈ X wheref is smooth. Sincef is smooth outside of a
finite number of points we can defineKf = supKf (p) as above. We will
say thatf is quasiconformalorKf–quasiconformalif Kf <∞.

A map between Riemann surfaces isholomorphicif, in any chart, it is given
by a holomorphic map from some domain inC to C. A bijective, holomor-
phic map between Riemann surfaces is called aconformal map. Conformal
maps between Riemann surfaces are alsobiholomorphic, that is, they have
holomorphic inverses. The last fact fact follows from the open mapping
theorem and Theorem 10.34 in Rudin’s book [181].



312 CHAPTER 11

Lemma 11.1 Let f : X → Y be a homeomorphism between Riemann
surfaces. Thenf is a 1–quasiconformal homeomorphism if and only if it is
a conformal map.

Proof. First of all, sincef is a homeomorphism, its derivative must be
nonzero at all points where it is defined. Indeed, iff ′ has a zero of order
m− 1 atx ∈ X, then the open mapping theorem implies thatf ism–to–1
in a small neighborhood ofx [181, 10.32].

Suppose thatf is conformal. In this casef ′ is defined at every point, and by
the above argument we know thatf ′ never vanishes. It follows thatf takes
circles in the tangent space ofX to (nondegenerate) circles in the tangent
space ofY [181, Theorem 14.2], and sof is 1–quasiconformal.

Now suppose thatf is 1–quasiconformal. This is the same as saying that
fz̄ ≡ 0 wherever it is defined. LetA ⊂ X be the set of points wheref ′

is not defined. The restriction off to X − A is then holomorphic. Since
f |X−A is also bijective, it is conformal. As above, it follows thatf |X−A is
biholomorphic. Sincef is a homeomorphism, its singularities atA must be
removable [181, Theorem 10.20]. Sincef is continuous it follows thatf is
already holomorphic, hence conformal, and we are done. 2

The group QC(X). LetX be a Riemann surface. We would like to show
that the set of quasiconformal homeomorphismsX → X forms a group
QC(X). We require some basic facts about the dilatations of linearmaps.
The first fact is that iff : C → C is any linear map, then the dilatations of
f andf−1 are equal, that is,Kf = Kf−1 . The second fact, which we will
use repeatedly, is the following.

L EMMA 11.2 The letf and g be two linear mapsC → C. Denote the
complex dilatations off , g, andf ◦ g byµf , µg, andµf◦g, and denote the
dilatations byKf ,Kg, andKf◦g. We have

Kf◦g ≤ KfKg,

with equality if and only if eitherarg(µf ) = arg(µg) or one ofµf andµg is
zero.

The last statement of Lemma 11.2 can be rephrased as:Kf◦g = KfKg if
and only if the directions of maximal stretch forf andg are the same or at
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least oneKf andKg is 1. Lemma 11.2 is an easy exercise in linear algebra
[68, §1.2].

We can now deduce the following about compositions of quasiconformal
homeomorphisms ofX.

Proposition 11.3 LetX be a Riemann surface and letf and g be quasi-
conformal homeomorphisms ofX with dilatationsKf andKg. We have:

1. The compositionf ◦ g is quasiconformal and

Kf◦g ≤ KfKg.

2. The inversef−1 is quasiconformal and

Kf−1 = Kf .

3. If g is conformal then

Kf◦g = Kf = Kg◦f .

In particular, the set of quasiconformal homeomorphisms QC(X) forms a
group.

11.1.3 TEICHM ÜLLER ’ S EXTREMAL PROBLEM

In 1928 Grötzsch considered the following natural extremal problem, at
least in the case of rectangles. Because Teichmüller laterconsidered the
case of general Riemann surfaces [198], this problem is sometimes referred
to asTeichm̈uller’s extremal problem.

Fix a homeomorphismf : X → Y of Riemann surfaces, and
consider the set of dilatations of quasiconformal homeomor-
phismsX → Y in the homotopy class off . Is the infimum of
this set realized? If so, is the minimizing map unique?

Teichmüller’s theorems (see below) give a positive solution to both ques-
tions (under the assumption of negative Euler characteristic). The minimiz-
ing map is called theTeichm̈uller map.
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In Section 11.8 we will use Teichmüller’s theorems to definea metric on
Teichmüller space called the Teichmüller metric, as follows. Letg ≥ 2 and
let X,Y ∈ Teich(Sg). The pointsX andY can be represented by marked
Riemann surfacesX andY . Because of the markings, there is a unique pre-
ferred homeomorphism of Riemann surfacesX → Y , namely, the change
of marking map, which corresponds to the identity map ofSg. For abstract
Riemann surfaces without markings, there is no way to choosesuch a pre-
ferred map. ForX andY, we can ask a refined version of Teichmüller’s
extremal problem, that is, we can ask for the infimum of the dilatations of
quasiconformal homeomorphismsX → Y in the preferred homotopy class.
Teichmüller’s theorems say that there exists a unique quasiconformal home-
omorphismh : X → Y of minimal dilatation among all mapsX → Y in
this homotopy class. We can then define a distance function

dTeich(X,Y) =
1

2
log(Kh).

In Section 11.8 we will prove thatdTeich is a metric onTeich(Sg).

As we will see below, the Teichmüller map is smooth outside afinite set of
points inSg, but is not smooth at all points ofSg. This is precisely why
we defined the notion of quasiconformality for homeomorphisms that are
smooth outside a finite set of points. Quasiconformality canbe defined for
homeomorphisms with significantly weaker smoothness conditions than we
have assumed. We chose smoothness outside a finite set of points since this
is easier to work with and avoids technical difficulties, butit is still general
enough for all of our applications.

11.2 MEASURED FOLIATIONS

We will see that Teichmüller maps, the maps that appear as solutions to Te-
ichmüller’s extremal problem, are homeomorphisms of a surface that stretch
along one foliation of the surface and shrink along a transverse foliation. In
order to make this precise, we first need to give a careful discussion of mea-
sured foliations.

11.2.1 MEASURED FOLIATIONS ON THE TORUS

Before giving the general definition of a measured foliation, we restrict our
attention to the case of the torus where (as usual) the situation is much sim-
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pler. We will also explain what it means for a linear map of thetorus to
stretch the torus along one foliation and shrink along a another.

Let ℓ be any line through the origin inR2. The lineℓ determines a foliation
F̃ℓ of R2 consisting of the set of all lines inR2 parallel toℓ. Translations of
R2 take lines to lines, and so any translation preservesF̃ℓ in the sense that
it takes leaves to leaves.

Since all of the deck transformations for the standard covering R2 → T 2 are
translations, the foliatioñFℓ descends to a foliationFℓ of T 2. If the slope
of ℓ is rational, then every leaf ofFℓ is a simple closed geodesic inT 2. If
the slope ofℓ is irrational then every leaf ofFℓ is a dense geodesic inT 2.

The foliationsF̃ℓ come equipped with extra structure. Letνℓ : R2 be the
function that records distance fromℓ. Integration against the 1–formdνℓ
gives atransverse measureon F̃ℓ. What this means is that any smooth arcα

transverse to the leaves of̃Fℓ can be assigned a lengthµ(α) =
∫
α dνℓ. The

quantityµ(α) is the total variation ofα in the direction perpendicular toℓ.
Thusµ(α) is invariant under isotopies ofα that move each point ofα within
the leaf ofF̃ℓ in which it is contained. The 1–formdνℓ is preserved by
translations, and so descends to a 1–formwℓ onT 2, and induces a transverse
measure on the foliationFℓ. The structure of a foliation onT 2 together with
a transverse measure is called atransverse measured foliationonT 2.

Note that a transverse measured foliation onT 2 is completely determined by
the 1–formwℓ. The leaves ofFℓ in T 2 are simply the integral submanifolds
to the distribution determined by the kernel ofwℓ.

Consider a linear mapA ∈ SL(2,Z) with two distinct real eigenvalues
λ > 1 and λ−1 < 1 corresponding to eigenspacesℓ and ℓ′. As in the
proof of Theorem 2.5,A induces a homeomorphismφA of the torusT 2.
The homeomorphismφA preserves the foliations̃Fℓ andF̃ℓ′ and multiplies
their transverse measures byλ−1 andλ, respectively. We think ofφA as
stretching by a factor ofλ in the ℓ–direction and contracting by a factor of
λ′ in theℓ–direction.

On a higher genus surface, it is not clear what it would mean for a home-
omorphism to stretch in the direction of a single vector. However, we can
define a foliation on a higher genus surface, and we will see that it makes
sense for a homeomorphism to stretch the surface along that foliation. Te-
ichmüller maps will be given exactly such a description.
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11.2.2 SINGULAR MEASURED FOLIATIONS

We would transfer our discussion of measured foliations on the torus to
closed surfaces of genusg ≥ 2. The Euler–Poincaré formula (see below)
shows that such surfaces do not admit foliations. This can becorrected by
allowing foliations with a finite number of singularities ofa specific type.

Singular foliations. A singular foliationF on a closed surfaceS is a
decomposition ofS into a disjoint union of subsets ofS called theleavesof
F , and a finite set of points ofS, calledsingular pointsof F , such that the
following two conditions hold.

1. For each nonsingular pointp ∈ S there is a smooth chart from a
neighborhood ofp to R2 that takes leaves to horizontal line segments.
The transition maps between any two of these charts are smooth maps
of the form (x, y) 7→ (f(x, y), g(y)). In other words the transition
maps take horizontal lines to horizontal lines.

2. For each singular pointp ∈ S there is a smooth chart from a neigh-
borhood ofp to R2 that takes leaves to the level sets of ak–pronged
saddle,k ≥ 3; see Figure 11.1.

Figure 11.1 A foliation at a 3–pronged singular point (left)and at a 4–pronged singular point
(right).

We say that a singular foliation isorientableif the leaves can be consistently
oriented, that is, if each leaf can be oriented so that nearbyleaves are simi-
larly oriented. It is not hard to see that a foliation islocally orientableif and
only if each of its singularities has an even number of prongs. For instance,
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the foliation in Figure 11.1 is not orientable in a neighborhood of the singu-
lar point. However, there do exist foliations that are locally orientable but
not (globally) orientable.

The Euler–Poincaŕe formula. The following proposition gives a topologi-
cal constraint on the total number of prongs at all singularities of a measured
foliation.

Proposition 11.4 (Euler–Poincaŕe formula) LetS be a surface with a sin-
gular foliation. LetPs denote the number of prongs at a singular points.
Then

2χ(S) =
∑

(2− Ps)

where the sum is over all singular points of the foliation.

SincePs ≥ 3, Proposition 11.4 implies that a surfaceS with χ(S) > 0
cannot carry a (singular or nonsingular) foliation. Proposition 11.4 also im-
plies that any foliation on a surfaceS with χ(S) = 0 must have no singular
points and that any foliation on a surfaceS with χ(S) < 0 must have at
least one singular point. Because of this, we will unambiguously use the
term “foliation” for foliations that have singularities aswell as for those that
do not.

The Euler–Poincaré formula is a straightforward consequence of the Poincaré–
Hopf formula for vector fields applied to the context of line fields; see [59,
Exposé 5,§1.6].

Measured foliations. As in the case of foliations on the torus, we would
like to equip foliations on higher genus surfaces with a transverse measure,
that is, a “length function” defined on arcs transverse to thefoliation. In
order to do this precisely we will need some preliminaries.

Let F be a foliation on a surfaceS. A smooth arcα in S is transverseto
F if α misses the singular points ofF and is transverse to each leaf ofF at
each point in its interior. Letα, β : I → S be smooth arcs transverse toF .
A leaf-preserving isotopyfrom α to β is a mapH : I × I → S such that

· H(I × {0}) = α andH(I × {1}) = β

· H(I × {t}) is transverse toF for eacht ∈ [0, 1]
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· H({0}× I) andH({1}× I) are each contained in a single
leaf

Note that the second and third conditions imply thatH({s}×I) is contained
in a single leaf for anys ∈ [0, 1].

A transverse measureµ on a foliationF is a function that assigns a positive
real number to each smooth arc transverse toF , so thatµ is invariant under
leaf-preserving isotopy, andµ is regular (i.e. absolutely continuous) with
respect to Lebesgue measure. In other words, this last condition means that
each point ofS has a neighborhoodU and a smooth chartU → R2 so that
the measureµ is induced by|dy| on R2.

A measured foliation(F , µ) on a surfaceS is a foliationF of S equipped
with a transverse measureµ.

Figure 11.2 Two transverse foliations near a singular point. Each foliation has a 3–pronged
singularity.

We say that two measured foliations aretransverseif their leaves are trans-
verse away from the singularities; see Figure 11.2. Note that transverse
measured foliations must have the same set of singularities.

Natural charts. There is another way of defining a measured foliation on
a surfaceS. Let{pi} be a finite set of points inS. Suppose we have an atlas
for S − {pi} where all transition maps are of the form

(x, y) 7→ (f(x, y), c ± y),

for some constantc depending on the transition map. Then it makes sense
to pull back the horizontal foliation ofR2, with its transverse measure|dy|
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(the absolute variation in they–direction). After reinserting thepi, the result
is a measured foliation onS.

Conversely, given any measured foliation, one can construct an atlas where
the transition maps are given as above and where the transverse measure
is given by |dy|. Any chart from such an atlas is called a set ofnatural
coordinatesfor the measured foliation.

If we have an ordered pair of transverse measured foliations, and there is an
atlas where, away from the singular points, the first foliation is the pullback
of the horizontal foliation ofR2 with the measure|dy| and the second foli-
ation is the pullback of the vertical foliation with the measure |dx|, then we
say that this atlas, and each of its charts, isnatural with respect to the pair
of measured foliations.

The action of Homeo(S). There is a natural action ofHomeo(S) on the
set of measured foliations ofS. Namely, ifφ ∈ Homeo(S) and if (F , µ) is
a measured foliation ofS, then the action ofφ on (F , µ) is given by

φ · (F , µ) = (φ(F), φ⋆(µ))

whereφ⋆(µ)(γ) is defined asµ(φ−1(γ)) for any arcγ transverse toφ(F).
As a consequence, the mapping class groupMod(S) acts on the set of iso-
topy classes of measured foliations (the quotient of the setof measured fo-
liations byHomeo0(S)).

Measured foliations as 1–forms.Any locally orientable measured foliation
(F , µ) can be described locally in terms of a closed 1–form, as follows. In
any chart whereF is orientable, there is a closed real-valued 1–formω so
that, away from the singular points ofF , the leaves ofF are precisely the
integral submanifolds of the distribution given by the kernel of ω, andµ is
given by the formula

µ(γ) =

∫

γ
|ω|

for any arcγ transverse toF . Indeed, in a neighborhood of a nonsingular
point, we have seen that we can take the 1–form to bedy. A key point,
though, is that−dy serves the same purpose—it defines the same foliation
and the same measure asdy. In the neighborhood of a singular point, the
1–form can be taken to be the derivative of a saddle function.

If a measured foliation is globally orientable, then there is a well-defined
way of distinguishing betweendy and−dy on the entire surface. Thus, the
local 1–forms we described above glue together to give a globally defined
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closed 1–form on the surface. Conversely, the kernel of closed 1–form on a
surface defines an orientable foliation.

Punctures and boundary. The theory of measured foliations can be eas-
ily adapted to the case of surfaces with punctures and/or boundary. Near a
puncture, a foliation can take the form of a regular point or ak–pronged sin-
gularity withk ≥ 3, as in the case of foliations on closed surfaces. However,
at a puncture we also allow1–pronged singularitiesas in Figure 11.3.

Figure 11.3 A 1–pronged singularity on a surface with a puncture.

A foliation F on a surfaceS with nonempty boundary∂S is locally the
same as in the case whenS is closed, but we now insist that:

1. each component of∂S contain at least one singularity ofF , and

2. any leaf ofF not containing a singularity on∂S but meeting a small
tubular neighborhood of∂S must be parallel to∂S; that is,∂S should
be a union of leaves connecting singularities. See Figure 11.4.

Figure 11.4 A measured foliation near the boundary of a surface.

11.2.3 FOUR CONSTRUCTIONS OF MEASURED FOLIATIONS

In this subsection we give four concrete ways of constructing measured fo-
liations on a closed surface.
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From a polygon. Given any closed surfaceS, we can realizeS as the
quotient of a polygonP in R2 by side identifications. We are using the Eu-
clidean plane here and not the hyperbolic plane because we want to consider
structures inherited from Euclidean geometry. We impose two additional
conditions:(i) any time two edges ofP are identified, they are parallel, and
(ii) the total Euclidean angle around each point ofS is greater thanπ (the
second condition only needs to be checked at the vertices ofP ). We do not
need to assume thatP is connected. One example of this is the identification
of Sg as the quotient of a regular(4g + 2)–gon inR2 with opposite sides
identified. Another example is given in Figure 11.6.

Any foliation of R2 by parallel lines restricts to give a foliation of (the inte-
rior of) P . We claim that this foliation induces a foliation ofS. It is easy to
see that any point ofS coming from a point ofP that is not a vertex ofP
has a regular neighborhood that satisfies the definition of a regular point of
a foliation.

So what happens at a pointp ∈ S corresponding to a vertex ofP? The first
observation is that, since identified sides ofP are parallel, the total angle
aroundp is an integer multiple ofπ. In particular, there is some vertex̃p
of P in the preimage ofp, and a vectorv based at̃p that points intoP
(possibly along an edge) and is parallel to the foliation ofP . If we sweep
out an angle ofπ starting withv, we find a closed Euclidean half-disk in
S that is foliated by lines parallel to the diameter. If we continue to sweep
out angles ofπ, we see that a neighborhood ofp looks like some number
of Euclidean half-disks, each foliated by lines parallel tothe diameter, and
glued along oriented radii. By our assumption on the total angle around each
point of S coming from a vertex ofP , we know that there are at least two
half-disks glued atp. If there are exactly two half-disks, thenp is a regular
point. If there arek half-disks, wherek ≥ 3, thenp is a singularity withk
prongs.

One measure on the induced foliation ofS is the one given by the total
variation of the Euclidean distance in the direction perpendicular to the fo-
liation of P . The charts we described above are the natural charts for the
nonsingular points.

Suppose that, in this construction, we orient each edge ofP so that the
identifications respect these orientations. If all side pairings identify sides of
P that are parallel in the oriented sense (as opposed to anti-parallel), then the
resulting foliation ofS is orientable. Indeed, either of the two orientations
of the foliation on the interior ofP extend to give an orientation of the entire
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foliation of S.

It is a fact that every measured foliation comes from this polygon construc-
tion. The idea is that the natural coordinates for a measuredfoliation pick
out large rectangles in the surface that are foliated by horizontal lines. See
Section 14.3 for further discussion.

Enlarging a simple closed curve. Let S be a closed surface of genusg.
We can realizeS topologically as a Euclidean(4g + 2)–gon with opposite
sides identified. We can straighten the sides of this polygonso that two op-
posite sides are horizontal and the other4g sides are vertical. The result is
a Euclidean rectangleR. If we retain the original identifications, we obtain
a description ofS as a quotient ofR where the horizontal sides are identi-
fied and where segments of one vertical edge of the rectangle are identified
with segments of the other vertical edge. Letα be the nonseparating simple
closed curve inS that is the image of the horizontal sides of the rectangle.

The foliation ofR by horizontal lines induces, just as in the previous con-
struction, a measured foliation ofS. There is a one-parameter family of
measures obtained by scaling the rectangle vertically. Thespecial feature of
this particular construction is that every closed leaf is isotopic to the curve
α. We say that this measured foliation is obtained byenlarging the simple
closed curveα. Note that, by change of coordinates, we can enlarge any
nonseparating simple closed curve in a closed surface (it isalso possible to
extend the construction to separating curves).

From a branched cover. Let g ≥ 2, and letp : Sg → T 2 be a branched
covering map. For our purposes, abranched coverof one topological sur-
face over another is the quotient of one orientable surface by a finite group of
orientation-preserving homeomorphisms. So, for instance, orbifold cover-
ings are branched coverings. One such example, with2g − 2 branch points,
is illustrated in Figure 11.5.

Any measured foliation(F , µ) of T 2 pulls back viap to a measured foliation
(p⋆(F), p⋆(µ)) on Sg. The singularities ofp⋆(F) are precisely the ramifi-
cation points of the covering. The foliationp⋆(F) has a singularity of order
2k above any branch point of orderk. Since the deck transformations of the
coverSg → T 2 are orientation-preserving, an orientation of the foliation on
T 2 pulls back to an orientation on the foliation ofSg. Since every foliation
of T 2 is orientable, every foliation ofSg obtained by this construction is
orientable.

The same construction as above can be used to pull back measured foliations



TEICHMÜLLER GEOMETRY 323

Figure 11.5 A two-fold branched cover over the torus

on any closed surface via any (branched or unbranched) cover.

From a pair of filling simple closed curves. Let α andβ be two trans-
verse simple closed curves that are in minimal position and that fill a closed
surfaceS. Take, for instance, the example of Figure 1.7. We can think of
α ∪ β as a 4–valent graph inS, where the vertices are the points ofα ∩ β.
In fact, by also considering the closures of the components of S − (α ∪ β)
as 2–cells, we have a description ofS as a 2–complexX.

We construct a dual complexX ′. The complexX ′ is formed by taking one
vertex for each 2–cell ofX, one edge transverse to each edge ofX, and one
2–cell for each vertex ofX. Since the vertices ofX are 4–valent, it follows
thatX ′ is asquare complex, that is, each 2–cell ofX ′ is a square. What is
more, each square ofX ′ has a segment ofα running from one side to the
opposite side.

We can foliate each square ofX ′ by lines parallel toα. This gives rise to
a foliationFα on all ofS. We declare the “width” of each square to be the
same fixed number, and this gives a measure onFα. The foliation associated
to β is a measured foliationFβ that is transverse toFα.

This last construction is really just a special case of both the polygon con-
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struction and the branched cover construction. Indeed, we can think ofX
as a disconnected polygon with sides identified. Also, if we think of T 2 as
the unit square with sides identified, then there is a branched cover from
S ≈ X → T 2 that takes each square ofX to the unit square and takes the
α–foliation to the foliation of the unit square by horizontallines.

11.3 HOLOMORPHIC QUADRATIC DIFFERENTIALS

We now describe the complex-analytic counterparts to measured foliations,
namely, holomorphic quadratic differentials. Since quasiconformal maps
are most easily described via complex analysis, we will be able to exploit
this point of view in proving Teichmüller’s theorems.

11.3.1 QUADRATIC DIFFERENTIALS AND MEASURED FOLIATIONS

Theholomorphic cotangent bundleto a Riemann surfaceX is the complex
line bundle overX whose fiber above a pointp ∈ X is the space of complex
linear mapsTp(X) → C. A holomorphic 1–form is a holomorphic section
of the holomorphic cotangent bundle ofX. A holomorphic quadratic dif-
ferentialonX, which is the object of interest here, is a holomorphic section
of the symmetric square of the holomorphic cotangent bundleof X. For
instance the tensor square of a holomorphic 1–form onX is a holomorphic
quadratic differential.

We can alternatively describe a holomorphic quadratic differential onX in
terms of local coordinates, as follows. Let{zα : Uα → C} be an atlas for
X. A holomorphic quadratic differentialq onX is specified by a collection
of expressions{φα(zα) dz2

α} with the following properties:

1. Eachφα : zα(Uα)→ C is a holomorphic function with a finite set of
zeros.

2. For any two coordinate chartszα andzβ, we have

φβ(zβ)

(
dzβ
dzα

)2

= φα(zα). (11.1)

The second condition can be phrased as: “the collection{φα(zα) dz2
α} is

invariant under change of local coordinates.” To say this yet another way:
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if q is given in one chart byφα(z), and in another chart byφβ(z), and the
change of coordinates from the first chart to the second chartis the holo-
morphic mapψ, then

φβ(z)(dψ)2 = φα(z).

It follows that the order of a zero of a holomorphic quadraticdifferential is
well-defined, independent of the chart.

More concretely, a holomorphic quadratic differentialq on a Riemann sur-
faceX is a holomorphic map from the holomorphic tangent bundle ofX to
C. What is more, for anyp ∈ X and anyv ∈ Tp(X) we haveq(v) = q(−v).
Say that in local coordinatesz the holomorphic quadratic differentialq is
given byφ(z) dz2. Then forv ∈ Tp(X) ≈ C, the image ofv under the
chart is a pointdz(v) in Tz(p)(C) ≈ C and we haveq(v) = φ(z(p))dz(v)2 .

Measured foliations from quadratic differentials. Given a holomorphic
quadratic differentialq on a Riemann surfaceX, we obtain a foliation by
taking the union of the zeros ofq with the set of smooth paths inX whose
tangent vectors evaluate to positive real numbers underq. This foliation is
called thehorizontal foliationfor q. If we instead take the paths inX whose
tangent vectors evaluate to negative real numbers underq, the resulting fo-
liation is called thevertical foliation for q.

Say that, within some chart, a holomorphic quadratic differential is given by
the expressionφ(z) dz2. In any given chart, the function

µ(z) =

∫

α

∣∣∣Im
(√

φ(z) dz
)∣∣∣

induces a transverse measureµq on the horizontal foliation forq. By tak-
ing real parts instead of imaginary parts, we obtain a transverse measure on
the vertical foliation forq. Below we will define natural coordinates for a
holomorphic quadratic differential, where this formula always takes a stan-
dardized form. To check thatµq really determines a transverse measure,
one can either apply equation (11.1) directly or one can appeal to natural
coordinates.

Consider for example a holomorphic quadratic differentialq that in some
coordinate chart has the formq(z) = dz2. A point in the tangent bundle of
C can be written as a pair(z, v), wherez ∈ C andv ∈ Tz(C) ≈ C. Then

q((z, v)) = v2.

Now v2 > 0 precisely whenv is a nonzero real number, andv2 < 0 pre-
cisely whenv is a purely imaginary number. Therefore, in the given chart,
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the horizontal foliation is the union of horizontal lines and the vertical foli-
ation is the union of vertical lines. The measures for these foliations are the
ones induced by|dy| and|dx|.

Now consider a holomorphic quadratic differential with local expression
q(z) = zk dz2. In this case

q((z, v)) = zkv2.

Some lines of the horizontal foliation are easy to spot, namely, vectors of the
form (z, z), wherezk+2 = 1. It is not hard, then, to see that the horizontal
foliation has the form of a(k + 2)–pronged singular point, as in the the-
ory of measured foliations. The vertical foliation is the transverse foliation
obtained by rotating the picture for the horizontal foliation by an angle of
π/(k + 2).

Quadratic differentials versus 1–forms. Why do we consider holomor-
phic quadratic differentials as opposed to holomorphic 1–forms, which are
differentials of the formφ(z) dz? The reason is that, for a holomorphic
quadratic differentialq, we have thatq((z, v)) > 0 if and only ifq((z,−v)) >
0, and so the associated horizontal and vertical foliations are not necessarily
oriented. On the other hand, the (analogously defined) horizontal and ver-
tical foliations for a holomorphic 1–form are automatically oriented. How-
ever, in our study of mapping class groups and Teichmüller space we will
be forced to deal with both oriented foliations and unoriented foliations.

Natural coordinates. Let q be a holomorphic quadratic differential on
a compact Riemann surfaceX. We will now show that every point ofX
has local coordinates, callednatural coordinates, so that in these local co-
ordinatesq(z) = zk dz2 for somek ≥ 0. Since we just showed that the
horizontal and vertical foliations forzk dz2 satisfy the definition of a mea-
sured foliation, it will follow that the horizontal and vertical foliations forq
really are transverse measured foliations, as defined above.

First consider a regular pointp of q, that is, assumeq(p) 6= 0. Let z : U →
C be a local coordinate withz(p) = 0, and writeq(z) = φ(z) dz2 in this
chart. Sinceq is assumed to have finitely many zeroes, we can pick the chart
small enough thatφ(z) 6= 0 anywhere in this chart. Our goal is to show that
there is a local coordinateζ at p so thatq(ζ) = dζ2. Such coordinates are
obtained by composingz with the change of coordinates

η(z) =

∫ z

0

√
φ(ω) dω

where some branch of the square root function is chosen (thisis possible
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sinceφ 6= 0). Of course, when we integrate from0 to z, really we mean to
integrate along some (any) path from 0 toz.

The natural coordinates areζ = η ◦ z : U → C. We can check thatq has
the desired form in theζ coordinates. First, by the fundamental theorem of
calculus, we have

dη =
√
φ(z).

Now let q(ζ) = φ′(ζ) dζ2 in theζ–coordinates. By equation (11.1) we have

φ′(ζ)(dη)2 = φ(z),

or

φ′(ζ)φ(z) = φ(z),

and soφ′(ζ) ≡ 1, as desired.

The natural coordinatesζ are unique up to translation and sign. It is there-
fore possible to associate measures to the horizontal and vertical foliations.
Locally, the measures are given by|dy| and|dx|, respectively.

Now suppose thatp ∈ X is a zero ofq of orderk ≥ 1. By a variation of the
above argument, there is a local coordinateζ so that, in this coordinate,q is
given byq(z) = zk dz2. As above, these coordinates are called the natural
coordinates. For the details of this argument, see [195,§6].

We have shown that the horizontal and vertical foliations ofa holomorphic
quadratic differential give a pair of measured foliations that are transverse to
each other. It is a deep theorem of Hubbard–Masur that, givenany measured
foliation (F , µ), one can build a holomorphic quadratic differential whose
corresponding horizontal foliation is, up to a certain equivalence, equal to
(F , µ) [91].

The Euler–Poincaŕe formula revisited. From the Euler–Poincaré formula
(Proposition 11.4) and the correspondence between the order of a zero of
a holomorphic quadratic differential and the number of prongs of the asso-
ciated foliation, we deduce that a holomorphic quadratic differential must
vanish at exactly4g − 4 points, where points are counted with multiplicity.

Euclidean areas and lengths.The natural coordinates for a holomorphic
quadratic differentialq on a Riemann surfaceX endowX with a singular
Euclidean metric. Asingular Euclidean metricon a surfaceS is a flat metric
outside of a finite number of points, around each of which the metric is



328 CHAPTER 11

modeled on gluing flat rectangles together in the same way as is done to
give a singular point of a measured foliation. Locally, the area form of this
metric is given by

1

2i
|φ(z)| dz ∧ dz = |φ(z)|dx ∧ dy,

whereφ(z) dz2 is the local expression forq.

We can also talk about the Euclidean length of a path inX with respect to
q. This length form is given by

|φ(z)|1/2|dz| = |φ(z)|1/2
√
dx2 + dy2.

The singular Euclidean metric induced by a holomorphic quadratic differ-
ential is nonpositively curved in the sense that it is “locally CAT(0).” It
follows that, given any arcα in X, there is a unique shortest path among all
paths homotopic toα with endpoints fixed (see the proof of [34, Chapter II,
Corollary 4.7]).

Punctures and boundary. The modifications needed to define holomor-
phic quadratic differentials on a surface with punctures and/or boundary
mirror the changes we made for measured foliations. In the neighborhood of
a puncture, holomorphic quadratic differentials must be ofthe formzk dz2,
wherek ≥ −1. That is, we allow simple poles at punctures.

For a surfaceX with boundary we insist that each component of∂X must
contain at least one zero and that∂X is part of the horizontal foliation away
from the singularities. As a consequence, we see that the singular Euclidean
metric for a pair of transverse foliations degenerates at the boundary.

11.3.2 QUADRATIC DIFFERENTIALS ON THE TORUS

Let X be a closed Riemann surface of genus 1. There is a latticeΛ < C
so thatX ≈ C/Λ. Let π : C → X denote the quotient map. For a small
enough open setU in X, there is an open set̃U ⊂ C so thatπ|eU : Ũ → U

is a homeomorphism. The collection of such maps{π−1
eU
} is an atlas forX.

All of the transition maps for this atlas are translations. For any pointx ∈ X
the set of images ofx under all charts isπ−1(x).

Let q be a holomorphic quadratic differential onX. From equation (11.1)
and the fact that all transition maps are translations, it follows thatq can be
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written as a doubly-periodic holomorphic functionφ : C → C. A doubly-
periodic functionC → C is bounded, and so by Liouville’s theoremφ is
constant. We therefore have that the set of holomorphic quadratic differ-
entials onX is in bijection with C. Under this bijection, the horizontal
foliation for the differential corresponding toz ∈ C has leaves consisting of
straight lines that meet thex–axis with angle− arg(z)/2.

11.3.3 CONSTRUCTIONS OF QUADRATIC DIFFERENTIALS

Having explained some of the basics of holomorphic quadratic differen-
tials, the question remains: how does one actually construct a holomorphic
quadratic differential? Since we know how to derive a measured foliation
from a holomorphic quadratic differential, it makes sense to generalize our
two main constructions of measured foliations, namely, theconstruction via
polygons and the construction via branched covers.

a

a

b b

c

c

d d

e e

f

f

Figure 11.6 The Swiss cross.

Quadratic differentials via polygons: the Swiss cross example. Just as
we were able to construct measured foliations from certain polygons, we can
also construct holomorphic quadratic differentials from the same polygons.
Instead of explaining the construction in generality, we will explain one
particular case, the so-called “Swiss cross example,” in detail. This example
exhibits all of the subtleties of the general case.

Consider the closed polygonal regionP in C in Figure 11.6. LetS be the
topological surface obtained by identifying sides ofP by Euclidean trans-
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lation, as indicated in the figure. We start by describing an atlas forS that
givesS the structure of a Riemann surface. The first chart is self-evident:
the subset ofS corresponding to the interior ofP is already identified with
an open subset ofC. Now consider a pointp in S corresponding to a point
in the interior of an edge ofP . LetU be an open neighborhood ofp corre-
sponding to a union of two half-disks inP (each half-disk is the intersection
of an open disk inC with P ). To define the chart forU , we say that one
“half” of U maps to the corresponding half-disk inP , and the other half-
disk maps to the image of its corresponding half-disk inP under a transla-
tion, where the translation is chosen so that the image ofU under the chart
is an open disk inC.

We proceed similarly at the corners. The 8 corners with angleπ/2 glue
together to form two disks inS, and so we can use the same method as
above to glue the pieces together. Consider the other 4 corners. We see
that, inS, these four vertices ofP are identified to a single point, which
we call s. We also see that the total Euclidean angle around the 4 copies
of s in P is 4(3π/2) = 6π. Thus we cannot simply glue these pieces
together by translations and expect to get an open disk inC. The solution
is as follows: one by one, translate each of the corresponding vertices ofP
to 0 ∈ C, apply the mapz 7→ z1/3, and then apply rotations so that the 4
“corners” glue together to form an open disk about0 ∈ C; we take care so
that the image of thekth corner lies between the rays with argumentkπ/3
and(k + 1)π/3.

The above-defined charts indeed define a complex structure onS, that is,
transition maps are biholomorphic. The only place where there could pos-
sibly be an issue is at the points (sincez1/3 is not differentiable at 0).
However, this point only appears in one chart, so there is nothing to check.

We can now use the atlas we have constructed in order to define an explicit
holomorphic quadratic differentialq on S, chart by chart. The notion of
holomorphic here is taken with respect to the complex structure onS that
we just constructed.

We defineq on every chart except the last one constructed above by setting
q(z) = dz2. On the last chart we letq(z) = 9z4 dz2. Note that each chart
except for the last gives natural coordinates, since the local expression forq
in these cases isdz2.

We can see that the points will be a singularity of the horizontal foliation
for q. The prongs ats come from 8 segments of the horizontal foliation for
q, two at each preimage ofs. In S, two of these pairs get identified (the
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ones labelledc andf ), and so in the end the singularity ats has 6 prongs
(cf. Proposition 11.4). This agrees with the fact that we gave q an order 4
zero ats.

Let us now check that equation (11.1) holds for all transition maps. Consider
a point nears that lies in the “big chart” (the first one we defined) and the
“special chart” (the last one we defined) Call the big coordinatez and the
special coordinatew. Equation (11.1) demands that

(dz/dw)2 = 9w4.

But this is the same as saying that

(3w2)2 = 9w4,

which is obviously true. Checking equation (11.1) for the other transition
maps is similar. Thereforeq really is a holomorphic quadratic differential.
The area and arc length forms are exactly the ones coming fromthe Eu-
clidean metric in the big chart.

One way to get other holomorphic quadratic differentials onthe Swiss cross
Riemann surface is simply to change the expression forq on the big chart
to be anyαdz2 for α ∈ C. In this case we get other holomorphic quadratic
differentials which are qualitatively different; for instance, some have closed
leaves and some do not.

One can construct other examples of holomorphic quadratic differentials
using the same idea as above, that is, by gluing together Euclidean polygons
by Euclidean translations. For starters, the reader might like to consider the
example indicated in Figure 11.7.

As with measured foliations, the polygon construction for holomorphic quadratic
differentials has a converse: every holomorphic quadraticdifferential can be
realized in this way. Indeed, the natural coordinates tell us how to cut up the
Riemann surface into (finitely many) rectangles, each foliated by horizontal
lines. By placing these rectangles in the Euclidean plane sothat the fo-
liations are horizontal, and recording the side identifications, we obtain a
polygonal description of the surface where the holomorphicquadratic dif-
ferential is given bydz2. For details, see [195,§11].

Quadratic differentials via branched covers. Another way to construct
holomorphic quadratic differentials is via branched covers. A mapp : X →
Y between closed Riemann surfaces is abranched covering mapif for any
point x ∈ X, there are local coordinates wherep is given byz 7→ zk for
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Figure 11.7 An example of a surface obtained by gluing Euclidean rectangles by Euclidean
translations. As with the Swiss cross example, this surfacecan be given the
structure of a Riemann surface with a holomorphic quadraticdifferential.

somek ≥ 0. Note that ifp : X → Y is an orbifold covering in the sense of
Chapter 7 or is a branched cover of topological surfaces as above, then we
can pull back any complex structure onY to a complex structure onX, and
the mapp will then be a branched covering map of Riemann surfaces. The
pointx is aramification pointof the branched covering if and only ifk > 0,
and in this casek is called thedegree of ramification.

Let p : X → Y be a branched covering map, and suppose we have a
holomorphic quadratic differentialq on Y . We can liftq to a holomorphic
quadratic differential̃q onX as follows. IfU is some open neighborhood
of a pointx ∈ X, and if there are chartsU → C andp(U) → C where in
these coordinatesp is given byz 7→ ψ(z), then by equation (11.1) we have

φ̃(z) = φ(ψ(z))(dψ(z))2

whereφ̃(z) dz2 andφ(z) dz2 are the local expressions for̃q andq. If x is
a ramification point of degreek and if q has a zero of orderm at p(x) (we
allow m = 0), then we see that̃q has a zero of orderkm + 2(k − 1) at
x. This agrees with our discussion about branched covers and measured
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foliations: the foliations forq andq̃ have singularities with(m+ 2) prongs
andk(m+ 2) prongs, respectively.

Of course, in order to lift a holomorphic quadratic differential on a Riemann
surfaceY , we first need to know how to find a holomorphic quadratic dif-
ferential onY . WhenY has genus 1 we already proved above that the space
of holomorphic quadratic differentials onY is in bijective correspondence
with C. We also explained how to construct branched covers of higher genus
topological surfaces over the torus (Figure 11.5), and, again, these give rise
to branched covers of Riemann surfaces overY .

11.3.4 THE VECTOR SPACE OF HOLOMORPHIC QUADRATIC DIFFERENTIALS

LetX be any Riemann surface. It is easy to check that the sum of two holo-
morphic quadratic differentials onX is a holomorphic quadratic differential
onX, as is any complex multiple of a holomorphic quadratic differential. It
follows that the set of all holomorphic quadratic differentials onX forms a
complex vector space, denotedQD(X).

Our first goal is to give a lower bound on the dimensionQD(X). Choose
some finite set of pointsP ⊂ X. LetKP (X) denote the complex vector
space of meromorphic functionsf : X → C wheref only has simple
poles, each occurring at point ofP . The following theorem is a special case
of Riemann’s inequality (see [58, III.4.8] or [66,§8.3]).

THEOREM 11.5 Let X be a closed Riemann surface of genusg and let
P ⊂ X be a finite set of points. We have

dimC(KP (X)) ≥ |P |+ 1− g.

We now obtain the desired bound on the dimension ofQD(X).

Proposition 11.6 LetX be a closed Riemann surface of genusg. We have

dimC(QD(X)) ≥ 3g − 3.

Proof. Let q0 be an element ofQD(X) with only simple zeros. Recall that
the horizontal foliation forq0 has three prongs at each singularity. By the
Euler–Poincaré formula (Proposition 11.4),q0 has exactly4g − 4 zeros.
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Let P be the set of4g − 4 zeros ofq0. By Theorem 11.5 we have

dimC(KP (X)) ≥ 3g − 3.

We claim that there is a mapQD(X) → KP (X) given by q 7→ q/q0.
Indeed, the ratioq/q0 is a well-defined function onX by equation (11.1),
and the poles ofq/q0 are precisely the zeros ofq0 at whichq does not have
a zero. This map is a vector space isomorphism, so we are done. 2

The inequality of Theorem 11.7 turns out to be an equality forg ≥ 2 (in the
caseg = 1 we have already shown thatQD(X) ≈ C). This equality can be
deduced from the Riemann–Roch theorem, a deep theorem whichsharpens
Riemann’s theorem. On the other hand, in Section 11.4 we willdefine a
mapΩ from the open unit ball inQD(X) to Teich(Sg). It follows from
the definition ofΩ and Teichmüller’s uniqueness theorem (Theorem 11.9
below) thatΩ is injective. By Brouwer’s invariance of domain theorem (see
Theorem 11.15 below), we then obtain the following theorem.

THEOREM 11.7 LetX be a closed Riemann surface of genusg. We have

dimC(QD(X)) = 3g − 3.

In what follows, we will only need Proposition 11.6, and not Theorem 11.7.

A topology onQD(X). LetX be a Riemann surface, and letq ∈ QD(X).
By equation (11.1) the absolute value ofq at a point does not depend on the
local expression forq. In other words,|q| is a functionX → R. We can
thus define a norm onQD(X) by the formula

‖q‖ =

∫

X
|q|.

This norm induces a metric onQD(X) and hence a topology. With respect
to this topology anyn–dimensional complex subspace ofQD(X) is home-
omorphic toR2n.

A dimension count for QD(X). Forg ≥ 2 we can give a heuristic dimen-
sion count forQD(X) that is in the same spirit as our dimension counts for
Teich(Sg) in Chapter 10.

Fix a closed Riemann surfaceX of genusg ≥ 2, and letq be a holomorphic
quadratic differential onX. As discussed above, it is possible to realize
X by a Euclidean polygon so thatq(z) = dz2 in the “interior chart” of
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the polygon. We can thus count the dimension ofQD(X) by counting the
dimension of the space of polygons that giveX.

Specifically, we consider connected Euclidean polygonsP with the follow-
ing properties:

· If we identify pairs of parallel sides ofP , we obtain a
closed surfaceS of genusg.

· Every vertex ofP maps to a point onS with total Eulidean
angle3π.

As in the discussion above,P induces a complex structure onS and the
quadratic differentialdz2 induces a holomorphic quadratic differentialq on
S. The second condition onP means that each point ofS coming from a
vertex ofP is a simple zero ofq (of the formq(z) = z dz2), and there are
no other zeros.

Examples of such polygons exist for every genus; see Figure 11.7 for one
example in genus two. The set of these polygons has codimension zero in
the space of all polygons giving holomorphic quadratic differentials onS,
and so we aim to count the dimension of the space of such polygonsP .

Let P and q be as above. By the Euler–Poincaré formula,q has4g − 4
simple zeros. Since a simple zero ofq accounts for a total interior angle of
3π in P , and since every vertex ofP corresponds to a simple zero ofq, we
see that the sum of the interior angles ofP must be

3π(4g − 4) = (12g − 12)π.

The sum of the interior angles of a Euclideann–gon is(n − 2)π, and so
we see thatP must have12g − 10 sides. If we think of each side ofP
as a vector, we get2(12g − 10) dimensions’ worth of freedom. Since side
lengths and angles must match in pairs, we are down to12g−10 dimensions.
The last pair of sides is determined by the others, and so we lose two more
dimensions, giving us12g − 12, exactly twice what we want.

But as we change the polygon, we are also changing the complexstructure
onS. We are trying to computeQD(X) for a fixed Riemann surfaceX. In
order to take this into account we must subtract the dimension of the space
of all complex structures onS, namely the dimension ofTeich(S), which
is 6g − 6. We have thus given a heuristic that shows that there are6g − 6
dimensions worth of possible holomorphic quadratic differentialsq on any
fixed Riemann surfaceX.
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Dimension count forQD(X): polygons

+2(12g − 10) : Choose12g − 10 vectors for the polygon’s sides.

−(12g − 10) : Sides must match in pairs.

−2 : The last pair of sides is determined by the others.

−(6g − 6) : Subtract the dimension ofTeich(S).

= 6g − 6 Total dimensions

11.4 TEICHMÜLLER MAPS AND TEICHM ÜLLER’S THEOREMS

We are now ready to describe the homeomorphisms that minimize the quasi-
conformal dilatation in a given homotopy class, thus givinga solution to Te-
ichmüller’s extremal problem. The solution to this problem was first given
by Teichmüller [198, 182] and Ahlfors [3]; see also Bers [13].

11.4.1 STATEMENT OF THE THEOREMS

Let X andY be two closed Riemann surfaces of genusg. We say that a
homeomorphismf : X → Y is a Teichm̈uller mappingif there are holo-
morphic quadratic differentialsqX andqY onX andY , respectively, and a
positive real numberK so that the following two conditions hold:

1. The homeomorphismf takes the zeros ofqX to the zeros ofqY .

2. If p ∈ X is not a zero ofqX , then with respect to a set of natural co-
ordinates forqX and forqY based atp andf(p), the homeomorphism
f can be written as

f(x+ iy) =
√
Kx+ i

1√
K
y.

In complex notation this can be written as

f(z) =
1

2

((
K + 1√
K

)
z +

(
K − 1√
K

)
z̄

)
.

Sincefz = K+1
2
√
K

andfz̄ = K−1
2
√
K

, we see that the dilatation off is

Kf =

{
K if K ≥ 1

1/K if K < 1.
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We can concisely describef by saying that it hasinitial differential qX , ter-
minal differentialqY , andhorizontal stretch factorK. (Because of the ambi-
guity that the horizontal stretch factorsK and1/K give rise to Teichmüller
mappings with the same dilatation, we need to keep the distinction between
horizontal stretch factor and dilatation.)

Note that the existence of a Teichmüller mapping presupposes that the initial
and terminal differentials have the same Euclidean area; this is not a strong
assumption, as any holomorphic quadratic differential canbe scaled by a
real number so as to have unit area, and this rescaling does not change the
corresponding horizontal or vertical foliations.

A Teichmüller mapping is not differentiable at the zeros ofthe initial dif-
ferential, but it is smooth at all other points. This is why inour definition
of quasiconformal homeomorphism we chose to consider homeomorphisms
that are smooth outside of a finite number of points, instead of only consid-
ering smooth homeomorphisms.
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Figure 11.8 A Teichmüller mapping of the Swiss cross surface.

As a first example of a Teichmüller mapping, consider the homeomorphism
between the Swiss cross Riemann surface and the stretched Swiss cross Rie-
mann surface indicated in Figure 11.8. We can get other, morecomplicated
Teichmüller mappings by rotating the foliation in Figure 11.8 so that it is
not parallel to any sides of the polygon, or even so that its slope is irrational.

Given two arbitrary complex structures on a topological surface, it is cer-
tainly not obvious that one can construct a Teichmüller mapping taking one
structure to the other. However, the next theorem states that these mappings
do indeed exist, and moreover they exist in every homotopy class.
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THEOREM 11.8 (Teichm̈uller’s existence theorem)LetX andY be closed
Riemann surfaces of genusg ≥ 1 and letf : X → Y be a homeomorphism.
There exists a Teichm̈uller mappingh : X → Y homotopic tof .

The main reason that Teichmüller mappings are so useful andimportant is
that they provide a complete solution to Teichmüller’s extremal problem for
quasiconformal mappings.

THEOREM 11.9 (Teichm̈uller’s uniqueness theorem)Leth : X → Y be
a Teichm̈uller map between two closed Riemann surfaces of genusg ≥ 1. If
f : X → Y is a quasiconformal homeomorphism homotopic toh then

Kf ≥ Kh.

Equality holds if and only iff ◦ h−1 is conformal. In particular, ifg ≥ 2,
then equality holds if and only iff = h.

The second statement follows from the first statement plus the fact that the
only homotopically trivial conformal homeomorphism of a closed Riemann
surface of genusg ≥ 2 is the identity (cf. Proposition 7.7). For a closed
Riemann surfaceX of genusg = 1, the group of conformal automorphisms
of X is isomorphic to the groupT 2.

We will prove both Theorem 11.8 and Theorem 11.9 later in thischapter.

Teichmüller’s theorems for the torus. In Section 10.2 we showed that
Teich(T 2) is in natural bijective correspondence withSL(2,R)/SO(2,R).
Teichmüller’s theorems can be interpreted in this case as saying that for
each element ofSL(2,R)/SO(2,R) there is a distinguished representative
in SL(2,R) that is a hyperbolic matrix and whose leading eigenvalue is
minimal among all representatives. It is instructive to find, for example, this
distinguished representative for the coset given by( 1 1

0 1 ); cf. the proof of
Theorem 11.20 below.

A minimization theorem for 1–manifolds. The analog of Teichmüller’s
uniqueness theorem for 1–manifolds is nothing other than the mean value
theorem. IdentifyS1 with R/Z. Consider the set of all smooth homeomor-
phismsS1 → S1 that fix 0. Define the dilatation of a smooth homeomor-
phismf by sup |fx|. By the mean value theorem, the log of the dilatation is
minimized in a given homotopy class precisely whenf is linear.
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11.4.2 GENERATING TEICHM ÜLLER MAPS

In our definition of the Teichmüller map, we were handed two Riemann
surfaces and a homeomorphism between them. It is natural to ask if, given
an arbitrary closed Riemann surfaceX, an initial holomorphic quadratic
differential qX , and someK > 1, it is always possible to find a Riemann
surfaceY and a terminal holomorphic quadratic differentialqY so that there
is a Teichmüller mappingf : X → Y with initial differential qX , terminal
differential qY , and horizontal stretch factorK. It turns out that this is
always possible.

We now give the construction of the required Teichmüller mapping f for
the given input isX, qX , andK. Let X ′ be the complement inX of the
zeroes ofqX . We will refer to the topological surfaces underlyingX and
X ′ asS andS′, respectively. The surfaceX ′ is still a Riemann surface; its
complex structure is given by a sufficiently large set of natural coordinates
with respect toqX , now thought of as a holomorphic quadratic differential
onX ′. If we compose each chart with the affine map

f(x+ iy) =
√
Kx+ i

1√
K
y,

we obtain a new set of charts onS′, and this new set of charts defines a new
complex structure onS′. Call the resulting Riemann surfaceY ′. In order to
obtain the desired closed Riemann surfaceY , we need only note that, by the
removable singularity theorem (see, e.g. [47, Theorem V.1.2]) the complex
structureY ′ onS′ extends uniquely to a complex structureY on all ofS.

There is an induced homeomorphismf : X → Y , and an induced holo-
morphic quadratic differentialqY onY . By construction,f is a Teichmüller
mapping with the desired properties. If we fixX andqX , but varyK in
(0,∞), we obtain a 1–parameter family of Riemann surfaces homeomor-
phic toX. Since each of these Riemann surfaces comes with an identifica-
tion withX, we can think of this one parameter family as a set of points in
Teich(S), whereS is the topological surface underlyingX. The resulting
subset ofTeich(S) is called aTeichm̈uller line. The pointX corresponds to
K = 1. When we define the metric on Teichmüller space, we will see that
Teichmüller lines are in fact geodesics.

Since the initial differentialqX onX specifies a unique ray inTeich(S), we
see that we can think ofqX as giving a tangent direction and the pair(qX ,K)
as giving a tangent vector toTeich(S) at X. Above we gave a norm on
QD(X). The resulting map(qX , ‖qX‖) → Teich(S) can be thought of as
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an exponential mapTX(Teich(S)) → Teich(S). We remark thatQD(X)
is usually identified with thecotangentspace ofTeich(S) at the pointX.

11.4.3 SURFACES WITH PUNCTURES AND BOUNDARY

Figure 11.9 Two different conformal types in the neighborhood of a puncture: a punctured
disk (left) and an annulus (right).

In order to state Teichmüller’s existence and uniqueness theorems (Theo-
rem 11.8 and Theorem 11.9) in the context of punctured surfaces, we need
to distinguish two types of conformal structures near a topological punc-
ture; see Figure 11.9. The puncture on the left hand side of the figure has a
neighborhood that is conformally equivalent to the unit disk in C minus0,
and the other puncture has a neighborhood that is conformally equivalent to
an annulus{z ∈ C : r1 ≤ |z| < r2}. A homeomorphismf : X → Y has a
quasiconformal representative if and only iff takes punctures to punctures,
and at each puncture these conformal types are preserved. Inthis case, both
Teichmüller existence and uniqueness theorems hold, assuming that the un-
derlying topological surface has negative Euler characteristic. One way to
prove this in the case of punctures of the first type is to find a double cover-
ing of the Riemann surface in question where the complex structure can be
extended over the punctures.

Since there is no quasiconformal homeomorphism homotopic to f : X →
Y if the types of punctures are not preserved, one usually considers the
Teichmüller space of a surface where the conformal types ofthe punctures
are part of the given data. For details on extending Teichmüller theory to the
non-closed case, see, for example, [1, Ch. II].
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11.5 GRÖTZSCH’S PROBLEM

In 1928, Grötzsch proved the following precursor to the Teichmüller unique-
ness theorem. It solves the quasiconformal extremal problem for rectangles.
The proof of Teichmüller’s uniqueness theorem is based on the solution to
Grötzsch’s problem.

THEOREM 11.10 (Gr̈otzsch’s problem) Let X be the rectangle[0, a] ×
[0, 1] in R2 and letY be the rectangle[0,Ka] × [0, 1] for someK ≥ 1. If
f : X → Y is any orientation-preserving homeomorphism that is smooth
away from a finite number of points, that takes horizontal sides to horizontal
sides, and that takes vertical sides to vertical sides, then

Kf ≥ K

with equality if and only iff is affine.

Note that Theorem 11.10 really gives a statement about general rectangles,
as any rectangle is conformally equivalent to one with vertical side length 1.

Ka

1

a

1
Y

X
f

Figure 11.10 The setup for Grötzsch’s problem.

Proof. Let f : X → Y be as in the statement of the theorem. LetKf (x, y)
andjf (x, y) denote the dilatation and the Jacobian off at the point(x, y) ∈
X.

We begin with two simple inequalities. The first is

|fx(x, y)|2 ≤ Kf (x, y)jf (x, y). (11.2)

If M andm are the supremum and infimum of

{|df(v)| : v ∈ UT (X)},
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then (11.2) is true because

Kf (x, y) =
M

m
and jf (x, y) = Mm.

The second key inequality is
∫

X
|fx(x, y)| dA ≥ K Area(X), (11.3)

which is obtained from the inequality
∫ a
0 |fx(x, y)| dx ≥ Ka by integrating

from 0 to 1 with respect toy.

We are now ready to show thatKf ≥ K. Without loss of generality, assume
K ≥ 1. Then

(K Area(X))2 ≤
(∫

X
|fx(x, y)| dA

)2

≤
(∫

X

√
Kf (x, y)

√
jf (x, y) dA

)2

≤
(∫

X
jf (x, y) dA

) (∫

X
Kf (x, y) dA

)

≤ (K Area(X))(Kf Area(X)).

The first three inequalities follow from (11.3), (11.2), andthe Cauchy–
Schwarz inequality. The fourth inequality follows from thefact thatKf (x, y) ≤
Kf for all (x, y) ∈ X. It follows thatKf ≥ K.

The lower boundKf = K is achieved whenf is the affine map

A : (x, y) 7→ (Kx, y).

It remains to prove the uniqueness statement.

Let f : X → Y be an orientation-preserving homeomorphism as in the
statement of the theorem, and assumeKf = K. By replacingf withA−1◦f
we can assume thatK = 1, henceKf = 1. Our goal now is to show thatf
is the identity.

In the sequence of four inequalities above, the assumption that distinguishes
thex–direction from they–direction is the assumption thatK ≥ 1. Since
we now haveK = 1, we have attained symmetry between the horizontal
and vertical directions.
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We must have that all four inequalities in the above calculation are equali-
ties. For the first of the four inequalities, namely, inequality (11.3), to be an
equality it must be thatf takes horizontal line segments ofX to horizontal
line segments ofY . By symmetry,f must also take vertical line segments
of X to vertical line segments ofY . We therefore have

f(x, y) = (u(x), v(y)).

For the second inequality above, namely, inequality (11.2)to be an equality,
we must have that the direction of maximal stretch forf is thex–direction at
almost every point ofX. By symmetry, the direction of maximal stretch for
f must also be they–direction at almost every point. Thus,|u′(x)| = |v′(y)|
at almost every point(x, y) ∈ X, andjf (x, y) = u′(x)v′(y) = u′(x)2 =
v′(y)2 (we are using the fact thatf is orientation-preserving to say that
jf ≥ 0) andKf (x, y) = 1. SinceKf = supKf (x, y) = 1, we must have
thatKf (x, y) ≡ 1. For the third inequality above, the Cauchy–Schwarz
inequality, to be an equality, we must have that

jf (x, y)/Kf (x, y) = jf (x, y) = u′(x)2 = v′(y)2

is constant almost everywhere. For the fourth inequality tobe an equality,
we must have thatjf (x, y) is equal toK = 1 almost everywhere. Thus,
u′(x) = v′(x) = 1 almost everywhere, andf(x, y) = (x, y) almost ev-
erywhere. Sincef is a homeomorphism, it follows thatf(x, y) = (x, y)
everywhere, as desired. 2

11.6 PROOF OF TEICHMÜLLER’S UNIQUENESS THEOREM

The proof of Teichmüller’s uniqueness theorem (Theorem 11.9) is almost
exactly the solution to Grötzsch’s problem just given. Theonly difficulty is
to prove the analogue of the inequality (11.3) with the rectangleX replaced
by a closed Riemann surface. To do this we will first need the following
lemma.

In what followsℓq denotes the Euclidean length of a path with respect to a
holomorphic quadratic differentialq.

Lemma 11.11 Let qY be a holomorphic quadratic differential on a closed
Riemann surfaceY . Leth : Y → Y be a homeomorphism that is homotopic
to the identity. Then there exists a constantM ≥ 0 with the following
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property: any arcα : [0, 1] → Y embedded in a leaf of the horizontal
foliation for qY satisfies

ℓqY (h(α)) ≥ ℓqY (α) −M.

The point of Lemma 11.11 is that, while the constantM depends on the
homeomorphismh, it does not depend on the arcα.

Proof. LetH(x, t) : Y ×[0, 1]→ Y be any homotopy fromh to the identity.
The ℓqY –distance betweenH(x, 0) andH(x, 1) is a continuous function
Y → R. SinceY is compact, it attains a maximumN ≥ 0.

Denote byδ0 and δ1 the arcsH(α(0), 1 − t) andH(α(1), t). Note that
ℓqY (δ0) ≤ N andℓqY (δ1) ≤ N . The concatenation of arcsδ0 ⋆ h(α) ⋆ δ1 is
homotopic toα, relative to endpoints. Sinceα is embedded in a horizontal
leaf of qY , it minimizes the length of any arc in its relative homotopy class.
We thus have

ℓqY (α)≤ ℓqY (δ0 ⋆ h(α) ⋆ δ1)

= ℓqY (δ0) + ℓqY (h(α)) + ℓqY (δ0)

≤ ℓqY (h(α)) + 2N.

SettingM = 2N completes the proof. 2

We are now ready to prove the analogue for closed Riemann surfaces of
inequality (11.3), which estimates the mean horizontal stretching of a map
homotopic to a Teichmüller mapping. In the statement of thefollowing
proposition,fx denotes the derivative off in the direction of the horizontal
foliation for qX , andArea(q) denotes the Euclidean area of the holomorphic
quadratic differentialq.

Proposition 11.12 Let h : X → Y be a Teichm̈uller mapping between
closed Riemann surfaces. Suppose thath has initial differential isqX , ter-
minal differential isqY , and dilatationK. Letf : X → Y be any homeo-
morphism that is homotopic toh, and that is smooth outside a finite number
of points. Then

∫

X
|fx| dA ≥ K Area(qX).
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We note that in the case that each of the horizontal leaves ofqX is closed,
the proof of Proposition 11.12 is quite similar to the solution of Grötzsch’s
problem. The case whenqX has non-closed leaves is more subtle.

Proof of Proposition 11.12.Consider the functionδ : X × R≥0 → R≥0

given by

δ(p, L) =

∫ L

−L
|fx| dx.

If αp,L is the horizontal arc of length2L centered atp thenδ(p, L) is the in-
tegral of|fx| alongαp,L. Note thatδ is not defined everywhere; specifically,
it is not defined at any(p, L) wherep lies at a horizontal distance less than
L from a zero ofqX . This is a set of measure zero inX × R≥0 since there
are only finitely many zeros ofqX , each meeting finitely many leaves of the
horizontal foliation forqX .

Whereδ(p, L) is defined we have

δ(p, L) = ℓqY (f(αp,L)).

The Teichmüller maph takesαp,L to an arc ofqY –length2KL. It follows
from Lemma 11.11 that

ℓqY (f(αp,L)) ≥ 2KL−M

whereM is independent ofp and ofL. Thus

∫

X
δ(p, L) dA=

∫

X
ℓqY (f(αp,L)) dA

≥
∫

X
(2KL−M) dA

= (2KL−M)Area(qX).

On the other hand, Fubini’s theorem gives
∫

X
δ(p, L) dA =

∫

X

(∫ L

−L
|fx| dx

)
= 2L

∫

X
|fx| dA.

Combining the above two equations gives

2L

∫

X
|fx| dA ≥ (2KL−M)Area(qX).
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Dividing both sides of this inequality by2L and allowingL to tend to infin-
ity gives the result. 2

As alluded to above, the proof of Teichmüller’s uniquenesstheorem is now
almost verbatim the solution of Grötzsch’s problem. The main change is that
the inequality (11.3) is replaced with Proposition 11.12. Also, the mapA
from Grötzsch’s problem is replaced with a Teichmüller maph, and the hor-
izontal and vertical directions must now be interpreted as the directions of
the horizontal and vertical foliations determined byh. With these changes,
the solution to Grötzsch’s problem (the proof of Theorem 11.10) applies
exactly as stated to prove Teichmüller’s uniqueness theorem.

11.7 PROOF OF TEICHMÜLLER’S EXISTENCE THEOREM

The goal of this section is to prove Teichmüller’s existence theorem (The-
orem 11.8). The key idea here is to reinterpret the existenceproblem for
Teichmüller maps as the problem of proving surjectivity ofa natural “ex-
ponential map”Ω : QD(X) → Teich(Sg). We will define such a map,
prove continuity and properness, and deduce surjectivity by general topol-
ogy, namely invariance of domain. We now begin executing this strategy.

11.7.1 PROOF OF THE THEOREM

Let X be a closed Riemann surface and letq ∈ QD(X). Recall that we
have a norm onQD(X) given by

‖q‖ =

∫

X
|q|.

Let QD1(X) denote the open unit ball inQD(X). Forq ∈ QD1(X), set

K =
1 + ‖q‖
1− ‖q‖ .

As in Section 11.4, we can construct a Riemann surfaceY and a Teichmüller
mappingh : X → Y with initial differential q and horizontal stretch factor
K. By identifyingX with Sg, we can regardX as a pointX ∈ Teich(Sg).
Then, usingh to pull back the complex structure onY to a complex structure
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onSg, we can think ofY as a pointY ∈ Teich(Sg). This procedure therefore
defines a map

Ω : QD1(X)→ Teich(Sg).

Teichmüller’s existence theorem then amounts to the statement thatΩ is
surjective. Indeed, letZ be a Riemann surface and letf : X → Z be
a homeomorphism. Teichmüller’s existence theorem statesthat there is a
Teichmüller maph : X → Z in the homotopy class off . We can usef to
pull back the complex structure onZ to a complex structure onX = Sg in
order to obtain a pointZ ∈ Teich(Sg). If there existsq ∈ QD1(X) such
thatΩ(q) = Z, then this exactly means that this there is a Teichmüller map
X → Z in the homotopy class off , as desired.

Proposition 11.13 Let g ≥ 1. The mapΩ : QD1(X) → Teich(Sg) is
continuous.

Proposition 11.13 is far from obvious. For example, even ifq ∈ QD(X) has
the property that its horizontal foliation has only closed leaves, there will be
a nearbyq′ ∈ QD(X) with leaves that are not closed. If we stretch along
both foliations by a factor ofK, there is no simple reason why the resulting
points ofTeich(Sg) should be close to each other.

Proposition 11.13 represents the main content of our proof of Teichmüller’s
existence theorem. We will prove it below as a corollary of the measurable
Riemann mapping theorem.

Proposition 11.14 The mapΩ : QD1(X)→ Teich(Sg) is proper.

Proof. Let κ : Teich(Sg) → R be defined by the following formula. For
Y ∈ Teich(Sg) we representY by a marked Riemann surfaceY . Then we
set

κ(Y) = inf{Kh |h : X → Y a quasiconformal homeomorphism

isotopic to the identity}.

We claim that the mapκ is continuous. Indeed given two nearby pointsY

andY′ in Teich(Sg), we can represent them by nearby elements ofDF(π1(Sg),PSL(2,R)).
The (marked) fundamental domains for these representations can be made
K–quasiconformally equivalent for anyK > 1 by taking Y′ sufficiently
close toY. Say thatY′ is represented by a marked Riemann surfaceY ′. By
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Teichmüller’s uniqueness theorem, the infimumκ(Y) is realized by some
Kh : X → Y . Since the composition of aKh–quasiconformal map with a
K–quasiconformal map is(KhK)–quasiconformal it follows thatκ(Y′) can
be made arbitrarily close toκ(Y) by takingY′ close toY.

LetA ⊂ Teich(Sg) be compact. Sinceκ is continuous,κ|A attains a max-
imum, sayM ≥ 0. We claim thatΩ−1(A) is contained in the closed ball
of radius(M − 1)/(M + 1) about the origin inQD1(X). SinceΩ−1(A) is
closed by Proposition 11.13, this claim will imply thatΩ−1(A) is compact,
so thatΩ is proper.

We now prove the claim. Letq ∈ Ω−1(A). By the definition ofΩ, there is a
Teichmüller maph : X → Ω(q) that is isotopic to the identity and that has
dilatation

Kh =
1 + ‖q‖
1− ‖q‖ .

By Teichmüller’s uniqueness theorem (Theorem 11.9), any quasiconformal
homeomorphismX → Ω(q) isotopic to the identity must have dilatation at
leastKh. It follows then from the definition ofM that

M ≥ Kh =
1 + ‖q‖
1− ‖q‖ .

Solving for‖q‖ we find that

‖q‖ ≤ M − 1

M + 1
< 1,

which is what we wanted to show. 2

Brouwer’s invariance of domain theorem [35] states that anyinjective con-
tinuous mapRn → Rn is an open map. We have the following straight-
forward consequence, which is the final piece needed for our proof of Te-
ichmüller’s existence theorem.

THEOREM 11.15 Any proper injective continuous mapRn → Rn is a
homeomorphism.

With the above ingredients in place, we can prove Teichmüller’s existence
theorem (Theorem 11.8).
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Proof of Teichm̈uller’s existence theorem.The map

Ω : QD1(X)→ Teich(Sg)

is injective by Teichmüller’s uniqueness theorem (Theorem 11.9), proper
(Proposition 11.14), and continuous (Proposition 11.13).Also QD1(X) is a
real vector space of dimension greater than or equal to6g−6 (Theorem 11.6)
andTeich(Sg) ≈ R6g−6 (Theorem 10.6). SinceQD1(X) contains a sub-
space homeomorphic toR6g−6, Theorem 11.15 implies that the mapΩ is
surjective, which is what we wanted to show. 2

11.7.2 BELTRAMI DIFFERENTIALS , THE MEASURABLE RIEMANN MAPPING

THEOREM , AND THE CONTINUITY OF Ω

Fix a closed Riemann surfaceX of genusg ≥ 2. To prove the continuity of
Ω : QD1(X)→ Teich(Sg) we will factor Ω as

Ω : QD1(X)
Ω1→ L∞(U)

Ω2→ Teich(Sg)

whereU ⊂ C is the upper half-plane. The image ofΩ1 will consist of
(equivalence classes of) complex-valued functions that come from Beltrami
differentials, which we now define.

Ellipse fields. Recall that anellipse fieldon a Riemann surfaceX is a
choice of ellipse in the each tangent spaceTXp at each pointp ∈ X. An el-
lipse field issmoothif, when written in local coordinates, it varies smoothly.
A quasiconformal homeomorphismf : X → Y determines an ellipse field
onX that is defined, and smooth, almost everywhere, as follows. Given a
point p ∈ X, we take the ellipse inTXp that is the preimage of the unit
circle inTYf(p) under the derivative off (when the latter is defined). Since
this ellipse is only well-defined up to scale, we always choose the ellipse to
have unit area.

In any chart, we can encode an ellipse field by a complex-valued function
µ, called thecomplex dilatation. It is given locally by the formula

µ =
fz̄
fz
.

Recall from the beginning of the chapter that|µ| < 1 if and only if f is
orientation-preserving.



350 CHAPTER 11

An ellipse field is smooth if and only if the correspondingµ is smooth in
each chart. The dilatationKf (p) is locally given by the formula

Kf (p) =
1 + |µ(p)|
1− |µ(p)| .

It is also possible to calculate the angle, in any chart, of the direction of
maximal stretch ofdf . It is given by1

2 arg(µ). This information completely
determines the corresponding ellipse field; namely, the ellipse at the pointp
is (up to scale) the unit-area ellipse with major axis havingangle 1

2 arg(µ)
and with ratio of the lengths of the axes being(1 + |µ(p)|)/(1 − |µ(p)|).

Beltrami differentials. To make a definition ofµ that is independent of
charts, we define it as a(−1, 1)–form, which simply means thatµ transforms
under change of coordinates by the formula

µ(z) = µ(w)

(
dw

dz

)
/
dw

dz
(11.4)

wherez andw are two overlapping sets of coordinates. Since(dw/dz)/(dw/dz)
lies on the unit circle, the(−1, 1)–form µ gives rise to a well-defined func-
tion |ν| : X → R. We say that the differentialµ is aBeltrami differentialif
|µ| is essentially bounded, that is, off of a set of measure zero it is a bounded
function.

We can interpret equation (11.4) geometrically as follows:if a transition
map between charts rotates by an angleα at a point thenµ is multiplied by
ei2α. Since the angle of the ellipse field is locally given by1

2 arg(µ), this
means that the differential of a change of coordinates map from one chart to
another takes the ellipse field corresponding to the first local expression for
µ to the ellipse field corresponding to the second local expression forµ.

As the Riemann surfaceX is a quotientX = U/π1(X) of the upper half-
planeU by conformal automorphisms, we can think of the coefficientµ of a
Beltrami differential as a bounded,π1(X)–equivariant, measurable function
onU . That is, we can use the interior of some preferred fundamental domain
for π1(X) in U as the target of a single chart, takeµ as above on that chart,
and extendµ to all of U using the action ofπ1(X) onU and the change of
coordinates formula (11.4). By reflecting across the real axis, i.e., by set-
ting µ(z̄) = µ(z), we can also think ofµ as an element ofL∞(C). Recall
that two functions represent the same point ofL∞(C) if they are equal al-
most everywhere. We giveL∞(C) its usual topology of almost everywhere
uniform convergence.
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The measurable Riemann mapping theorem.We saw above how every
quasiconformal homeomorphismf of a Riemann surfaceX gives rise to a
bounded unit-area ellipse fieldµf onX. We also saw that any such unit-
area ellipse field is equivalent to giving a (π1(X)–equivariant) elementµ ∈
L∞(U). Which suchµ ∈ L∞(C) occur? This question gives rise to the
fundamental “inverse problem” for Beltrami differentials: given anyµ ∈
L∞(C), is it possible to find a quasiconformal homeomorphismf : C→ C
so thatf satisfies theBeltrami equation

µfz = fz̄

almost everywhere? Very generally, the answer is “yes.”

THEOREM 11.16 (Measurable Riemann mapping theorem)Letµ ∈ L∞(C)
and suppose‖µ‖∞ ≤ 1. There exists a unique quasiconformal homeomor-
phismfµ : Ĉ → Ĉ that fixes0, 1, and∞ and satisfies almost everywhere
the Beltrami equation

µfµz = fµz̄ .

Further, fµ is smooth whereverµ is, andfµ varies complex analytically
with respect toµ.

By the uniqueness statement in Theorem 11.16 we see that ifµ(z̄) = µ(z)
thenfµ restricts to a self-map of the upper half-planeU of C. The unique-
ness statement, together with theπ1(X)–equivariance ofµ, also implies that
fµ is π1(X)–equivariant.

There is a long history concerning the existence of solutions to the Beltrami
equation. The case whereµ is continuous was first proven by Lavrentiev
[126], and whereµ is measurable by Morrey [157]. The analytic depen-
dence of the solution onµ is due to Ahlfors–Bers [2].

The proof of Theorem 11.16 is beyond the scope of this book. Werefer the
reader to [2] or [3, Chapter 5] for the proof. Assuming this theorem, we can
now prove Proposition 11.13, which states thatΩ : QD1(X) → Teich(Sg)
is continuous.

The continuity of Ω. We now apply the measurable Riemann mapping
theorem in order to prove thatΩ is continuous.

Proof of Proposition 11.13.Let X be a Riemann surface of genusg ≥ 2.
We takeX to be homeomorphically identified withSg, and soX represents
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a point ofTeich(Sg). After defining the maps

Ω1 : QD1(X)→ L∞(U) and Ω2 : L∞(U)→ Teich(Sg)

that we alluded to at the start of this section, we will prove that bothΩ1 and
Ω2 are continuous. We will then show thatΩ = Ω2 ◦ Ω1.

Let q ∈ QD(X). Just as we were able to convert a Beltrami differential
into aπ1(X)–equivariant functionU → C, so are we able to convertq into
a π1(X)–equivariant functioñq : U → C defined almost everywhere on
U . What is more, if we fix the covering mapU → X and the preferred
fundamental domain inU ahead of time, then the mapQD(X) → L∞(U)
given byq 7→ q̃ is a well-defined function.

We can then defineΩ1 : QD1(X) → L∞(U) by settingΩ1(0) = 0 and by
setting

Ω1(q)(z) = ‖q‖ q̃(z)/|q̃(z)|

for q 6= 0. Here,‖q‖ is the norm of the vectorq in the vector spaceQD(X),
and|q̃(z)| is the absolute value of the complex numberq̃(z). Note that ifq̃
transforms bydz2 then q̃/|q̃| transforms bydz/dz, as desired. Informally,
dz2/(dzdz) = dz/dz.

We claim that the mapΩ1 is continuous. Indeed, as a function oñX ≈ U ,
the elementΩ1(q) ∈ L∞(U) is “equivariant” with respect to theπ1(X)
action onU , in the sense that equation (11.1) is satisfied. Thus, if we change
q ∈ QD1(X) by a small amount in one chart (say the chart given by the
preferred fundamental domain), then by (11.1) the functionΩ1(q) changes
by a small amount. It also follows from equation (11.1) that‖Ω1(q)‖∞ =
‖q‖ < 1.

The mapΩ2 : L∞(U) → Teich(Sg) is given by the measurable Riemann
mapping theorem. To make this precise, we begin by realizingX as a rep-
resentation

ρ : π1(X)→ Isom+(H2).

Let µ ∈ L∞(U), and reflect over the real axis so thatµ ∈ L∞(C). Let fµ :
C → C be the function guaranteed by the measurable Riemann mapping
theorem (Theorem 11.16) and restrict it toU . If we conjugate each element
in the image ofρ by fµ, we obtain a new Riemann surfaceX ′, andfµ

induces a homeomorphismX → X ′ that is smooth almost everywhere. We
can regardX ′ as a point ofTeich(Sg). The last sentence in the statement
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of the measurable Riemann mapping theorem (Theorem 11.16) implies that
Ω2 is continuous.

It only remains to check thatΩ : QD1(X) → Teich(Sg) is equal to the
compositionΩ2 ◦ Ω1. Let q ∈ QD1(X) and suppose that at some point
u ∈ U we haveq̃(u) = reiθ. ThenΩ(q) ∈ Teich(Sg) is obtained fromX
by stretching by a factor of(1 + ‖q‖)/(1 − ‖q‖) in the directione−iθ/2 at
that point. On the other hand,Ω1(q)(u) is equal to‖q‖e−iθ, and so the map
fµ = Ω2(Ω1(q)) satisfiesfµz̄ /f

µ
z = ‖q‖e−iθ at u. That is,fµ stretches in

the directione−iθ/2 by a factor(1+‖q‖)/(1−‖q‖) atu. ThusΩ = Ω2◦Ω1,
and we are done. 2

Beltrami differentials versus quadratic differentials. Let X be a Rie-
mann surface representing a pointX ∈ Teich(Sg). We already discussed
that correspondence betweenQD(X) and the cotangent space toTeich(Sg)
at X. There is a natural pairing between a quadratic differentials and Bel-
trami differentials, that we can use to identify the tangentspace ofTeich(Sg).
Specifically, if a holomorphic quadratic differentialq is given locally by
φ(z) dz2 and a Beltrami differentialµ is given locally byµ(z) dz/dz then
we set

〈q, µ〉 =

∫

X
φµ |dz|.

This pairing allows us identify the tangent space toTeich(Sg) at X as the
space of Beltrami differentials onX modulo the subspace of “infinitesimally
trivial” Beltrami differentials (both spaces are infinite dimensional, but the
quotient has dimension6g − 6). The infinitesimally trivial Beltrami differ-
entials are the ones that are the derivatives of homeomorphisms ofSg ≈ X
that are homotopic to the identity.

11.8 THE TEICHM ÜLLER METRIC

Let X,Y ∈ Teich(Sg), and say thatX and Y are represented by marked
Riemann surfacesX andY , respectively. Again, because of the markings,
there is a preferred mapf : X → Y , the change of marking map. Let
h : X → Y be a Teichmüller mapping in the homotopy class off , whose
existence is guaranteed by Teichmüller’s existence theorem (Theorem 11.8).
Let K = Kh be the dilatation ofh. We define theTeichm̈uller distance
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betweenX andY to be

dTeich(X,Y) =
1

2
log(K).

By Teichmüller’s uniqueness theorem (Theorem 11.9) the functiondTeich is
well-defined.

11.8.1 BASIC PROPERTIES

For the next proposition, recall that in Section 10.3 we defined a topology
onTeich(Sg), the algebraic topology.

Proposition 11.17 The Teichm̈uller distancedTeich defines a complete met-
ric on Teich(Sg) whose topology is compatible with the algebraic topology
onTeich(Sg).

The metric defined bydTeich is called theTeichm̈uller metric.

Proof. Teichmüller’s existence theorem (Theorem 11.8) implies thatdTeich(X,Y) =
0 if and only if there is a Teichmüller mappingh : X → Y of dilatation 1
that is homotopic to the change of marking. By Lemma 11.1 the homeomor-
phismh is conformal. This is the same as saying thatX = Y in Teich(Sg).
By Proposition 11.3 the inverse of aK–quasiconformal homeomorphism is
aK–quasiconformal homeomorphism, and sodTeich(X,Y) = dTeich(Y,X).
The triangle inequality fordTeich also follows from Proposition 11.3, which
states that the composition of aK–quasiconformal homeomorphism and
aK ′–quasiconformal homeomorphism is aKK ′–quasiconformal homeo-
morphism. ThusdTeich is a metric.

Next we show completeness of(Teich(Sg), dTeich). Let X be a point of
Teich(Sg) represented by a marked Riemann surfaceX. Recall that in Sec-
tion 11.7 we defined a map

Ω : QD1(X)→ Teich(Sg)

and showed it was a homeomorphism. UnderΩ−1, a point inTeich(Sg) at
distancelog(K)/2 from the basepointX maps to a point ofQD1(X) whose
norm is(K − 1)/(K + 1). ForK ≥ 1, we have an inequality

(K − 1)/(K + 1) ≤ 1
2 log(K).
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If K is bounded from above then(K−1)/(K+1) is bounded away from 1.
ThusΩ−1 takes closed balls about the basepointX ∈ Teich(Sg) to compact
balls about the origin inQD1(X). SinceΩ−1 is a homeomorphism, this
implies that closed balls about the basepoint inTeich(Sg) are compact, and
thus(Teich(Sg), dTeich) is complete. 2

One may wonder about the factor of1/2 in the definition ofdTeich. The fac-
tor of 1/2 is included so that certain 2–dimensional subspaces ofTeich(Sg),
calledTeichm̈uller disks, are isometric to the hyperbolic planeH2 in the unit
disk model, which has curvature−4. Briefly, a Teichmüller disk is obtained
as follows: Start with a complex structure on a surfaceS coming from a
polygon with parallel sides identified, e.g., the Swiss cross example. If we
apply an element ofSL(2,R), acting as a linear transformation ofR2, the
images of the sides of the polygon are still parallel, and so we obtain a new
complex structure onS. The stabilizer of a complex structure is the orthog-
onal group. SinceSL(2,R)/SO(2,R) ≈ H2, it follows that theSL(2,R)–
orbit of the original marked complex structure is a copy ofH2 in Teich(Sg).
It turns out that this inclusionH2 →֒ Teich(Sg) is an isometric embedding.

11.8.2 TEICHM ÜLLER GEODESICS

In Section 11.4 we explained how any pointX ∈ Teich(Sg) and any holo-
morphic quadratic differentialq ∈ QD(X) determine an embedded copy of
R →֒ Teich(Sg) containingX, called aTeichm̈uller line. By the definition
of dTeich, this embedding is actually an isometric embedding.

Proposition 11.18 Letg ≥ 1. Teichm̈uller lines inTeich(Sg) are bi-infinite
geodesics with respect to the Teichmüller metric.

Even more is true: Teichmüller lines account for all geodesics in(Teich(Sg), dTeich).

THEOREM 11.19 Letg ≥ 1. Every geodesic segment in(Teich(Sg), dTeich)
is a subsegment of some Teichmüller line. In particular, there is a unique
geodesic inTeich(Sg) between any two points.

Proof. Let X andZ be points ofTeich(Sg) and supposeY ∈ Teich(Sg)
satisfies

d(X,Y) + d(Y,Z) = d(X,Z).



356 CHAPTER 11

In other words, ifKXY, KYZ, andKXZ are the stretch factors of the corre-
sponding Teichmüller maps, we have

log(KXYKYZ) = log(KXY) + log(KYZ) = log(KXZ),

and so

KXYKYZ = KXZ.

Say thatX, Y, andZ are represented by marked Riemann surfaces(X,φ),
(Y, ψ), and(Z, ζ). Let hXY andhYZ denote the Teichmüller maps homo-
topic to the change of marking mapsψ◦φ−1 : X → Y andζ◦ψ−1 : Y → Z.
The composition

X
hXY→ Y

hYZ→ Z

has dilatation at mostKXYKYZ (Proposition 11.3). SinceKXYKYZ = KXZ,
the dilatation ofhYZ ◦ hXY must in fact be equal toKXZ. Teichmüller’s
uniqueness theorem (Theorem 11.9) then gives thathYZ ◦ hXY must be the
Teichmüller mapX → Z in the homotopy class of the change of marking
ζ ◦ φ−1. It follows that the horizontal foliations for the terminaldifferential
for hXY and the initial differential forhYZ are equal. This means thatY

lies on the Teichmüller line passing throughX andZ, which proves the first
statement.

The second statement of the theorem is an immediate consequence of the
first statement plus Teichmüller’s uniqueness theorem. 2

11.8.3 THE TEICHM ÜLLER METRIC FOR THE TORUS

Some intuition for the Teichmüller metric and Teichmüller geodesics can be
gleaned from understanding them in the special case wheng = 1, that is for
Teich(T 2). The situation in this case is simple enough that it can be worked
out explicitly.

Recall that we exhibited a bijection betweenTeich(T 2) andH2 (Proposi-
tion 10.1). We now give a significant strengthening of this fact.

Theorem 11.20 The bijectionH2 → Teich(T 2) given in Proposition 10.1
induces an isometry

(H2, dH2)→ (Teich(T 2), 2 dTeich).
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We note that the factor of 2 in the statement of the theorem comes from the
fact that the given bijectionH2 → Teich(T 2) has domain the upper half-
plane model ofH2. This model has constant curvature−1. On the other
hand,Teich(T 2) is naturally isometric toH2 in the unit disk model, which
has constant curvature−4 (see the remark at the end of the proof). Recall
that scaling a metric byr > 0 scales the curvature by1/r2.

Proof. First, the action ofSL(2,R) on equivalence classes of marked lat-
tices inR2 is the same as the action ofSL(2,R) on Teich(T 2) = H2 via
Möbius transformations. Indeed,SL(2,R) is generated by matrices of the
form

(
1 t
0 1

) (
0 1
−1 0

)

where t ∈ R. Therefore this is a slight generalization of the fact that
Mod(T 2) acts onTeich(T 2) by Möbius transformations (see the proof of
Proposition 12.1).

Let X,Y ∈ Teich(T 2) and letx andy be the corresponding points inH2.
Say thatdH2(x, y) = δ. LetA be an element ofSL(2,R) that corresponds
to the hyperbolic element ofIsom+(H2) with axis passing throughx andy
and with translation distanceδ. The matrixA is unique up to sign. We can
writeA as

A = C

(
eδ/2 0

0 e−δ/2

)
C−1

for someC ∈ SL(2,R). As above, we can also think ofA as acting by a
linear transformation onR2. What is more, ifX andY are represented by a
marked flat toriX andY thenA can be regarded as a mapX → Y . Indeed,
if we representX andY by marked lattices inR2, and the action ofA onR2

takes anyX–lattice to someY–lattice.

SinceA has two real eigenvalues, there are two 1–dimensional eigenspaces
onX along whichA expands and contracts. Thus,A is a Teichmüller map
from X to Y . The holomorphic quadratic differential corresponding tothis
Teichmüller map is the one whose horizontal foliation liesin the direction
of the eigenspace forA corresponding to the leading eigenvalue.

As an isometry ofH2, the matrixA is a hyperbolic isometry that translates
along its axis a distanceδ in the hyperbolic metricd2

H. On the other hand,
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the dilatation of the action ofA as a mapX → Y is eδ , so that

dTeich(X,Y) =
1

2
log(eδ) = δ/2.

It follows that the Teichmüller metric onH2 ≈ Teich(T 2) is the hyperbolic
metric, scaled by a factor of1/2. 2

Another way to show that the Teichmüller metric onTeich(T 2) is equivalent
to the hyperbolic metric onH2 of curvature−4 is to directly use the Poincaré
disk model ofH2. We already explained in Section 11.1 that the complex
dilatationµ of an orientation-preserving linear mapf is a point of the open
unit disk. Further the dilatationKf of f satisfies

dH2(0, µ) =
1

2
log(Kf ).

From this fact one can deduce Theorem 11.20.



Chapter Twelve

Moduli space

The moduli space of Riemann surfaces is one of the fundamental objects of
mathematics. It is ubiquitous, appearing as a basic object in fields from low-
dimensional topology to algebraic geometry to mathematical physics. The
moduli spaceM(S) parametrizes, among other things: isometry classes
of hyperbolic structures onS, conformal classes of Riemannian metrics on
S, biholomorphism classes of complex structures onS, and isomorphism
classes of smooth algebraic curves homeomorphic toS.

We will accessM(S) as the quotient ofTeich(S) by an action ofMod(S).
A key result of this chapter is the theorem (due to Fricke) that Mod(S)
acts properly discontinuously onTeich(S), with a finite index subgroup
of Mod(S) acting freely. As suchM(S) is finitely covered by a smooth
aspherical manifold.

In this chapter we will also prove some of the basic topological properties of
moduli space. While moduli space is not compact, Mumford’s compactness
criterion describes precisely what it means to “go to infinity” in M(S). We
will also see that moduli space has only one end, i.e., it is connected at
infinity. Fricke’s theorem and Mumford’s compactness criterion are crucial
ingredients in our proof of the Nielsen–Thurston classification of elements
of Mod(S) (see Chapter 13 ).

One reason for the importance of moduli space is that it playsa fundamen-
tal role in the classification of surface bundles. In this chapter we will also
explain the connection between the cohomology of moduli space and char-
acteristic classes of surface bundles.



360 CHAPTER 12

12.1 MODULI SPACE AS THE QUOTIENT TEICHM ÜLLER SPACE

Recall that a pointX ∈ Teich(S) is the equivalence class of a pair(X,φ)
whereX is a hyperbolic surface andφ : S → X is a diffeomorphism. An
elementf ∈ Mod(S) acts onTeich(S) as follows: choose a representative
ψ ∈ Diff+(S) of f and set

f · X = [(X,φ ◦ ψ−1)].

This formula is encoded in the following diagram:

X

ψ � S

φ

φ◦ψ−1

X

Note that the element[(X,ψ ◦φ−1)] is well-defined since homotopic mark-
ings determine equivalent points ofTeich(S). Also, we useψ−1 instead of
ψ so that we have a well defined group action.

It follows easily from the definition of the Teichmüller metric that the action
of Mod±(S) onTeich(S) is an isometric action. In particular, the action is
by diffeomorphisms.

We see from the definition of theMod(S) action onTeich(S) that the orbit
of a pointX = [(X,φ)] is the set of points[(X,ψ)], where the markingψ
ranges over all homotopy classes of diffeomorphismsS → X.

Another way to see the action ofMod(S) on Teich(S) is by recalling
thatTeich(S) can also be thought of as the quotient Hypmet(S)/Diff0(S).
Now Diff+(S) acts on Hypmet(S) by pullback. The action ofDiff+(S) on
Hypmet(S) induces an action ofDiff+(S) onTeich(S). This action factors
through an action ofMod(S) = Diff+(S)/Diff0(S) onTeich(S). A quick
trace through the definitions gives that this action agrees with the definition
in terms of markings given above.

Themoduli spaceof hyperbolic surfaces homeomorphic toS is defined to
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be the quotient space

M(S) = Teich(S)/Mod(S).

Thinking of Teich(S) as the space of marked hyperbolic surfaces home-
omorphic toS, the groupMod(S) acts onTeich(S) simply by changing
the markings. In this way we can think ofM(S) as the space of (un-
marked) hyperbolic surfaces up to oriented isometry. Thinking of Teich(S)
asTeich(S) = Hypmet(S)/Diff0(S), we see that

M(S) = Hypmet(S)/Diff+(S).

The extended action. The action ofMod(S) on Teich(S) extends to an
action ofMod±(S) on Teich(S). We emphasize, though, thatM(S) is
the quotient ofTeich(S) by the (unextended) mapping class group.M(S)
2–fold orbifold cover ofTeich(S)/Mod±(S). The latter quotient can be
identified with the space of isometry classes of hyperbolic metrics onS,
where isometries are not required to be orientation-preserving.

The kernel of the action. Let S be a surface withχ(S) < 0. We claim
that the kernel of theMod±(S) action onTeich(S) is precisely the sub-
group ofMod±(S) consisting of elements that fix the isotopy class of each
essential simple closed curve inS. More precisely, the kernel of the action
is the cyclic group of order two generated by a hyperellipticinvolution if
S ∈ {S1,1, S1,2, S2,0}, it is the Klein four group generated by hyperelliptic
involutions if S = S0,4, and it is trivial otherwise (cf. the discussion after
Theorem 3.10). Thus, in all cases other thanS = S0,4, the kernel of the
Mod±(S) action onTeich(S) isZ(Mod(Sg,n)).

Supposeh ∈ Mod±(S) acts as the identity onTeich(S). If ψ ∈ Diff(S)
is a representative ofh, thenψ is isotopic to an isometry ofS with respect
to every hyperbolic metric onS. It follows thath fixes the length of every
isotopy class of simple closed closed curve inS. Since, for any pair of
distinct isotopy classes of essential simple closed curvesin S, one can find
a metric onS where the lengths of the corresponding geodesics are not
equal to each other, it follows thath in fact fixes the isotopy class of each
simple closed curve inS. Conversely, it follows from Theorem 10.7 that if
h ∈ Mod±(S) fixes the isotopy class of every simple closed curve inS then
h acts trivially onTeich(S).

The geometric point of view. As mentioned above, the action ofMod±(S)
onTeich(S) is an isometric action. That is, we have a map

Υ : Mod±(S)→ Isom(Teich(S)).
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It is a theorem of Royden that, except in the casesS = S1,1 andS = S0,4,
the mapΥ is actually surjective [180]. We described above the kernelof Υ.
SinceΥ is injective whenS has genus at least3, it follows that

Mod±(Sg) ≈ Isom(Teich(Sg)) for g ≥ 3.

Forg = 2 we have

Mod±(S2)/Z(Mod(S2)) ≈ Isom(Teich(S2)).

Finally, sinceTeich(T 2) is isometric toH2 (up to scale), it follows that
Mod±(T 2)/ ker Υ ≈ PGL(2,Z) has infinite index inIsom(Teich(T 2)) ≈
PGL(2,R).

Stabilizers of points. Assumeχ(S) < 0. LetX = Teich(S) and say thatX
is represented by the marked surface(X,φ). We would like to determine the
stabilizer inMod(S) of X. Leth ∈ Mod(S) and say thath is represented by
a diffeomorphismψ. We haveh · X = X if and only if the marked surfaces
(X,φ) and (X,φ ◦ ψ−1) are equivalent, which is the case if and only if
φ ◦ ψ ◦ φ−1 : X → X is isotopic to an isometryτh of X. Note thatτh
is well-defined since no two isometries of a hyperbolic surface are isotopic.
Also, τh is orientation-preserving sinceψ is. The correspondenceh ↔ τh
is an isomorphism between the stabilizer ofX in Mod(S) andIsom+(X).
In particular, by Proposition 7.7, the stabilizer ofX in Mod(S) is finite.

For g = 1, 2, the hyperelliptic involution fixes the isotopy class of every
simple closed curve inSg. Thus, as above, the hyperelliptic involution sta-
bilizes every point ofTeich(Sg). Forg ≥ 3, one can show that the stabilizer
of a generic point ofTeich(Sg) is trivial.

The algebraic point of view. Recall that the Dehn–Nielsen–Baer theorem
states that the natural mapσ : Mod±(Sg) → Out(π1(Sg)) given by the
(outer) action ofMod±(Sg) onπ1(Sg) is an isomorphism. There is a natural
action

Out(π1(Sg)) 	 DF(π1(Sg),PSL(2,R))/PGL(2,R)

defined as follows. GivenΦ ∈ Aut(π1(Sg)) andρ ∈ DF(π1(Sg),PSL(2,R))
we define

[Φ] · [ρ] = [ρ ◦ Φ−1]

It is also easy to check that this action corresponds to the action ofMod±(Sg)
on Teich(Sg) defined above. To be more precise, letη : Teich(S) →



MODULI SPACE 363

DF(π1(Sg),PSL(2,R))/PGL(2,R) be the homeomorphism defined in Propo-
sition 10.2. Then for eachf ∈ Mod±(Sg) and eachX ∈ Teich(Sg) we have

η(f · X) = σ(f) · η(X).

12.2 MODULI SPACE OF THE TORUS

The moduli spaceM(T 2) of flat, unit area metrics on the torusT 2 is a par-
ticularly important example of a moduli space. It is known asthemodular
surface. It is an object of central importance in mathematics, one reason
being that it is the moduli space of elliptic curves. For us itis useful as an
explicitly computable example of a moduli space.

We saw in Section 10.1 thatTeich(T 2) can be identified with the hyper-
bolic planeH2. We will now see that the action ofMod(T 2) ≈ SL(2,Z)
on Teich(T 2) ≈ H2 is simply the following action ofSL(2,Z) on H2 by
Möbius transformations:

(
a b
c d

)
7→ f(z) =

az − b
−cz + d

.

Proposition 12.1 Let σ : Mod(T 2) → SL(2,Z) be the isomorphism of
Theorem 2.5, and letη : Teich(T 2)→ H2 be the identification from Propo-
sition 10.1. For anyX ∈ Teich(T 2) and anyf ∈ Mod(T 2), we have

η(f · X) = σ(f) · η(X).

In other words, Proposition 12.1 states thatη semiconjugatesthe action of
f ∈ Mod(T 2) onTeich(T 2) to the action ofσ(f) ∈ SL(2,Z) onH2.

Proof. It is enough to check the statement of the proposition on a setof
generators ofMod(T 2), say

M =

(
1 1
0 1

)
and N =

(
0 −1
1 0

)

Let α andβ be based loops inT 2 representing generators forπ1(T
2) with

î(α, β) = 1 (this makes sense if we identifyα andβ with their images
in H1(T

2; Z)). The isomorphism of Theorem 2.5 identifiesM with the
mapping classT−1

α , thinking ofα as an unoriented simple closed curve; it
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also identifiesN with the order 4 mapping class(TαTβTα)−1, which can
be described by cuttingT 2 alongα andβ, rotating the square byπ/2, and
regluing.

Given a point[(X,φ)] ∈ Teich(T 2), we can represent it, as in Proposi-
tion 10.1, by a unique marked lattice inC ≈ R2 with basis vector1 cor-
responding to the oriented curveα, and basis vectorτ ∈ C in the upper
half-plane corresponding toβ. We know that

T−1
α · [(X,φ)] = [(X,φ ◦ Tα)]

where we appropriately regardTα as either a mapping class or a homeomor-
phism. The formulaTφ(α) = φ ◦ Tα ◦ φ−1 (Fact 3.7) gives that

(φ ◦ Tα)(β)∼Tφ(α)(φ(β))

(φ ◦ Tα)(α)∼φ(α)

where∼ denotes the isotopy relation. In other words, the effect ofT−1
α on

the marked lattice is to keep1 fixed, and to sendτ to τ − 1. But this means
thatT−1

α acts onH2 by the Möbius transformationz 7→ z−1, which is what
we wanted to show.

By similar reasoning, the mapping class associated toN acts on the marked
lattice(1, τ) by sending it to the marked lattice(−τ, 1). To get the induced
action onH2 we need to put the latter into “standard form” (rotate/flip sothe
first complex number is1). If we write τ = reiθ, then the resulting lattice
corresponds to

1

r
ei(π−θ) = −1

r
e−iθ.

But this is nothing other than− 1
τ , which is what we needed to show. 2

We thus have

M(T 2) = Teich(T 2)/Mod(T 2) ≈ H2/SL(2,Z),

where the action is given by Proposition 12.1. The kernel of theSL(2,Z)
action onH2 is {±I} = Z(SL(2,Z)), and soM(T 2) can also be written as
H2/PSL(2,Z).

A fundamental domain. A well-known fundamental domain for the
SL(2,Z) action onH2 is shown in Figure 12.1. It is easy to see that the
indicated region contains a fundamental domain: givenτ ∈ H2, applyN
at most once to get that|τ | ≥ 1, and then apply some power ofM so that
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|Re(τ)| ≤ 1/2. Then, simply by writing down the equations defining the
region, we find that there are no other identifications of interior points, so
that it is indeed a fundamental domain.

i eπi/3e2πi/3

Figure 12.1 The fundamental domain for the modular surface.

Stabilizers. As in the higher genus case, the stabilizer inMod(T 2) of a
point [(X,φ)] ∈ Teich(T 2) corresponds precisely to the isotopy classes of
isometries ofX. This in turn can be identified with a finite subgroup of
SL(2,Z). Recall from Section 7.1.1 that, up to powers, there are onlytwo
conjugacy classes of finite order elements ofSL(2,Z). The first is that of
the matrixN , which fixes the pointi, and rotates by an angle ofπ, thus
identifying the two “halves” of the circular boundary of thefundamental
domain. This fixed point corresponds to the isometry of the square torus
obtained by rotating the square by an angleπ/2. The second conjugacy
class is that of the matrix

(
−1 1
−1 0

)
,

whose class inPSL(2,Z) has order 3 and whose unique fixed point inH2 is
the pointeiπ/3. This fixed point corresponds to the order 3 symmetry of the
hexagonal torus (the relationship between the pointeiπ/3 and the hexagonal
torus is explained in Figure 12.3).

The modular curve. We can also see howSL(2,Z) identifies the sides
of its fundamental domain: the left side is identified with the right side by
the translationz 7→ z + 1 corresponding toM , and the two halves of the
bottom side are identified by a rotation of angleπ abouti, corresponding
to N . Therefore, topologically,M(T 2) is a punctured sphere. Taking into
account the fixed points, we see thatM(T 2) has the structure of an orbifold
with signature(0; 2, 3,∞), where∞ signifies the puncture. That is, we can
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∞
2

3

Figure 12.2 A schematic of the modular surface, with sample points labelled.

think ofM(T 2) as a punctured sphere with cone points of order2 and3;
see Figure 12.2

Figure 12.3 The cut and paste operation from a regular hexagon to the parallelogram
spanned by1 andeiπ/3.

The above discussion in particular gives the important factthat the action of
Mod(T 2) onTeich(T 2) is properly discontinuous. In particular the modular
curve is an orbifold. One of the main results in this chapter is the analogous
result for higher genus surfaces.

By the theory of orbifolds, the orbifold fundamental groupπorb1 (M(T 2))
ofM(T 2) is isomorphic to the group of covering transformations, namely
PSL(2,Z). By the Van Kampen theorem for orbifolds,πorb1 (M(T 2)) is
generated by two loops, one around each cone point [112,§6.1]. Further,
these generators have order 2 and 3, respectively, and thereare no other
relations. We have thus recovered the classical isomorphism

PSL(2,Z) ≈ Z/2Z ∗ Z/3Z.

As is true in higher genus,M(T 2) parametrizesoriented isometry classes
of marked tori/lattices. Note thati + ǫ and i − ǫ (for ǫ ∈ R) correspond
to isometric tori that are not oriented-isometric. A fundamental domain for
the quotient ofTeich(T 2) by Mod±(T 2) would be, say, the left half of the
fundamental domain forMod(T 2).
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12.3 PROPER DISCONTINUITY

Recall that the action of a groupG on a topological spaceX by homeo-
morphisms isproperly discontinuousif, for any compact setB ⊂ X, the
set

{g ∈ G : g · B ∩B 6= ∅}
is finite. The main goal of this section is to prove the following.

THEOREM 12.2 (Fricke) Letg ≥ 1. The action ofMod(Sg) onTeich(Sg)
is properly discontinuous.

Theorem 12.2 (and its proof) extends to case of surfacesSg,n with χ(Sg,n) ≤
0. We comment on the required modifications at the end of the proof.

Before proving Theorem 12.2 we use it to deduce some basic properties of
M(S).

First, whenever a group acts by isometries on a metric space,the quotient
has an induced pseudo-metric. The distance between any two orbits is de-
fined to be the infimum of the distance between any pair of representatives.
When the action is properly discontinuous, one has the additional property
that two orbits have distance 0 if and only if they are equal; in other words
the induced pseudo-metric is a metric. We thus have:

For g ≥ 1, the Teichm̈uller metric onTeich(Sg) induces a met-
ric onM(Sg).

We call this metric theTeichm̈uller metriconM(Sg).

Second, when a group acts properly discontinuously by homeomorphisms
on a manifold, the quotient is what is called an orbifold. If the original man-
ifold is aspherical (i.e., has contractible universal cover) then the orbifold
is aspherical. If the action is also free then the quotient is again a mani-
fold. As we said in the beginning of the chapter,Mod(Sg) has a finite-index
subgroup that acts freely onTeich(Sg). Thus, as another consequence of
Theorem 12.2, we have:

THEOREM 12.3 For g ≥ 1, the spaceM(Sg) is an aspherical orbifold,
and is finitely covered by an aspherical manifold.
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It is in fact known thatM(S) is a complex orbifold, finitely covered by
a complex manifold, and that it is in fact a quasiprojective variety, finitely
covered by a smooth variety [50].

12.3.1 THE RAW LENGTH SPECTRUM OF A HYPERBOLIC SURFACE

The proof of Theorem 12.2 relies on a few lemmas regarding thelengths of
curves in a hyperbolic surface. The first lemma we will need concerns the
raw length spectrumof a hyperbolic surfaceX, which is defined to be the
set of positive real numbers

rls(X) = {ℓX(c)} ⊂ R+

wherec ranges over all isotopy classes of essential (or peripheral) simple
closed curves inX. In other wordsrls(X) is the set of lengths of simple
closed geodesics inX.

Lemma 12.4 (Discreteness of the length spectrum)LetX be any closed
hyperbolic surface. The setrls(X) is a closed, discrete subset ofR. Further,
for eachL ∈ R the set

{c : c an isotopy class of simple closed curves inX with ℓX(c) ≤ L}

is finite.

Proof. The hyperbolic surfaceX is the quotient ofH2 by a free, properly
discontinuous isometric action ofπ1(X). Let K ⊂ H2 be a fundamental
domain for this action. SinceX is closedK is compact. SinceK is a
fundamental domain, every closed geodesicγ inX has a liftγ̃ that intersects
K. There is then a unique (up to sign)γ0 ∈ π1(X) that acts oñγ with
translation lengthℓX(γ). As a closed loop,γ0 is freely homotopic toγ.

Let R > 0 be given. Letγ in X be any closed geodesic of length at most
R. As in the previous paragraph, choose any liftγ̃ that intersectsK and let
〈γ0〉 be the corresponding cyclic subgroup ofπ1(X). Any pointp ∈ γ̃ ∩K
is moved by the hyperbolic translationγ0 a distanceℓX(γ) in H2. LetKR

denote the closedR–neighborhood of the compact setK. ThenKR is a
compact subset ofH2 with the property that(γ0 · KR) ∩ KR 6= ∅. Since
the action ofπ1(X) on H2 is properly discontinuous, there are only finitely
many suchγ0, hence only finitely many suchγ. This proves the second
statement. The first statement follows. 2
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12.3.2 WOLPERT ’ S LEMMA

The next lemma, due to Wolpert [210], gives the basic fact that anyK–
quasiconformal map distorts hyperbolic lengths of closed curves by a factor
of at mostK.

Lemma 12.5 (Wolpert’s lemma) Letφ : X1 → X2 be aK–quasiconformal
homeomorphism between hyperbolic surfacesX1 andX2. For any isotopy
classc of simple closed curves inX1, the following inequalities hold:

ℓX1
(c)

K
≤ ℓX2

(φ(c)) ≤ KℓX1
(c).

Lemma 12.5 has the following immediate consequence: for anyX1,X2 ∈
Teich(S) with dTeich(X1,X2) ≤ log(K)/2, and any isotopy classc of sim-
ple closed curves inS, we haveℓX1

(c)/K ≤ ℓX2
(c) ≤ KℓX1

(c).

Proof. Let γ1, γ2 ∈ Isom+(H2) be isometries ofX̃1 ≈ X̃2 ≈ H2 corre-
sponding toc andφ(c), respectively. Consider the annuliA1 andA2 ob-
tained by taking the quotient ofH2 by 〈γ1〉 ≈ Z and〈γ2〉 ≈ Z, respectively.
Since the mapπ1(Xi) → Isom+(H2) is only well-defined up to conjugacy
in PGL(2,R), we can takeγ1 to be the mapz 7→ eℓX1

(c)z andγ2 to be
z 7→ eℓX2

(φ(c))z, where we think ofH2 in the upper-half plane model.

We can put the annuliA1 andA2 in a standard form; that is, for eachi,
we can find the unique (open) Euclidean annulusAmi of circumference1
and heightmi, so thatAi is conformally equivalent toAmi . We call the
numbermi the modulusof the annulusAi. To find the standard form of
A1, note that we can choose a branch of the natural logarithm that takes the
upper half-planeH2 to the infinite strip of points inC with imaginary part in
(0, π). Under this identification, the group〈γ1〉 corresponds to the infinite
cyclic group of translations generated byz 7→ z+ ℓX1

(c). Since the natural
logarithm is a conformal map,A1 is conformally equivalent to the annulus
obtained by identifying vertical sides of a rectangle whosewidth is ℓX1

(c)
and whose height isπ; thus the modulusm1 is equal toπ/ℓX1

(c). Similarly,
m2 = π/ℓX2

(φ(c)).

The mapφ lifts to aK–quasiconformal mapping

φ̃ : A1 → A2.
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Note that since〈γi〉 < π1(Xi), this is formally weaker than saying thatφ is a
K–quasiconformal map fromX1 = H2/π1(X1) toX2 = H2/π1(X2). The
solution to Grötzsch’s problem can be modified (slightly) to prove thatφ̃
changes the modulus by at most a multiplicative factor ofK (in the solution
to Grötzsch’s problem, replace thex–direction in the rectangle with theS1–
direction in the annulus). In other words, we have

1

K
m2 ≤ m1 ≤ Km2.

The lemma follows. 2

12.3.3 THE PROOF OF PROPER DISCONTINUITY

We are ready to demonstrate the proper discontinuity of the action ofMod(Sg)
onTeich(Sg).

Proof of Theorem 12.2.Let B be a compact set inTeich(Sg). We need to
show that the set off ∈ Mod(Sg) such that(f ·B)∩B 6= ∅ is finite. LetX
be some arbitrary point inB and letD denote the diameter ofB.

Let c1 and c2 be isotopy classes of essential simple closed curves inSg
that fill Sg (Proposition 3.5). By the Alexander method (Proposition 2.8),
the set of elements ofMod(Sg) that fix the set{c1, c2} is finite. LetL =
max{ℓX(c1), ℓX(c2)}.

Supposef ∈ Mod(Sg) satisfies(f ·B)∩B 6= ∅. It follows thatdTeich(X, f ·
X) ≤ 2D. By Wolpert’s lemma (Lemma 12.5),ℓf ·X(c) ≤ KL for i =
1, 2, whereK = e2D. But sinceℓf ·X(ci) = ℓX(f−1(ci)), we have that
ℓX(f−1(ci)) ≤ KL.

By Lemma 12.4, there are finitely many isotopy classes of simple closed
curvesb in Sg so thatℓX(b) ≤ KL. Thus, there are only finitely many
possibilities forf−1(c1) andf−1(c2). But by our choice of theci, there are
finitely many choices forf−1 once the isotopy classesf−1(ci) are deter-
mined. Thus, there are finitely many possibilities forf that satisfy(f ·B)∩
B 6= ∅, and we are done. 2

Punctures and boundary components. Theorem 12.2 extends with little
difficulty to the case of surfaces with punctures and/or boundary. Lemma 12.4
needs a slight modification in the noncompact case. The key isthat one can
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choose sufficiently small disjoint open horoball neighborhoods of the cusps
so that every essential geodesic is disjoint from these neighborhoods. Since
complement of these horoball neighborhoods is a compact surface, the proof
then proceeds as in the closed case.

12.4 MUMFORD’S COMPACTNESS CRITERION

We can see from our explicit description ofM(T 2) that it is not compact.
For instance the rayti ∈ H2 ≈ Teich(T 2), t ≥ 1, projects to a rayXt

inM(T 2) that leaves every compact set. Even more, the distance between
X0 andXt tends to infinity ast tends to infinity, and soM(T 2) has infinite
diameter.

In the above example, we can think ofXt as the set of flat tori obtained from
the square torus by pinching one of the simple closed curves to ever-smaller
lengths. We will use a similar idea to show thatM(Sg) has infinite diameter
with respect to the Teichmüller metric. This in particularwill demonstrate
thatM(Sg) is not compact.

First, we introduce a useful function onM(Sg). ForX ∈ M(Sg), the
injectivity radius ofX at a pointx is the largestr for which ther–ball inX
centered atx is isometrically embedded. Then, theinjectivity radiusof X
is the infimum of these injectivity radii over all points ofX.

A related function isℓ(X), the length of the shortest essential closed geodesic
inX. It is not hard to see that the numberℓ(X) is twice the injectivity radius
of X, and that any geodesic realizingℓ(X) is necessarily simple. It follows
from Lemma 12.4 thatℓ(X) is strictly positive.

Fix someX ∈ M(Sg) and letX ∈ Teich(Sg) be some lift. As above
ℓ(X) is positive and is realized by a simple geodesicγ in Sg in the sense
that ℓX(γ) = ℓ(X). We can useγ as part of a coordinate system of curves
for Fenchel–Nielsen coordinates onTeich(Sg). Then, fort ≥ 1 we can
constructXt ∈ Teich(Sg) with the property thatℓXt(γ) = ℓ(X)/t. Let
Xt denote the image ofXt inM(Sg). We haveℓ(Xt) ≤ ℓ(X)/t. It then
follows from Wolpert’s lemma (Lemma 12.5) that the distancebetweenX
andXt in M(Sg) tends to infinity ast tends to infinity. In particular we
note that:

The diameter ofM(Sg) with respect to the Teichm̈uller metric
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is infinite.

We have just shown one way to construct a sequence of points inM(Sg)
leaving every compact set: starting from any given hyperbolic surface, choose
some simple closed curve and pinch it to have smaller and smaller length.
Our goal in this section is to prove Mumford’s compactness criterion, which
says that this is essentially the only way a sequence of points inM(Sg) can
leave every compact set.

Theǫ–thick partofM(Sg) is the set

Mǫ(Sg) = {X ∈M(Sg) : ℓ(X) ≥ ǫ}.

Since the length spectrum of each closed hyperbolic surfaceis discrete
(Lemma 12.4), it follows that{Mǫ(Sg) : ǫ > 0} is an exhaustionof
M(Sg):

M(Sg) =
⋃

ǫ

Mǫ(Sg).

The following theorem is due to Mumford; see [161].

THEOREM 12.6 (Mumford’s compactness criterion) Letg ≥ 1. For each
ǫ > 0 the spaceMǫ(Sg) is compact.

In other words, Theorem 12.6 states that, in order for a sequence{Xn} ⊂
M(S) to leave every compact set inM(S), the injectivity radii ofXn must
tend to0 asn→∞.

12.4.1 MAHLER ’ S COMPACTNESS CRITERION

The caseg = 1 of Theorem 12.6 is a special case of a classical theorem of
Mahler about lattices inRn [136]. A lattice in Rn is theZ–span of a basis
for Rn. We say that a lattice ismarkedif it comes equipped with a basis (as a
Z–module). Recall that we discussed marked lattices inR2 in Section 10.2.

The injectivity radius of a latticeΛ ⊂ Rn is the length of the shortest
nonzero vector inΛ. The injectivity radius ofΛ can also be viewed as half
the length of the shortest essential closed curve in the flatn–dimensional
torusRn/Λ. Thevolumeof Λ is the Riemannian volume ofRn/Λ.
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The groupSL(n,R) acts transitively on the space of marked unit volume
lattices inRn. Themoduli space of unit volume lattices inRn is the quotient

Ln = SL(n,R)/SL(n,Z)

endowed with the quotient topology from the Lie groupSL(n,R). The
moduli space of isometry classes of unit volume, flat,n–dimensional tori
can be identified as the quotient SO(n)\Ln.

As above we can defineLn(ǫ) to be the subspace ofLn consisting of lattices
is injectivity radius bounded below byλ.

THEOREM 12.7 (Mahler’s compactness criterion)Let n ≥ 1. For any
ǫ > 0 the spaceLn(ǫ) is compact.

We now give the proof of Mahler’s compactness criterion forn = 2, which
is exactly Mumford’s compactness criterion for the torus. The proof con-
tains all the ideas needed for the general casen ≥ 2, but is much simpler
notationally.

Proof. SupposeΛ ≈ Z2 is any lattice inR2 with injectivity radius bounded
below by ǫ. Let v be the shortest nonzero vector inΛ, and letw be the
vector with shortest nonzero distance to the (real) subspace spanned byv.
By our choice ofv andw, there are no points ofΛ in the interior of the
parallelogram spanned byv andw, and sov andw generateΛ.

We will show that the norms ofv andw are bounded above by a function
of ǫ (independent ofΛ) and thatw2, the projection ofw to v⊥, is bounded
from below by a function ofǫ. The first property will ensure that any infinite
sequence of lattices has a convergent subsequence, and the second property
will ensure that the limiting lattice is nondegenerate.

Letw1 be the projection ofw to the real subspace spanned byv. We have

|v| ≤ |w| ≤ |w1|+ |w2| ≤
1

2
|v|+ |w2|

and so|w2| ≥ |v|/2 ≥ ǫ. Since|v||w2| = 1, we have|v| = 1/|w2| ≤ 1/ǫ
and|w2| = 1/|v| ≤ 1/2ǫ. Without loss of generality,w is shortest among
{w + kv : k ∈ Z}, and so we may assume|w1| ≤ |v|/2 ≤ 1/2ǫ. This
completes the proof. 2
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12.4.2 BERS’ CONSTANT

In order to prove Mumford’s compactness criterion we will need the follow-
ing theorem of Bers [15].

THEOREM 12.8 (Bers’ constant) LetS be a compact surface withχ(S) <
0. There is a constantL = L(S) such that for any hyperbolic surface
X (with totally geodesic boundary) homeomorphic toS, there is a pants
decomposition{γi} ofX with ℓX(γi) ≤ L for eachi.

Bers’ constantis the smallestL that satisfies the conclusion of the theorem.
Buser has shown that Bers’ constant is at most21(g−1) for a closed surface
of genusg; he suggests that the actual bound should be on the order of

√
g)

[41, §5.2.5]. Our proof of Theorem 12.8 gives a bound that grows faster
than exponentially ing, but this suffices for our purposes.

Proof. Suppose thatS has genusg andb boundary components. Recall that
a pants decomposition forS has3g − 3 + b simple closed curves. We will
prove the following statement by induction onk for 0 ≤ k ≤ 3g − 3 + b:
there is a constantLk = Lk(S) so that for every hyperbolic surfaceX with
totally geodesic boundary that is homeomorphic toS, there is a set ofk
distinct, disjoint, essential closed geodesics, each of length at mostLk. This
inductive statement is true fork = 0 since we may takeLk = 0.

Now assume the inductive hypothesis for some fixedk ≥ 0. Let X be
a hyperbolic surface with totally geodesic boundary that ishomeomorphic
to S. Choose a collection ofk closed geodesics inX as in the inductive
hypothesis, and cutX along these curves. LetY be any component of the
cut surface that is not homeomorphic to a pair of pants, and let y be a point
onY that is furthest from∂Y . We must find an essential closed geodesic in
Y whose length is bounded above by a function ofS.

Let D(y, ρ) be the disk of radiusρ in Y centered aty. More precisely,
D(y, ρ) is the image under the exponential map of the ball of radiusρ in the
tangent spaceTy(Y ). For smallρ this is an embedded disk isometric to a
disk of radiusρ in H2. Therefore its area is given by the formula

∫ 2π

0

∫ ρ

0
sinh(r) dr dθ = 2π(cosh(ρ)− 1).

The key point for us is that the area ofD(y, ρ) is a proper function ofρ.
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Let ρy denote the supremum overρ so thatD(y, ρ) is an embedded disk in
Y disjoint from∂Y . Since the area ofY is less than or equal to the area of
X (which is−2πχ(S)), we have thatρy is finite and is bounded above by a
function ofS. The diskD(y, ρy) is either not embedded inY or it intersects
∂Y .

In the first case, there are two radii of∂D(y, ρy) that meet at both endpoints.
The union of these two arcs is a closed geodesic of length2ρy, which, as
discussed, is bounded above by a function ofS. The geodesic is necessarily
essential by the uniqueness of geodesics in a hyperbolic surface.

In the second case, we note thatD(y, ρy) must intersect∂Y in at least two
points, for otherwise, we could find a point inY that is further from∂Y .
Thus, we have two arcs fromy to∂Y , which we think of as an arcγ between
componentsδ1 andδ2 of ∂Y (possiblyδ1 = δ2). LetN be a regular metric
neighborhood ofγ ∪ δ1 ∪ δ2. By makingN arbitrarily small, the length of
the simple closed curveα = ∂N is arbitrarily close to2ℓY (γ) + ℓY (δ1) +
ℓY (δ2), and so the geodesic in the class ofα is strictly less than this. Since
Y is not a pair of pants (and is not an annulus),α is essential inY , hence in
X, and we are done. 2

12.4.3 THE PROOF OF M UMFORD ’ S COMPACTNESS CRITERION

We can now prove Mumford’s compactness criterion, that theǫ–thick part
of moduli space is compact.

Proof of Theorem 12.6.As noted above, the caseg = 1 is a restatement of
Mahler’s compactness criterion (Theorem 12.7) forn = 2. So we assume
thatg ≥ 2.

SinceM(Sg) inherits the Teichmüller metric fromTeich(Sg), it suffices
to show thatMǫ(Sg) is sequentially compact. Letǫ > 0. Let {Xi} be
a sequence inMǫ(Sg), and letXi ∈ Teich(Sg) be a lift of Xi for each
i. To prove that some subsequence of{Xi} converges inMǫ(Sg), we will
show that for a fixed choice of Fenchel–Nielsen coordinates,the Xi can
be chosen to lie in a compact rectangular region of the Euclidean space
(R+)3g−3 ×R3g−3.

By Theorem 12.8, for eachXi there is a pants decompositionPi of S with
ℓXi

(γ) ∈ [ǫ, L] for eachγ ∈ Pi (L is Bers’ constant). Since there are
only finitely many topological types of pants decompositions ofSg, we can
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choose a subsequence, also denoted{Xi}, and a sequencefi ∈ Mod(Sg) so
thatfi(Pi) = P1.

Now, in Fenchel–Nielsen coordinates adapted toP1 (with arbitrary seams
chosen for twist coordinates), theYi = fi · Xi have length parameters in
[ǫ, L].

Since Dehn twists about the curves ofP1 change the twist parameters by
2π, there is for eachi a producthi of Dehn twists about the curves ofP1 so
that the twist parameters ofhi · Yi lie in the interval[0, 2π]. This finishes
the proof. 2

The proof of Mumford’s compactness criterion generalizes easily to com-
pact surfaces with finitely many boundary boundary components and finitely
many points removed.

12.4.4 APPLICATION : ISOSPECTRAL SURFACES

Since the marked length spectrum of a hyperbolic surfaceX determinesX
up to isometry (Theorem 10.7), one might wonder if the raw length spectrum
rls(X) also determinesX up to isometry. Vignéras proved, however, that
this is not the case: for eachg ≥ 2 there existX 6= Y ∈ M(Sg) with
rls(X) = rls(Y ). Such surfaces are said to beisospectral. Sunada later
proved that forg ≥ 3 the set of suchX having a distinct isospectralY is a
positive-dimensional subset ofM(Sg) [196]. We would like to mention the
deep theorem of Huber that two closed hyperbolic surfaces are isospectral
if and only if their Laplacians have the same spectrum [93, 94, 95].

While surfaces isospectral to a given closed hyperbolic surfaceX can exist,
it is a theorem of McKean [145, 146] that there are only finitely many such
surfaces. The proof we give is due to Wolpert [210].

THEOREM 12.9 Letg ≥ 2. For anyX ∈M(Sg) the set

{Y ∈M(Sg) : rls(X) = rls(Y )}

is finite.

Theorem 12.9 is also true forg = 1, but we will not need this fact.
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Proof. LetX be a lift ofX toTeich(Sg). We first prove that for any compact
setB ⊂ Teich(Sg), the set

{Y ∈ B : rls(X) = rls(Y)}

is finite.

Let {γ1, . . . , γ9g−9} be the finite set of simple closed curves inSg whose
lengths determine any hyperbolic structure onSg; such a set of curves is
guaranteed by Theorem 10.7. LetL = max{ℓX(γi)} and letK = e2R,
whereB is contained in the ball of radiusR aroundX.

Wolpert’s lemma (Lemma 12.5) gives that for anyY ∈ B the boundℓY(γi) ≤
KL holds for eachi. Now if rls(Y) = rls(X) then ℓY(γi) ∈ rls(X).
But by discreteness of the raw length spectrum (Lemma 12.4),there are
only finitely many points inrls(X) ∩ (0,KL]. Thus for anyY ∈ B with
rls(Y) = rls(X) there are only finitely many choices for the valuesℓY(γi),
and hence finitely many suchY, as desired.

By the discreteness ofrls(X), we can choose someǫ > 0 so thatX ∈
Mǫ(Sg). Any Y ∈ M(Sg) with rls(Y ) = rls(X) must also lie inMǫ(S).
NowMǫ(S) is compact by Mumford’s compactness criterion (Theorem 12.6),
and so there is a compact setB in Teich(Sg) that projects ontoMǫ(S). But
since there are finitely manyY ∈ B with rls(Y) = rls(X), there are finitely
manyY ∈Mǫ(Sg) with rls(Y ) = rls(X), and we are done. 2

We record the following consequence of the proof of Theorem 12.9: for any
X ∈ Teich(S), the set

{Y ∈ Teich(S) : rls(X) = rls(Y)}

is discrete.

12.5 THE TOPOLOGY AT INFINITY OF MODULI SPACE

A basic measure of the noncompactness of a space is its numberof ends,
defined below. One can consider this as computingπ0 “at infinity”. There
is also a version of “π1 at infinity” of a space. In this section we define and
compute these basic invariants forM(S).
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12.5.1 THE MAIN TECHNICAL RESULT

The various connectedness properties forM(S) at infinity will all be de-
duced from the following.

Proposition 12.10 Letg ≥ 2. LetX,Y ∈ Teich(Sg), and suppose that their
imagesX,Y ∈M(Sg) lie inM(Sg)−Mǫ(Sg). Then there is a path from
X to Y in Teich(Sg) whose projection toM(Sg) lies inM(Sg)−Mǫ(Sg).

In other words, Proposition 12.10 tells us that, given any two points in
Teich(Sg) each of which has some short essential closed curve, these points
are connected by a path inTeich(Sg) every point of which has some short
essential closed curve. Of course the specific closed curve which is short
will change depending on where we are on the connecting path.

Proof. By the assumptions onX andY, there are nontrivial simple closed
curvesα andβ in Sg with ℓX(α) < ǫ andℓY(β) < ǫ. By Theorem 4.3, there
is a sequence of essential simple closed curvesα = γ1, . . . , γn = β such
thatγi ∩ γi+1 = ∅ for all i.

Takeγ1 andγ2 to be part of a Fenchel–Nielsen coordinate system of curves.
By decreasing only the length parameter ofγ2 in this coordinate system,
while keeping the other parameters fixed, we obtain a connected path in
Teich(Sg), starting atX, and ending at some pointX2 with the property that
ℓX2

(γ2) < ǫ andℓZ(γ1) < ǫ for all pointsZ on the path.

Repeating this procedure fromγ2 to γ3, etc., we obtain a path inTeich(Sg)
from X to someY′, where each point on the path projects toM(Sg) −
Mǫ(Sg), and in particular where the length ofγn = β in Y′ is less thanǫ.
We can then vary the last set of Fenchel–Nielsen coordinatesto obtain a path
from Y′ to Y where the length ofβ remains less thanǫ. The concatenation
of these paths satisfies the conclusion of the proposition. 2

12.5.2 THE END OF MODULI SPACE

The theory of ends of spaces is a way to encode the number of “noncom-
pact directions” of a space. We will only need the notion of “one end.” A
connected, locally compact topological spaceX hasone endif for every
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compact setB ⊂ X the spaceX \ B has only one component whose clo-
sure is noncompact. For example, compact spaces do not have one end;
neither does the real line, as the complement of a closed interval has two
unbounded components.

Suppose thatX is a connected, locally compact metric space, and thatXi

is an exhaustion ofX by compact sets withX \ Xi path connected. Then
X has one end. This holds for example forX = Rd with d ≥ 2, where one
can chooseXi to be the ball of radiusi about any fixed point.

Proposition 12.10 allows us to deduce the following.

Corollary 12.11 Letg ≥ 1. The moduli spaceM(Sg) has one end.

Proof. In the caseg = 1, the fact that moduli space has one end follows
directly from the explicit description ofM(T 2) given in Section 12.2.

Let g ≥ 2. ThenM(Sg) −Mǫ(Sg) is connected for anyǫ > 0 by Propo-
sition 12.10. Since theMǫ(Sg) form an exhaustion ofM(Sg) we conclude
thatM(Sg) has one end. 2

The key fact used in the proof of Proposition 12.10 is that thecomplex of
curvesC(Sg) is connected. Proposition 12.10 and Corollary 12.11 both hold
for Sg,n with 3g − 3 + n ≥ 2 sinceC(Sg,n) is connected in these cases.

12.5.3 LOOPS IN MODULI SPACE

Taking the fundamental group of the topological space underlying M(S)
misses its salient features. Indeed, we have the following fact:

M(Sg) is simply connected for allg ≥ 1.

For g = 1 this follows from the fact thatM(T 2) is the(0; 2, 3,∞) hyper-
bolic orbifold, so that the underlying topological space isa once-punctured
sphere, i.e. is homeomorphic toR2. The fact thatM(Sg) is simply con-
nected is due to Maclachlan [132], and follows from the following three
facts:

· Mod(Sg) is generated by finite order elements (Theorem 7.16).
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· The action of each finite order element onTeich(Sg) has a
fixed point (see Section 12.1).

· The coverTeich(Sg) → M(Sg) enjoys the path-lifting
property (the path-lifting propery holds any time we take
the quotient of a simply connected space by a properly dis-
continuous action [38, 4]).

To get simple connectivity ofM(Sg) from these three facts, take any loop
inM(Sg) based at the image inM(Sg) of a fixed point of one of the gen-
erators ofMod(Sg). The lift of this loop is a closed loop inTeich(Sg), and
any null-homotopy inTeich(Sg) descends to a null-homotopy inM(Sg).

The more useful notion to consider is the orbifold fundamental group of
M(S). The orbifold fundamental groupof the quotientX/Γ of a simply
connected spaceX by a groupΓ acting properly discontinuously (but not
necessarily freely) is defined to be

πorb1 (X/Γ) ≈ Γ.

SinceM(S) = Teich(S)/Mod(S), the groupMod(S) acts properly dis-
continuously onTeich(S), andTeich(S) is simply connected, we have

πorb1 (M(S)) ≈ Mod(S).

Two loops inX/Γ are considered to be homotopic if they have lifts toX that
areΓ–equivariantly homotopic. For example, a loop around the cone point
of order two inM(T 2) is trivial in the topological category, but nontrivial
in the orbifold category; it has order two inπorb1 (M(T 2)).

With the above comments in hand, we now consider loops inM(S) con-
sidered as an orbifold. The orbifoldM(T 2) has a unique homotopy class
of loops that can be freely homotoped (in the orbifold sense)outside every
compact subset ofM(T 2); namely, the free homotopy class represented by
the conjugacy class of the element( 1 1

0 1 ) in SL(2,Z) ≈ Mod(T 2). This
contrasts greatly with the behavior ofM(Sg) wheng ≥ 2.

Corollary 12.12 Let g ≥ 2. Any loop inM(Sg) can be freely homotoped
(even in the orbifold sense) outside every compact set inM(Sg).

Proof. It suffices to consider loops that are essential and compact sets that
are of the formMǫ(Sg). Let anyǫ > 0 be given. Letα be any essential
loop inM(Sg), andX any point inM(Sg) −Mǫ(Sg). SinceM(Sg) is
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path connected,α can be freely homotoped to a loopβ based atX. As
above,β can be lifted to a path̃β in Teich(Sg). Proposition 12.10 gives a
pathγ between the endpoints of̃β with projectionγ inM(Sg)−Mǫ(Sg).
Any homotopy fromβ̃ to γ descends to a homotopy fromα to γ. 2

Another way to state Corollary 12.12 is that, forg ≥ 2, the (orbifold) fun-
damental group ofM(Sg) “relative to infinity” is trivial. More formally,
the inclusion mapM(Sg) −Mǫ(Sg) →֒ M(Sg) induces an isomorphism
of orbifold fundamental groups.

We also remark that both Corollary 12.11 and Corollary 12.12are true with
M(Sg) replaced by the manifoldTeich(Sg)/Γ, whereΓ is a finite-index
torsion-free subgroup ofMod(Sg).

12.6 MODULI SPACE AS A CLASSIFYING SPACE

In this section we explain the close relationship betweenM(Sg) to the clas-
sifying space ofMod(Sg). This connection relates the cohomology of these
two objects.

Classifying spaces and covers ofM(Sg). Recall that if a groupΓ acts
freely and properly discontinuously on a contractible spaceX, then the quo-
tient spaceX/Γ is aK(Γ, 1) space, that is, a path connected space with
contractible universal cover and with fundamental group isomorphic toΓ.
A K(Γ, 1) space is also sometimes called aclassifying space. It is a ba-
sic fact from algebraic topology that any two classifying spaces of a given
group are homotopy equivalent [86, Theorem 1B.8]. AK(Γ, 1) space is
often denoted byBΓ and its universal cover byEΓ. We can do this even
if we have not specified a particularK(Γ, 1) space, since most statements
we make about classifying spaces are not sensitive to the specific choice of
K(Γ, 1).

In Section 5.6 we proved that the spaceBHomeo+(Sg) that classifiesSg–
bundles is homotopy equivalent toBMod(Sg) for g ≥ 2. In particular the
elements of the cohomology groupsH∗(Mod(Sg); Z) give so-called “(in-
tegral) characteristic classes” for orientableSg–bundles. In this section we
explain the close relationship of these results to the topology ofM(Sg).

Mod(Sg) acts properly discontinuously on the contractible spaceTeich(Sg),
with quotientM(Sg). However,M(Sg) is not aBMod(Sg) space. The
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problem is that the action ofMod(Sg) on Teich(Sg) is not free. This is
unfortunate because we have a decent geometric and topological picture of
M(Sg): it is finitely covered by a(6g−6)–dimensional manifold, it has the
homotopy type of a finite cell complex (see the comment on page133), and
it naturally occurs elsewhere in mathematics. In contrast,any BMod(Sg)
space cannot have the homotopy type of a finite cell complex sinceMod(Sg)
has torsion (combine Proposition VIII.2.2 and Corollary VIII.2.5 in [37]).
However, we now use a standard method in topology to show thatM(Sg)
is “rationally” a classifying space forMod(Sg).

Let Γ be any finite index, torsion-free normal subgroup ofMod(Sg). For
example, in Theorem 6.9 we proved that for anyg ≥ 1 andm ≥ 3 the group
Mod(Sg)[m] of elements ofMod(Sg) acting trivially onH1(Sg; Z/mZ) is
such a subgroup. Since the point stabilizers of the action ofMod(Sg) on
Teich(Sg) are finite, it follows that any suchΓ acts freely and properly dis-
continuously onTeich(Sg). In particularTeich(Sg)/Γ is aK(Γ, 1) space.
It follows from the discussion in Section 5.6 that the characteristic classes
for orientedSg–bundles with monodromy lying inΓ are precisely the ele-
ments ofH∗(Teich(Sg)/Γ; Z).

We now want to convert this back into information aboutM(Sg). We use
the Borel construction (cf. the proof of Proposition 5.6), as follows. The
diagonal action of groupMod(Sg) on the contractible spaceEMod(Sg) ×
Teich(Sg) is free and properly discontinuous, and so the quotient space is a
K(Mod(Sg), 1) space; we denote it byBMod(Sg) (even thoughBMod(Sg)
usually denotes the quotientEMod(Sg)/Mod(Sg)). But the projection map
EMod(Sg)× Teich(Sg) → Teich(Sg) is Mod(Sg)–equivariant, and so in-
duces a continuous map

h : BMod(Sg)→M(Sg).

If X ∈ Teich(Sg) maps toX ∈M(Sg), thenh−1(X) is a classifying space
for the stabilizer ofX in Mod(Sg).

Using the same construction withMod(Sg) replaced by the finite-index sub-
groupΓ, we obtain a continuous map

h̃ : BΓ→ Teich(Sg)/Γ.

The map̃h is a homotopy equivalence by Whitehead’s theorem, sinceBΓ

andTeich(Sg)/Γ are classifying spaces andh̃⋆ : π1(BΓ)→ π1(Teich(Sg)/Γ)
is an isomorphism.

Rational cohomology. LetG = Mod(Sg)/Γ. The finite groupG acts by
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covering space automorphisms onBΓ and onTeich(Sg)/Γ. By construc-
tion the map̃h is G–equivariant. We thus have the following commutative
diagram:

BΓ
eh

Teich(Sg)/Γ

BMod(Sg)
h M(Sg)

Sincẽh is aG–equivariant homotopy equivalence, it induces aG–equivariant
isomorphism

h̃∗ : H∗(Teich(Sg)/Γ; Q)→ H∗(BΓ; Q).

For a vector spaceV equipped with aG–action, denote byV G the G–
invariantsof the action, that is,

V G = {v ∈ V : gv = v for all g ∈ G}.
Sinceh̃∗ isG–equivariant, it restricts to an isomorphism of the correspond-
ing invariants.

Now, the covering mapBΓ→ BMod(Sg) induces an isomorphism

H∗(BMod(Sg); Q) ≈ H∗(BΓ; Q)G

and the covering mapTeich(Sg)/Γ→M(Sg) induces an isomorphism

H∗(M(Sg); Q) ≈ H∗(Teich(Sg)/Γ; Q)G.

These isomorphisms come from the basic transfer argument incohomology
[86, Proposition 3G.1]. We have thus proven the following theorem, relating
the rational cohomology ofBHomeo+(Sg) ≃ BMod(Sg) to the rational
cohomology ofM(Sg).

THEOREM 12.13 Letg ≥ 2, and leth : BMod(Sg)→M(Sg) be the map
constructed above. Then the induced homomorphism

h∗ : H∗(M(S); Q)→ H∗(BMod(Sg); Q)

is an isomorphism.

Thus the rational characteristic classes of surface bundles are precisely ele-
ments ofH∗(M(S); Q). We emphasize that rational coefficients are crucial
here; they are used in the transfer argument.
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Chapter Thirteen

The Nielsen–Thurston classification

In this chapter we explain and prove one of the central theorems in the study
of mapping class groups: the Nielsen–Thurston classification of elements
of Mod(Sg). This theorem is the analogue of the Jordan canonical form
for matrices. It states that everyf ∈ Mod(S) is one of three special types:
periodic, reducible, or pseudo-Anosov. The knowledge of individual map-
ping classes is essential to our understanding of the algebraic structure of
Mod(S). As we will soon explain, it is also essential for our understanding
of the geometry and topology of many3–dimensional manifolds.

We begin this chapter with a classification of elements ofMod(T 2). We
then describe higher genus analogues for each of the three types of elements
of Mod(T 2), after which we are able to state the Nielsen–Thurston clas-
sification theorem in various forms, as well as a connection to 3–manifold
theory. The rest of the chapter is devoted to Bers’ proof of the Nielsen–
Thurston classification. Bers’ proof is an analogue of the geometric classifi-
cation of elements ofIsom+(H2) by their translation lengths. Our treatment
of the proof is self-contained, and presents a combined application of the
material from Chapters 10, 11, and 12. The collar lemma is highlighted as a
new ingredient, as it is also a fundamental result in the hyperbolic geometry
of surfaces.

13.1 THE CLASSIFICATION FOR THE TORUS

Recall that in Chapter 1 we classified the nontrivial elements of Isom+(H2)
into three types: elliptic, parabolic, and hyperbolic. We also know that
Mod(T 2) ≈ SL(2,Z) (Theorem 2.5), and thatPSL(2,R) ≈ Isom+(H2).
We thus obtain a classification of elements ofMod(T 2) by considering the
type of the corresponding element ofIsom+(H2).
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What we would really like, though, is a classification of elements ofMod(T 2)
that is intrinsic to the torus. As we now show, the three typesof hyperbolic
isometries correspond to three qualitatively different types of homeomor-
phisms ofT 2.

The trichotomy. Let f ∈ Mod(T 2), letA be the corresponding element
of SL(2,Z), and letτ be the corresponding element ofIsom+(H2). We
consider the three cases forτ in turn. Recall that the standard isomorphism
PSL(2,R)→ Isom+(H2) sends the equivalence class of the matrix

(
a b
c d

)

to the Möbius transformation

z 7→ az + b

cz + d

acting on the upper half-plane.

If τ is elliptic, this means thatτ fixes a point ofH2 and is thus a rotation.
By the proper discontinuity of the action ofSL(2,Z) on H2, we see thatτ
must be a finite order rotation. ThusA, hencef , has finite order. We say
thatf is periodic.

If τ is parabolic, thenτ fixes a unique point in∂H2. This is the same as
saying thatA has a unique real eigenvector. It follows thatA has exactly
one real eigenvalue, and that this eigenvalue has multiplicity 2. Since the
product of the eigenvalues ofA is equal to the determinant, which is 1, the
eigenvalue forA is±1. This means that, up to sign,A fixes a vector inR2.
SinceA is an integer matrix, it follows thatA fixes a rational vector inR2

up to sign. From this it follows thatf fixes the corresponding isotopy class
of (unoriented) simple closed curves inT 2. In this case we say thatf is
reducible.

If τ is hyperbolic thenτ fixes two points in∂H2. This is equivalent to the
statement thatA has two linearly independent real eigenvectors, or thatA
has two distinct real eigenvalues. Since the determinant ofA is 1, it follows
that its two eigenvalues are inverses, sayλ and1/λ, whereλ > 1. Therefore
A has two eigenspaces inR2, one of which is stretched by a factor ofλ
and one of which is contracted by a factor ofλ. This data gives a bundle
of information aboutf ∈ Mod(T 2); we call this information anAnosov
package. Specifically, there is onT 2 a pair of foliationsFs andFu, called
thestableandunstablefoliations forf , that satisfy the following properties.
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1. Each leaf ofFs and ofFu is the image of an injective mapR→ T 2.

2. The foliationsFs andFu are transverse at all points.

3. There is a natural transverse measureµs (resp.µu) assigning a mea-
sure to each arc transverse toFs (resp.µu), obtained by realizing the
foliations by straight lines in some flat metric onT 2, and declaring
the measure of a transverse arc to be the total variation in the direc-
tion perpendicular to the foliation.

4. There is an affine representativeφ ∈ Homeo+(T 2) of f with

φ(Fu, µu) = (Fu, λµu) and φ(Fs, µs) = (Fs, λ−1µs),

whereλ > 1 is the leading eigenvalue ofA.

In this case we say thatf is Anosov. The discussion so far can be summa-
rized by the following.

THEOREM 13.1 Each nontrivial elementf ∈ Mod(T 2) is of exactly one
of the following types: periodic, reducible, Anosov.

We can be even more specific in the first two cases. A nontrivialfinite order
element ofMod(T 2) has order 2, 3, 4, or 6. Also, a nontrivial reducible
element ofMod(T 2) is either a power of a Dehn twist or the product of a
power of a Dehn twist with the hyperelliptic involution.

The linear algebra approach. Using just the isomorphismMod(T 2) ≈
SL(2,Z), and without appealing to hyperbolic geometry, we can give amore
algebraic approach to the classification forMod(T 2). Let A ∈ SL(2,Z),
and letf ∈ Mod(T 2) denote the corresponding mapping class. The char-
acteristic polynomial forA is x2 − trace(A)x+ 1. It follows that the eigen-
values ofA are inverses of each other. call themλ andλ−1. There are then
three cases to consider:

1. |trace(A)| ∈ {0, 1}

2. |trace(A)| = 2

3. |trace(A)| > 2
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The three cases are equivalent to the cases:λ andλ−1 are complex,λ =
λ−1 = ±1, andλ andλ−1 are distinct reals. In the first case it follows
from the Cayley–Hamilton theorem thatA, hencef , has finite order. In the
second caseA has a rational eigenvector, and from this it follows thatf is
reducible. In the third case we see thatA has two real eigenvalues, and sof
is Anosov.

We summarize the results of this section in the following table.

Mapping class H2 isometry |Trace| Sample matrix

periodic elliptic 0, 1
(

0 1
−1 1

)

reducible parabolic 2 ( 1 n
0 1 )

Anosov hyperbolic 3, 4, . . . ( 2 1
1 1 )

13.2 THE THREE TYPES OF MAPPING CLASSES

We now describe three kinds of elements of the mapping class group of
a surface. Each is an analogue of one of the three types of elements of
Mod(T 2) in the statement of Theorem 13.1. The Nielsen–Thurston classi-
fication theorem (Section 13.3) states that every mapping class falls into (at
least) one of these three categories.

13.2.1 PERIODIC MAPPING CLASSES

We have already studiedperiodic, or finite order, elements of the mapping
class group. A basic example is shown in Figure 13.1; see alsoFigures 2.1,
2.2, and 2.3. See Chapter 7 for a general discussion of finite order mapping
classes.

Theorem 7.1 states that every periodic mapping class has a representative
diffeomorphism that has finite order. Note thata priori we only know that
there is a representative with a powerisotopic tothe identity. We are now
prepared to give a proof of this theorem. Indeed, we will showthat each
periodic element ofMod(S) can be realized as an isometry ofS with re-
spect to some hyperbolic metric. The idea is to show that a periodic ele-
ment ofMod(S), thought of as an isometry ofTeich(S), has a fixed point
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Figure 13.1 A periodic element of the mapping class group.

in Teich(S). Nielsen gave a direct proof of Theorem 7.1 in 1942 [166].
The proof we present here was first suggested by Fenchel [60] [61] and
Macbeath [131].

Proof of Theorem 7.1.Recall from Section 12.1 that an elementf ∈ Mod(S)
fixes a point ofTeich(S) if and only if it has a representativeφ ∈ Homeo+(S)
that is an isometry ofS with respect to some hyperbolic metric; equivalently,
f has a representative that is conformal with respect to some complex struc-
ture. So to prove the theorem it suffices to show that each periodic element
f ∈ Mod(S) fixes some point ofTeich(S).

Let n ∈ N denote the order off ∈ Mod(S). SinceTeich(S) is contractible
(Theorem 10.6), the finite cyclic group〈f〉 cannot act freely onTeich(S),
for otherwise the quotient would be a finite-dimensionalK(Z/nZ, 1). Thus
fk · X = X for some1 ≤ k ≤ n and someX ∈ Teich(S).

In the case thatn is prime (or even ifgcd(n, k) = 1), we have thatf is a
power offk. Thusf fixesX ∈ Teich(S) and we are done.

Now assume thatn = p1p2 · · · ps, where eachpi is prime, and thepi’s
are not necessarily distinct. We induct on the number of (notnecessar-
ily distinct) prime factors ofn. The mapping classf ′ = fps has order
p1p2 · · · ps−1. By induction,f ′ fixes a point ofTeich(S) and hence is real-
ized by a conformal automorphismφ of a marked Riemann surfaceX. Via
the marking,φ induces a finite order homeomorphism ofS that we also call
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φ, by abuse of notation. Sinceφ acts onX by conformal automorphisms,
the quotientX/〈φ〉 is a Riemann surface with distinguished points, namely
the images of the fixed points ofφ. Let X ′ denote the Riemann surface
which is the complement of the distinguished points and letS′ denote the
underlying topological surface. Denote the fixed set off ′ in Teich(S) by
Fix(f ′). We have just constructed a mapθ : Fix(f ′)→ Teich(S′).

Claim: The mapθ : Fix(f ′)→ Teich(S′) is a homeomorphism.

Proof of claim: If θ(Y) = θ(Z) for Y,Z ∈ Fix(f ′) then, with notation as
above, the conformal mapY ′/〈φ〉 → Z ′/〈φ〉 lifts to a conformal map from
Y minus a finite number of points toZ minus a finite number of points.
This conformal map extends over the missing points by the removable sin-
gularities theorem, as in the proof of Lemma 11.1. ThusY = Z and soθ is
injective. Continuity ofθ and its inverse are easy to check.

We now prove thatθ is surjective. We need to show that all complex struc-
tures onS coming from points ofFix(f ′) are lifts of complex structures
on S′, with punctures filled in, as above. To this end, letY ∈ Fix(f ′).
RepresentY by a marked Riemann surfaceY and leth : X → Y be the
Teichmüller map in the homotopy class of the change of marking map. De-
note its dilatation byKh. We now show that, as elements ofHomeo+(S),
the homeomorphismsh andφ commute. Sinceφ is conformal, the dilatation
of φ◦h◦φ−1 is equal toKh. It then follows from Teichmüller’s uniqueness
theorem thath = φ ◦ h ◦ φ−1, which is to say thatφ commutes withh. It
follows thath descends to a Teichmüller map fromX ′ to a unique marked
Riemann surfaceY ′. By construction, the pullback of the complex structure
on Y ′ to S is the complex structure onY . This completes the proof of the
claim.

As Teich(S′) is contractible, the claim implies thatFix(f ′) is contractible.
Sincef commutes withf ′, it follows that 〈f〉 acts onFix(f ′). As 〈f ′〉 is
contained in the kernel of this action, the action of〈f〉 factors through an
action of〈f〉/〈f ′〉 ≈ Z/psZ on Fix(f ′). As above, the latter action must
have a fixed point, and so sinceps is prime we are again able to deduce that
f has a fixed point inFix(f ′) ⊆ Teich(S). 2

Our argument for Theorem 7.1 can be easily adapted to prove aneven
stronger result: every finite solvable subgroup ofMod(S) is realized as
a subgroup of the isometry group ofS for some hyperbolic metric onS.
Of course, as we noted in Theorem 7.2, it is now known (and muchharder
to prove) that any finite subgroup ofMod(S) can be realized as a group of
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conformal automorphisms of some conformal structure onS.

13.2.2 REDUCIBLE MAPPING CLASSES

We say that an elementf of Mod(S) is reducibleif there is a nonempty set
{c1, . . . , cn} of isotopy classes of essential simple closed curves inS so that
i(ci, cj) = 0 for all i andj and so that{f(ci)} = {ci}. The collection is
called areduction systemfor f . In this case, we can further understandf
via the following procedure:

1. Choose representatives{γi} of the{ci} with γi ∩ γj = ∅ for i 6= j.

2. Choose a representativeφ of f with {φ(γi)} = {γi}.
3. Consider the homeomorphism of the noncompact, possibly discon-

nected surfaceS − ∪γi induced byφ.

Note that the second step is an application of the Alexander Method plus
Proposition 1.11. As each connected component ofS −∪γi is each simpler
thanS itself, as measured for example by Euler characteristic, wecan hope
to understandf by induction on the complexity ofS. In particular, we can
decomposef into irreducible pieces (cf. Corollary 13.3 below). Of course
in order to do this, even whenS is closed, one must extend the theory to
non-closedS.

Examples. A typical reducible mapping class is obtained as follows. Sup-
poseS is a closed genus 2 surface. Letγ be a separating simple closed curve
in S, and letS′ andS′′ be the two embedded subsurfaces ofS bounded byγ.
Chooseφ′ andφ′′ to be homeomorphisms ofS′ andS′′ that fixγ pointwise.
Even better, chooseφ′ andφ′′ so that neither fixes the isotopy class of any
essential simple closed curve inS′ or S′′, respectively; sinceS′ andS′′ are
tori, it suffices to chooseφ′ andφ′′ so that the induced actions onH1(S

′; Z)
andH1(S

′′; Z) are without fixed vectors. Letσ be a homeomorphism ofS
that switches the two sides ofγ. The homeomorphism

σ ◦ Tγ ◦ φ′ ◦ φ′′

represents a reducible element ofMod(S). The isotopy class ofγ is the
unique reduction system in this case.

A simple example of a reducible mapping class is a Dehn twistTa: any
collection of distinct isotopy class of curves{ci} satisfying i(ci, cj) =
i(ci, a) = 0 is a reduction system.
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Another example is the mapping class given in Figure 13.1 (which curves,
or collections of curves, are fixed?). Thus we see that there is an overlap
between the set of periodic and reducible elements ofMod(S).

Canonical reduction systems. In each of the last two examples, there
are many choices for the reduction system, as there are many collections of
curves fixed by either mapping class. A reduction system forf ∈ Mod(S)
is calledmaximalif it is maximal with respect to inclusion of reduction sys-
tems forf . We can then consider the intersection of all maximal reduction
systems forf . This intersection is clearly canonical, in that no choicesare
involved in its construction. We call it thecanonical reduction systemfor f .

As a first example, we show that the canonical reduction system for a peri-
odic f ∈ Mod(S) is empty. For simplicity, assumeχ(S) < 0. By Theo-
rem 7.1,f is represented by a finite order homeomorphismφ. LetX denote
the quotient orbifoldS/〈φ〉. Suppose thatc is an isotopy class of simple
closed curves inS that is part of some reduction system forf . Thenc has
a representativeγ that is fixed byφ. It follows thatγ descends to an es-
sential simple closed curveγ in X. But by the classification of surfaces,
onceX has one essential simple closed curveγ, it has another oneδ with
i(γ, β) > 0. The isotopy class of the preimageδ of δ is a reduction system
for f , andi(δ, γ) > 0. It follows thatγ andδ do not belong to a common
maximal reduction system. In particular,c is not an element of the canon-
ical reduction system forf . Thus, the canonical reduction system forf is
empty.

We can also show that the canonical reduction system forTa is a. It follows
immediately from Proposition 3.2 that for any isotopy classof simple closed
curvesb with i(a, b) > 0 we haveT ka (b) 6= b. It follows thatb cannot belong
to a reduction system fora. In other words, any reduction system fora
consists of isotopy classes of curves that are disjoint froma. AsTa(a) = a,
it follows that any maximal reduction system forTa containsa, and soa is
in the canonical reduction system. Now, letb be any other element of some
reduction system. As above, we havei(a, b) = 0. But we can find another
isotopy classc such thati(c, a) = 0 andi(b, c) > 0. Sincei(a, c) = 0, it
follows thatTa(c) = c, and soc is part of some reduction system forTa. On
the other hand, sincei(b, c) > 0, the isotopy classesb andc cannot belong
to the same reduction system. Therefore, any maximal reduction system
for Ta that containsc does not containb, and sob is not an element of the
canonical reduction system.
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Canonical reduction systems were introduced by Birman, Lubotzky, and
McCarthy [27] and by Handel and Thurston [79]. In the language of Birman–
Lubotzky–McCarthy, the isotopy classc of an essential simple closed curve
in S is in the canonical reduction system forf exactly when it satisfies the
following two criteria: (i) c is part of some reduction system forf and(ii)
fk(b) 6= b wheneveri(b, c) 6= 0 andk 6= 0. The advantage of their def-
inition is that it gives qualitative information about the isotopy classes in
an essential reduction system. It is possible to show that their definition is
equivalent to ours.

Periodic versus reducible. Dehn twists are examples of mapping classes
that are reducible but not periodic. The example of Figure 13.1 is reducible
and periodic. One element ofMod(Sg) that is periodic but not reducible is
the example that realizes the upper bound of Theorem 7.5, that is, the peri-
odic element of maximal order inMod(Sg). Recall that this mapping class
is realized by representingSg as a(4g + 2)–gon and rotating the polygon
by one “click,” that is, by2π/(4g + 2). The quotient surface is a sphere
with three cone points: one corresponding to the center of the polygon, one
corresponding to the vertices of the polygon (all of which get identified in
the quotient), and one of which corresponds to the midpointsof the edges of
the polygon (again, all of these get identified in the quotient). In the com-
plement of the cone points, there are no essential curves on the sphere. It
follows that the mapping class is not reducible.

The question remains: what can we say about mapping classes that are nei-
ther periodic nor reducible?

13.2.3 PSEUDO-ANOSOV MAPPING CLASSES

An elementf ∈ Mod(S) is calledpseudo-Anosovif there is a pair of trans-
verse measured foliations(Fu, µu) and(Fs, µs) onS, a numberλ > 1, and
a representative homeomorphismφ so that

φ · (Fu, µu) = (Fu, λµu) and φ · (Fs, µs) = (Fs, λ−1µs).

The measured foliations(Fu, µu) and(Fs, µs) are called theunstable folia-
tion andstable foliation, respectively, and the numberλ is called thestretch
factor1 of φ (or of f ). The mapφ is apseudo-Anosov homeomorphism.

1In the literature the numberλ is often called the “dilatation” of the mapping classf .
However, this terminology is not consistent with our usage of the word “dilatation.” As we
shall see, pseudo-Anosov homeomorphisms with stretch factor λ correspond to Teichmüller
maps with dilatationλ2.
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Of course, the representativeφ of f is not unique; we can change the stable
and unstable foliations by an isotopy, and then conjugateφ by the home-
omorphism at the “end” of the isotopy. It is a theorem, however, that this
is the only nonuniqueness: any two homotopic pseudo-Anosovhomeomor-
phisms are conjugate by a homeomorphism that is isotopic to the identity
[59, Exposé 12, Thm III].

The mapφ is a diffeomorphism away from the singularities of the stable
and unstable foliations. Since both the stable and unstablefoliations span
the tangent space at the singularities,φ is not smooth at the singularities.
One should compare the definition of a pseudo-Anosov homeomorphism
with the definition of a Teichmüller map.

Are the leaves of the stable foliation stretched byφ, or are they shrunk by
φ? To check, letα be an arc of the stable foliation. We want to com-
pareµu(φ(α)) with µu(α). By definition of the action ofHomeo+(S)
on the set of measured foliations onS (see§11.2), the former is equal to
φ−1 · µu(α) = λ−1µu(α), whereλ > 1. Thus the correct statement is that
φ shrinks the leaves of the stable foliation and stretches theleaves of the un-
stable foliation. One way to remember this is that, if we takea pointp on a
stable leaf that emanates from a singularityx of Fs, thenφn(p) approaches
x asn goes to infinity; we think of this as a stability condition.

It turns out that the above structure has strong implications for the dynam-
ical, topological, and geometric structure of pseudo-Anosov homeomor-
phisms. Indeed, the study of pseudo-Anosov homeomorphismsadmits a
rich theory, some of which we present in Chapter 14.

Punctures and boundary.The definition of a pseudo-Anosov homeomor-
phism carries over for surfaces with punctures and/or boundary. See the end
of Chapter 11 for the definition of a foliation on such a surface. As with Te-
ichmüller maps, the definition of a pseudo-Anosov homeomorphism is not
so natural for surfaces with boundary, and so if we prefer, wecan define a
pseudo-Anosov homeomorphism for a surface with boundary asa homeo-
morphism that restricts to a pseudo-Anosov homeomorphism on the punc-
tured surface obtained by removing the boundary. Note for example that,
given any pseudo-Anosov homeomorphism on any surface, we can remove
any finite orbit to obtain a pseudo-Anosov homeomorphism on apunctured
surface.
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13.3 STATEMENT OF THE NIELSEN–THURSTON CLASSIFICATION

As remarked above, the following theorem is one of the central results in
the study of mapping class groups. The theorem is due to Thurston, but
it has a somewhat involved history, which we discuss below. The theorem
gives a classification of elements ofMod(S), where by “classification” we
mean that each element off ∈ Mod(S) is shown to have a representative
in Homeo+(S) that is one of three very specific forms, from which one can
read off a great deal of information.

Theorem 13.2 (Nielsen–Thurston classification)Let g, n ≥ 0. Eachf ∈
Mod(Sg,n) is either periodic, reducible, or pseudo-Anosov. Further,pseudo-
Anosov mapping classes are neither periodic nor reducible.

The main content of Theorem 13.2 is that every irreducible, infinite order
mapping class has a representative that is pseudo-Anosov, and so automati-
cally has a great deal of structure. We will further explore this structure and
many of its implications in Chapter 14.

A canonical form. One of the useful aspects of Theorem 13.2 comes
from the fact that whenf is reducible, one can cut along a reduction system
of simple closed curves to obtain a homeomorphism of a (possible discon-
nected, possibly with boundary) surface, and one can again apply Theo-
rem 13.2 to each of these components. Repeating this processone finally
obtains that anyf ∈ Mod(S) has a representative that breaks up into finite
order pieces and pseudo-Anosov pieces. In fact, it is possible to do this in
such a way that the only curves we cut along are the curves of the canonical
reduction system forf [27].

Corollary 13.3 (Canonical form for a mapping class) Let f ∈ Mod(S)
and let{c1, . . . , cn} be its canonical reduction system. Choose represen-
tatives of theci with pairwise disjoint closed neighborhoodsS1, . . . , Sn.
Let Sn+1, . . . , Sn+p denote the closures of the connected components of
S − ∪ni=1Si. Let ηi : Mod(Si) → Mod(S) denote the homomorphism
induced by the inclusionSi → S (see Theorem 3.18). Then there is a rep-
resentativeφ of f that permutes theSi, so that some power ofφ leaves
invariant eachSi. What is more, there exists ak ≥ 0 so thatφk(Si) = Si
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for all i and

fk =

n+p∏

i=1

ηi(fi)

wherefi ∈ Mod(Si) is a power of a Dehn twist for1 ≤ i ≤ n andfi ∈
Mod(Si) is either pseudo-Anosov or the identity forn+ 1 ≤ i ≤ n+ p.

The decomposition off given in Corollary 13.3 is analogous to the Jordan
canonical form of a matrix. Theφk|Si are the analogues of Jordan blocks.
A example schematic of the normal form is shown in Figure 13.2.

Figure 13.2 A schematic for the normal form offk in Corollary 13.3. Each subsurface is
fixed. A shaded region indicates a pseudo-Anosov component or a Dehn twist
component. An unshaded region indicates an identity component.

Ivanov showed that iff lies in the finite-index subgroupMod(Sg)[m] with
m ≥ 3, then the integerk in Corollary 13.3 can always be taken to be one
[102, Corollary 1.8].

We can sharpen Corollary 13.3 to say that an arbitrary element of Mod(S)
has a normal form, without having to take powers. The cost is that we need
to deal with the mapping class group of a disconnected surface. Letφk|Si
be a “Jordan block” forf ∈ Mod(S) as in Corollary 13.3, and say that
φk|Si is pseudo-Anosov with stretch factorλ and stable foliation(F , µ).
Say thatk0 ≤ k is the smallest positive integer so thatφk0 preservesSi.
The 〈φ〉–orbit of Si is Si, φ(Si), . . . , φ

k0−1(Si). We can push forward the
foliationF to eachφj(Si) in order to obtain a foliation on the disconnected
subsurfaceSi∪φ(Si)∪· · ·∪φk0−1(Si). Then for0 ≤ j < k0 we can define
the measure onφj⋆(F) to be the push-forward ofµ multiplied byλj/k0. We
can then regardφ as a pseudo-Anosov homeomorphism of the disconnected
surfaceSi ∪ φ(Si) ∪ · · · ∪ φk0−1(Si).

We can now deduce the sharp normal form for mapping classes. The starting
point is the statement of Corollary 13.3 as given. Instead ofraisingf to the
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powerk, though, we analyzef itself. The mapping classf acts on the set
{Sn+1, . . . , Sn+p}. We consider each orbit as a single surface, which is in
general disconnected. Denote these surfaces byS′n+1, . . . , S

′
n+q. By the

previous paragraph,f acts as either a periodic or pseudo-Anosov mapping
class on eachS′n+i. In other words, we have

f =

n+q∏

i=1

ηi(fi)

where eachfn+1, . . . , fn+q is either periodic or pseudo-Anosov. The map-
ping classesf1, . . . , fn can be thought of as roots of (powers of) multitwists.

LetS′ denote the surface obtained fromS by deleting a representative of the
canonical reduction system forf . If we instead consider the induced action
of f onS′, then we lose the information off1, . . . fn (Proposition 3.19). So
f induces an element ofMod(S′) with only pseudo-Anosov and periodic
“blocks.”

Historical remarks. Nielsen wrote a series of papers on the classifica-
tion of surface homeomorphisms in the 1920s–1940s [163, 164, 165, 167].
His approach to classifying elements ofMod(S) was to consider their in-
duced action on∂H2. Because Nielsen’s work is lengthy (spanning over 400
pages) and lacked sufficient organizing perspective, this work was largely
ignored by topologists for many years.

In 1974, Thurston developed the theory of measured foliations on surfaces
and used this to prove Theorem 13.2 as stated above.A posteriori, it be-
came clear that all of the required tools for the classification were already
discovered by Nielsen. A paper of Miller explains how to understand the
pseudo-Anosov case (the most important case) of the classification from the
Nielsen point of view [153].

Thurston did not publish the details of his proof of Theorem 13.2, although
he did distribute an announcement of his results, which appeared years later
in print [202]. This announcement is remarkable for both itsbrevity and
its richness. The first complete published proof of the classification is due
to Bers in 1978 [14], who proved the theorem from the point of view of
Teichmüller theory; see Section 13.6 below. Around the same time the
“Séminaire sur les difféomorphismes des surfaces d’apr`es Thurston,” held at
L’Université de Paris-sud à Orsay and led by Albert Fathi,François Lauden-
bach, and Valentin Poénaru, worked out the full details to Thurston’s proof.
The result is a 284 page monograph known as “FLP” [59]. The relationship
between the works of Thurston, Bers, and Nielsen is explained in a paper
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by Gilman [70]. Other points of view on Nielsen–Thurston theory are con-
tained in the writings of Handel and Thurston [79], Casson and Bleiler [43],
and Bonahon [30]. The key objects in these works are geodesiclaminations,
which are implicit in Nielsen’s work.

13.4 THURSTON’S GEOMETRIC CLASSIFICATION OF MAPPING TORI

One of Thurston’s original motivations for studying homeomorphisms of
surfaces was to understand the possible geometric structures on surface bun-
dles over the circle. Recall that anSg–bundle overS1 is fiber bundle with
fiber Sg and baseS1. Such spaces provide a rich collection of closed3–
dimensional manifolds.

SinceS1 minus one point is contractible, any bundle overS1 − {point} is
trivial. It follows that everySg–bundle overS1 is homeomorphic (even iso-
morphic as anSg–bundle) to some mapping torus of someφ ∈ Homeo(Sg).

Themapping torusfor f ∈ Mod(Sg) is defined as

Mf =
Sg × [0, 1]

(x, 0) ∼ (φ(x), 1)

whereφ ∈ Homeo+(Sg) is a representative forf . The obvious projection
Mf → S1 with fiber Sg givesMf the structure of anSg–bundle overS1.
The elementf ∈ Mod(Sg) is called themonodromyof this bundle. Note
that we have restricted to the case of orientation-preserving φ, so thatMf is
a closed, orientable3–manifold.

It is not difficult to prove that the homeomorphism type ofMf does not de-
pend on the choice of representative forf ; one can use an isotopy between
elements ofHomeo+(Sg) to construct the desired homeomorphism. Sim-
ilarly, if f andh are conjugate inMod(Sg) thenMf is homeomorphic to
Mh. However, the converse is not true: there exist many examples of non-
conjugate elementsf, h ∈ Mod(Sg) for whichMf is homeomorphic toMh.
In fact, there are examples of mapping toriMf where the set of genera of
the fibers in different fiberings overS1 is unbounded. The following theo-
rem says that the Nielsen–Thurston type of the monodromyf ∈ Mod(Sg)
alone determines the geometry that the manifoldMf admits.

Theorem 13.4 Let g ≥ 2. Let Mf denote the mapping torus forf ∈
Mod(Sg).
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1. f is periodic⇐⇒Mf admits a metric locally isometric toH2 × R.

2. f is reducible⇐⇒Mf contains an incompressible (i.e.π1–injective)
torus.

3. f is pseudo-Anosov⇐⇒Mf admits a hyperbolic metric.

The forward implications of (1) and (2) are easy. Indeed, iff is periodic then
Mf is finitely covered bySg × S1, which has universal coverH2 × R. If
f is reducible, say (for simplicity) the representativeφ fixes a curveα, then
Mf contains an incompressible torus, namelyα× S1. These facts together
with the Nielsen–Thurston classification (Theorem 13.2) imply the reverse
implication of (3), since no hyperbolic manifold has a finitecover locally
isometric toH2×R, and no hyperbolic manifold contains an incompressible
torus.

The reverse implications in (1) and (2) are not difficult to prove. The forward
implication in (3) is a deep theorem of Thurston; see [200, 168].

The torus case. Every orientable torus bundle overS1 is homeomorphic to
a mapping torusMf for somef ∈ Mod(T 2). In this case, the classification
of geometric structures on mapping tori is as follows (for descriptions of Nil
and Sol geometries, see [203]).

Theorem 13.5 LetMf denote the mapping torus forf ∈ Mod(T 2).

1. φ is periodic⇐⇒Mf is locally isometric to Euclidean3–space.

2. φ is reducible⇐⇒Mf is locally isometric to Nil geometry.

3. φ is Anosov⇐⇒Mf is locally isometric to Sol geometry.

For a further discussion of these topics, we refer the readerto the paper of
Scott [183].

13.5 THE COLLAR LEMMA

The following useful lemma in hyperbolic geometry implies that if a closed
geodesicα in a hyperbolic surface is very short, then every closed geodesic
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β with i(α, β) > 0 must be long. This lemma will be an essential ingredient
in our proof of the Nielsen–Thurston classification.

Lemma 13.6 (Collar lemma) Let γ be a simple closed geodesic on a hy-
perbolic surfaceX. ThenNγ = {x ∈ X : d(x, γ) ≤ w} is an embedded
annulus, wherew is given by

w = sinh−1

(
1

sinh(1
2ℓ(γ))

)
.

Proof. Choose a pants decomposition forX where each of the curves in
the decomposition is a geodesic, and whereγ is one of the curves. LetP
be a pair of pants that hasγ as one of its boundary components. As in
Proposition 10.5, we cutP into two isometric right angled hexagonsH and
H ′. Label the alternating sides ofH that correspond to the boundary curves
of P by c1, c2, andc3. For eachi, letNi be the metric neighborhood ofci of
width sinh−1(1/ sinh(ℓ(ci))) inH. If we show that theNi are disjoint, then
there cannot possibly be any identifications for theNi in P (or in X). We
therefore obtain the desired annulus by considering the above for pants on
each side ofγ, and taking two metric neighborhoods in each of these pants,
one for each hexagon.

For the following argument, refer to Figure 13.3. Letα be the shortest
geodesic fromc3 to the opposite side ofH. The arcα cutsH into two
right angled pentagons. LetP1 be the pentagon that containsc1. Theright-
angled pentagon formulasays that ifa andb are adjacent sides of a right
angled hyperbolic pentagon, andc is the side opposite their common vertex,
then

sinh(a) sinh(b) = cosh(c)

(see equation (V.1) in [62,§8,1]). Applied toP1, the right-angled pentagon
formula gives

sinh(d) sinh(ℓ(c1)) = cosh(c)

whered is the distance betweenc1 andα, andc is the length of the intersec-
tion of c3 with P1. Sincecosh(c) > 1, we have that

d > sinh−1

(
1

sinh(ℓ(c1))

)
.
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ThusN1 is strictly contained inP1. Similarly, N2 is also disjoint froma,
and soN1 ∩ N2 = ∅. By symmetry,N1 andN2 are both disjoint fromN3

and the lemma follows. 2

Note that our proof of the collar lemma really shows something stronger
than the statement of the lemma: we found annuli of the given size that are
not only embedded, but are also disjoint from each other.

a

c1

c2

c3

N1

d

Figure 13.3 The picture for the collar lemma.

The collar construction for Riemann surfaces first appears in the work of
Linda Keen [116]. The sharp version given in Lemma 13.6 is dueto Matel-
ski [138].

For our proof of the Nielsen–Thurston classification, we will not need the
precise statement of Lemma 13.6. Rather, we will only need the following
much weaker statement, sometimes attributed to Margulis.

Corollary 13.7 Let S be a surface withχ(S) < 0. There is a constant
δ = δ(S) such that ifX is any (complete, finite area) hyperbolic surface
homeomorphic toS, then any two distinct closed geodesics of length less
thanδ are disjoint.
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13.6 PROOF OF THE CLASSIFICATION THEOREM

In order to prove the Nielsen–Thurston classification theorem (Theorem 13.2),
it makes sense to try to mimic the proof we gave for the torus case (Theo-
rem 13.1). SinceMod(S) can be identified with a subgroup ofIsom+(Teich(S)),
we can hope to classify elements ofMod(S) by using the geometry of
Teich(S) to classify elements ofIsom+(Teich(S)).

In Chapter 1 we classified elements ofIsom+(Teich(T 2)) ≈ Isom+(H2)
as follows. We used the fact that any isometryφ ∈ Isom+(H2) induces a
homeomorphismφ of the closed diskH2∪∂H2. We then applied Brouwer’s
fixed point theorem toφ to obtain a fixed point inH2 ∪ ∂H2. Analyzing the
number and location of the fixed points ofφ gave the desired trichotomy. In
order to pursue this idea for higher genusS, we would need a compatifica-
tion of Teich(S) that is homeomorphic to a closed ball. Thurston’s original
proof of the Nielsen–Thurston classification theorem was infact to con-
struct such a compactification. The points of his compactification (besides
the points ofTeich(S)) are projective classes of measured foliations onS;
see [59] for full details and Chapter 15 of this book for a brief discussion.

Translation length. There is another way to classify elements ofIsom(H2).
For any metric spaceX and anyφ ∈ Isom(X) we define thetranslation
lengthτ(φ) by

τ(φ) = inf
x∈X
{d(x, φ(x))}.

The isometryφ then falls into exactly one of the following three categories:

1. Elliptic: τ(φ) = 0 and is realized.

2. Parabolic: τ(φ) is not realized.

3. Hyperbolic: τ(φ) > 0 and is realized.

WhenX = H2 this classification is compatible with the classification via
the number of fixed points inH2 ∪ ∂H2 discussed above.

The Bers proof of the Nielsen–Thurston classification theorem proceeds by
analyzing elementsf ∈ Mod(Sg,n) via their isometric action onTeich(Sg,n).
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13.6.1 SETUP

Let S = Sg,n and letf ∈ Mod(S). We recall thatf acts onTeich(S) as
an isometry of the Teichmüller metric. We will derive the Nielsen–Thurston
classification via the trichotomy of isometries of the metric spaceTeich(S).
Specifically, we will show:

1. f is elliptic in Isom(Teich(S)) =⇒ f is periodic inMod(S).

2. f is parabolic inIsom(Teich(S)) =⇒ f is reducible inMod(S).

3. f is hyperbolic inIsom(Teich(S)) =⇒ f is pseudo-Anosov inMod(S).

At the end, we will show that pseudo-Anosov mapping classes can be nei-
ther periodic nor reducible.

We remark that, in contrast to the case of parabolic isometries ofH2, there
exist reducible mapping classesf ∈ Mod(S) for whichτ(f) is positive and
not realized. See the notes at the end of the proof for a discussion of this
case.

13.6.2 THE ELLIPTIC CASE

If f is an elliptic element ofIsom(Teich(S)), then by definitionf fixes a
point ofTeich(S). We have already observed at the start of Chapter 12 that
if f fixes a point ofTeich(S) thenf is periodic.

13.6.3 THE PARABOLIC CASE

Assume thatf is parabolic as an element ofIsom(Teich(S)). We need to
find anf–invariant collection of isotopy classes of pairwise disjoint simple
closed curves inS. Let (Xn) be a sequence inTeich(S) with the property
thatd(Xn, f · Xn) → τ(f). We will produce the required reducing system
as a set of short simple closed curves onXn for n large.

Step 1. The projection of(Xn) toM(S) leaves every compact set inM(S).

Suppose to the contrary that these projections lie in a fixed compact set in
M(S). Then for some choice ofhi ∈ Mod(S) the sequence(hn · Xn)
stays in a fixed compact region ofTeich(S). Denotehn · Xn by Yn. By
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compactness, there is a subsequence of(Yn) that converges to a pointY ∈
Teich(S). SinceMod(S) acts onTeich(S) by isometries we have

d(Yn, hnfh
−1
n · Yn)= d(h−1

n · Yn, f · (h−1
n · Yn)) = d(Xn, f · Xn),

and so

lim
n→∞

d(Yn, hnfh
−1
n · Yn) = lim

n→∞
d(Xn, f · Xn) = τ(f).

We claim that

d(Y, hkfh
−1
k · Y) = τ(f)

for somek.

Let n be fixed. Applying the triangle inequality to the four pointsY, Yn,
hnfh

−1
n · Yn, andhnfh−1

n · Y we obtain

d(Y, hnfh
−1
n ·Y) ≤ d(Y,Yn)+d(Yn, hnfh−1

n ·Yn)+d(hnfh−1
n ·Yn, hnfh−1

n ·Y).

Now let n → ∞. SinceYn → Y, the first and last terms on the right hand
side tend to zero, and the middle term tends toτ(f). Therefore

lim
n→∞

d(Y, hnfh
−1
n · Y) = τ(f).

By proper discontinuity of theMod(S) action onTeich(S) (Theorem 12.2),
we have that the sequencehnfh−1

n is eventually constant, that is, there is
someN so thathnfh−1

n = hNfh
−1
N whenn ≥ N . Thus

d(Y, hNfh
−1
N · Y) = τ(f),

which proves the claim.

It follows that

d(h−1
N · Y, f · (h−1

N · Y)) = τ(f),

which contradicts the assumption thatτ(f) is not realized. Thus it must be
the case that(Xn) leaves every compact set ofM(S).

Step 2. Finding a reduction system forf .

ForX ∈ Teich(S), letℓ(X) denote the length of the shortest essential simple
closed curve inX. By Mumford’s compactness criterion (Theorem 12.6),

lim
n→∞

ℓ(Xn) = 0.
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By Wolpert’s lemma (Lemma 12.5), there existsK > 1, depending only on
τ(f), such that for anyX,Y ∈ Teich(S), if d(X,Y) ≤ τ(f)+1 thenℓX(c) ≤
KℓY(c) for any isotopy class of simple closed curvesc in S. ChooseM
large enough so that

· d(XM , f · XM ) < τ(f) + 1, and

· ℓ(XM ) < (1/K)3g−3+nδ

where δ is the constant from the corollary of the collar lemma (Corol-
lary 13.7).

Let c0 be an isotopy class of simple closed curves inS with ℓXM
(c0) =

ℓ(XM ). For each2 ≤ i ≤ 3g − 3 + n let

ci = f−1ci−1 = f−ic0.

Then

ℓXM
(f−ic0) = ℓf iXM

(c0) ≤ KiℓXM
(c0) < δ.

By the definition of the constantδ from Corollary 13.7, the simple closed
curves{c0, . . . , c3g−3+n} must be mutually disjoint. But there are at most
3g−3+n isotopy classes of pairwise disjoint essential simple closed curves
in S (cf. Section 8.3). Thus it must be that two of theci are in the same
homotopy class. It follows thatfk(c0) = c0 for somek > 0, so thatf
permutes the collection of isotopy classes{c0, c1, . . . ck−1}. Thusf is re-
ducible.

13.6.4 THE HYPERBOLIC CASE

Assume thatf is hyperbolic as an element ofIsom(Teich(S)). Let X be a
point ofTeich(S) that satisfiesd(X, f ·X) = τ(f) > 0. By Theorem 11.19
there is a unique bi-infinite geodesicγ passing throughX andf · X, and
moreoverγ is a Teichmüller line.

Our goal is to show thatf is pseudo-Anosov. We will do this by first proving
that f leavesγ invariant and acts on it by translation byτ(f). Intuitively
this means thatf should have a representative that is a Teichmüller map and
hence that “looks like” a pseudo-Anosov homeomorphism. We now make
this precise.

Step 1.f leavesγ invariant.
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Let Y ∈ γ be any point in the interior of the geodesic segment fromX to
f · X. By the triangle inequality and the fact thatf acts by isometries on
Teich(S) we have

d(Y, f · Y)≤ d(Y, f · X) + d(f · X, f · Y)

= d(Y, f · X) + d(X,Y)

= d(X, f · X)

= τ(f)

The minimality ofτ(f) implies thatd(Y, f · Y) = τ(f). In particular this
means that the first inequality above is an equality, that is

d(Y, f · Y) = d(Y, f · X) + d(f · X, f · Y).

Thusf ·X must lie on the unique Teichmüller lineγ′ passing throughY and
f · Y. Asγ andγ′ agree on the nontrivial geodesic segment fromY to f ·X,
and since all geodesics inTeich(S) are Teichmüller lines (Theorem 11.19),
it follows thatγ′ andγ are the same Teichmüller line, and in particularf ·Y
lies onγ. Since we have shown thatY realizesτ(f), we can apply the same
argument to the geodesic segment fromY to f · Y. Thus the image of this
segment is contained inγ, and in particularf2 · X lies onγ. Repeating the
argument inductively, we see thatf · γ = γ and in particular thatf i · X lies
onγ for all i ∈ Z.
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X

Y

f · X

f · Y

f2 · X

Figure 13.4 Whenf is hyperbolic andτ (f) is realized atX, thenX, f · X, andf2 · X must
be colinear.

Fix a marked Riemann surface(X,ψ) representingX and letφ : X → X
be the Teichmüller mapping in the homotopy classψ ◦ f ◦ ψ−1 (this is the
map whose dilatation determinesdTeich(X, f · X)). Say that the horizontal
stretch factor ofφ is equal to the dilatationKφ (as opposed to1/Kφ).

Step 2. The mapφ2 : X → X is a Teichm̈uller mapping with horizontal
stretch factorK2

φ.
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The quasiconformal homeomorphismφ2 lies in the homotopy classψ ◦f2 ◦
ψ−1. SinceKφ1◦φ2

≤ Kφ1
Kφ2

for any two quasiconformal homeomor-
phismsφ1 andφ2 (Proposition 11.3), we haveKφ2 ≤ K2

φ. Therefore

dTeich(X, f2 · X)≤ 1

2
logKφ2

≤ 1

2
logK2

φ

= 2

(
1

2
logKφ

)

= 2 dTeich(X, f · X)

It follows from Step 1 thatdTeich(X, f2 · X) = 2 dTeich(X, f · X). Thus the
first inequality above is an equality. By Teichmüller’s uniqueness theorem
(Theorem 11.9) the mapφ2 is the unique Teichmüller map in the homotopy
class ofψ ◦ f2 ◦ ψ−1.

Step 3. The initial and terminal quadratic differentials for φ onX are equal.

Let q, q′ ∈ QD(X) denote the initial and terminal quadratic differentials
for φ. Forp ∈ X such thatq(p) 6= 0, the image underφ of the unit circle
in Tp(X) is an ellipseE in Tφ(p)(X). The direction inTp(X) of maximal
stretch fordφ is the direction of the horizontal foliation forφ. The major
axis ofE has lengthKφ and lies in the direction of the horizontal foliation
for q′.

Sinceφ2 is a Teichmüller mapping with horizontal stretch factorK2
φ, it fol-

lows that the direction inTφ(p) of maximal stretch forφ at φ(p) must be
the direction of the major axis forE (Lemma 11.2), that is, the direction of
the horizontal foliation forq′. But again the direction of maximal stretch
for φ at any point ofX is the direction of the horizontal foliation forq. We
have thus shown that the horizontal foliations forq andq′ coincide at every
point p ∈ X for which q(p) 6= 0. Thus the horizontal foliations forq andq′

coincide on all ofX.

Away from the zeros ofq there are natural coordinates forq whereq is given
by dz2. In these coordinates the horizontal foliation forq is represented by
horizontal lines. In these same coordinates, the horizontal foliation for q′

must then also be given by horizontal lines, and so it must be thatq′ is given
byC dz2 for someC. It follows that the continuous functionq′/q : X → C
is equal to the constant functionC. Since the initial and terminal quadratic
differentials for a Teichmüller mapping have the same Euclidean area, it
must be thatC = 1. Thusq = q′.
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Let (F , µ) be the transverse measured foliation onX given by the horizon-
tal foliation for q. In natural coordinates around a nonsingular point, the
foliation F is the horizontal foliation and the measureµ is |dy|.

Step 4. We haveφ · (F , µ) = (F ,Kφ µ).

Any Teichmüller mapping takes the horizontal foliation for its initial dif-
ferential to the horizontal foliation for its terminal differential. We showed
that these differentials, hence the associated horizontalfoliations, are equal.
Thusφ(F) = F . It remains to show that ifα is an arc inX transverse to
F thenµ(φ−1(α)) = Kφµ(α). But this immediately follows from the fact
thatφ is a Teichmüller mapping with horizontal measured foliation (F , µ).

Step 5. The mapping classf is pseudo-Anosov with stretch factorKφ.

We have shown in Step 4 thatφ · (F , µ) = (F ,Kφ µ) where(F , µ) is the
measured foliation onX coming from the horizontal foliation forq. How-
ever, there is a symmetry between the horizontal and vertical foliations for
q: we can also describe the Teichmüller mapφ as having initial differential
iq and horizontal stretch factor1/Kφ. Thus, by symmetry,φ fixes the hor-
izontal foliationF ′ for iq, which is the same as the vertical foliation forq,
and multiplies the measureµ′ by the horizontal stretch factor1/Kφ. The
measured foliations(F , µ) and (F ′, µ′) are stable and unstable foliations
for φ. Thusφ is a pseudo-Anosov homeomorphism ofX, andψ−1 ◦φ◦ψ is
a pseudo-Anosov homeomorphism ofS, with stable and unstable foliations
(ψ−1(F), ψ⋆(µ)) and(ψ−1(F ′), ψ⋆(µ′)) and with stretch factorλ = Kφ.

13.6.5 EXCLUSIVITY

The only thing left to prove is the exclusivity statement of the theorem,
namely that pseudo-Anosov mapping classes are neither periodic nor re-
ducible. As part of Theorem 14.23 below, we will prove that, if f ∈
Mod(S) is pseudo-Anosov, andα is a simple closed curve inS, and we
endowS with the singular Euclidean metric induced by the stable andun-
stable foliations, then the length of the geodesic isotopicto fn(α) tends to
infinity asn tends to infinity. On the other hand, this is false for periodic
and reducible mapping classes because, in either case, there is at least one
isotopy class of simple closed curves that is fixed by a power of f . We em-
phasize that the proof of Theorem 14.23 only relies on the definition of a
pseudo-Anosov mapping class. This completes the proof of Theorem 13.2.
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13.6.6 NOTES ON THE PROOF OF THEOREM 13.2

We can distinguish among the parabolic isometries ofTeich(S) those with
τ = 0 and those withτ > 0. The latter correspond to mapping classes that
have a pseudo-Anosov component in the sense of Corollary 13.3.

A geodesic in Teichmüller space fixed by a pseudo-Anosov mapping class is
called anaxis for that mapping class. It turns out that the axis for a pseudo-
Anoov mapping class is unique, but this does not follow from our proof of
Theorem 13.2. For a proof see [137, Theorem 9.2].

Bers’ approach to proving the exclusivity statement of Theorem 13.2 is to
show that a reducible mapping class gives a parabolic isometry of Teich(S)—
this is the converse of the parabolic case of the proof. The idea is that contin-
ually shrinking the reducing curves continually reduces the corresponding
stretch factors.



Chapter Fourteen

Pseudo-Anosov theory

The power of the Nielsen–Thurston classification is that it gives a simple
criterion for an elementf ∈ Mod(S) to be pseudo-Anosov:f is neither
finite order nor reducible. This fact, however, is only as useful as the depth
of our knowledge of pseudo-Anosov homeomorphisms. The purpose of this
chapter is to study pseudo-Anosov homeomorphisms: their construction,
their algebraic properties, and their dynamical properties.

Anosov maps of the torus. An Anosov homeomorphism of the torus
T 2 is a linear representative of an Anosov mapping class. As discussed in
Section 13.1, an Anosov homeomorphismφ : T 2 → T 2 has an associated
“Anosov package.” The geometric picture of the action ofφ onT 2 is quite
explicit.

The mapφ, considered as an element inSL(2,Z), has two distinct real
eigenvaluesλ > 1 andλ−1. These eigenvalues arequadratic integers, that
is, they are roots of degree 2 integer polynomials. The diffeomorphismφ
preserves two foliationsFu andFs on T 2; these are the projections toT 2

of the foliations ofR2 by lines parallel to theλ andλ−1 eigenspaces of the
matrixφ. The mapφ stretches each leaf ofFu by a factor ofλ and contracts
each leaf ofFs by a factor ofλ−1. The eigenspaces are lines with irrational
slope, from which it follows that each leaf ofFu and ofFs is dense inT 2.

It is an easy exercise to check thatφ–periodic points are dense. From basic
linear algebra one can see that, for the generic vectorv ∈ R2, the vector
φn(v) “converges to” a vectorλnvu, wherevu is a unit vector pointing in
the direction ofFu. More precisely the directions converge:

φn(v)

|φn(v)| → ±vu

and the magnitudes converge:

n
√
|φn(v)| → λ.
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One main goal of this chapter is to describe a “pseudo-Anosovpackage,”
which extends the above picture of Anosov homeomorphisms onT 2 to
pseudo-Anosov homeomorphisms onSg, whereg ≥ 2.

14.1 FIVE CONSTRUCTIONS

The first basic question to address is: “Do pseudo-Anosov mapping classes
actually exist?” The answer is of course “yes,” although it is a nontrivial
matter to give explicit examples. In this section we explainfive different
constructions of pseudo-Anosov homeomorphisms.

14.1.1 BRANCHED COVERS

One way to construct a pseudo-Anosov homeomorphism is to lift an Anosov
homeomorphism of the torus via a branched (or unbranched) covering map.
Recall from Chapter 7 that an orbifold coverp : S → S′ is a map obtained
by a finite group action onS. We also call such a cover abranched cover,
since it is a true covering map in the complement of some finitecollection
of pointsB in S′. Elements ofB are calledbranch points. The mapp is
locally given by the complex mapz 7→ zki , with ki > 1, around each point
of p−1(B) in S. Recall from Section 11.2 that forg ≥ 2, there is a 2–fold
branched coverSg → T 2 with 2g − 2 branch points.

Fix a branched covering mapp : S → T 2. Let φ be an Anosov homeo-
morphism of the torus, for example the linear map ofT 2 associated to any
A ∈ SL(2,Z) with | tr(A)| > 2. Since each rational point ofT 2 is a peri-
odic point ofφ, we can changeφ by isotopy and pass to a power ofφ so that
φ fixes pointwise the setB of branch points ofp. Passing to a further power
of φ if necessary, we can assume thatφ lifts to a homeomorphismψ of S
(to see this, consider the action ofφ on the finite set of index 2 subgroups of
π1(T

2 −B)).

As ψ has the same local properties asφ, we see thatψ is a pseudo-Anosov
homeomorphism ofS; indeed, the stable and unstable foliations forψ are
the preimages underp of those forφ. Above each branch point inT 2, the
foliations forψ each have a singularity with an even number prongs.

By considering branched (or unbranched) coverings over higher genus sur-
faces, this construction can be used to convert pseudo-Anosov mapping
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classes on any surface to pseudo-Anosov mapping classes on higher genus
surfaces.

14.1.2 DEHN TWIST CONSTRUCTIONS

We now present an elementary construction of pseudo-Anosovmapping
classes due to Thurston [202], and a related one due to Penner. Let S =
Sg,n. We say that a collection of isotopy classes of simple closedcurves in
S fills S if any simple closed curve inS has positive geometric intersection
with some isotopy class in the collection (see, e.g., Figure1.7).

If A = {α1, . . . , αn} is a multicurve in a surfaceS, we denote the product∏n
i=1 Tαi by TA. Such a mapping class is often called amultitwist.

Theorem 14.1 (Thurston’s construction) SupposeA and B are multic-
urves inS so thatA ∪ B fills S. There is a real numberµ = µ(A,B),
and a representationρ : 〈TA, TB〉 → PSL(2,R) given by

TA 7→




1 µ1/2

0 1


 TB 7→




1 0

−µ1/2 1




with the following properties:

1. An elementf ∈ 〈TA, TB〉 is periodic, reducible, or pseudo-Anosov
according to whetherρ(f) is elliptic, parabolic, or hyperbolic.

2. Whenρ(f) is parabolicf is a multitwist.

3. Whenρ(f) is hyperbolic the pseudo-Anosov mapping classf has
stretch factor equal to the larger of the two eigenvalues ofρ(f).

In the special case whereA andB are single curves, sayA = {α} and
B = {β}, the real numberµ in Theorem 14.1 is equal toi(α, β)2, and so
the representationρ becomes

Tα 7→




1 i(a, b)

0 1


 Tβ 7→




1 0

−i(a, b) 1


 .
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It is nontrivial to construct a pair of filling curves for an any given surface;
see Proposition 3.5 for such a construction. On the other hand, it is quite
easy to find a pair of multicurves that fill a given surface.

Recall from Section 3.5 that, forn ≥ 2, the matrices( 1 n
0 1 ) and( 1 0

n 1 ) gen-
erate a free group of rank 2 insideSL(2,Z). From this, Theorem 14.1, and
the Hopfian property for free groups [135, Theorem 2.13], it follows that,
whenµ ≥ 4 the group〈TA, TB〉 is isomorphic to a free group of rank2 and
thatρ is injective. Also, one can deduce that〈TA, TB〉 contains no periodic
elements, and any reducible element it contains is conjugate to a power of
TA, TB or (whenµ = 4) to TATB . Finally, one can show that the image of
ρ is a discrete subgroup ofPSL(2,R).

Perron–Frobenius matrices. The proof of Theorem 14.1 relies on the
basic theory of Perron–Frobenius matrices, which we now explain.

We say that a matrix ispositive(resp.nonnegative) if each of its entries is
positive (resp. nonnegative). The above description ofNN t clearly implies
that it is nonnegative. A nonnegative matrix isirreducible if it has a power
that is a positive matrix.

The following is a fundamental theorem in the study of irreducible integer
matrices. See for example [67,§XIII.2].

THEOREM 14.2 (Perron–Frobenius theorem)LetA be ann × n matrix
with integer entries. IfA is irreducible thenA has a unique nonnegative
unit eigenvectorv. The vectorv is positive and has positive eigenvalue that
is larger in absolute value then all other eigenvaluesλ.

The eigenvector ofA in the statement of Theorem 14.2 is called thePerron–
Frobenius eigenvectorof A. The eigenvalueλ in the theorem is called the
Perron–Frobenius eigenvaluefor A.

We will now prove Theorem 14.1 as an application of Theorem 14.2.

Proof of Theorem 14.1.The idea for proving the theorem is to find a singu-
lar Euclidean structure (cf. Section 11.2 and Section 11.3)onS with respect
to which 〈TA, TB〉 acts by affine transformations. Here, an affine map is
one that, in local charts away from the singularities, is of the formMx+ b,
whereM is a linear map andb is a vector.

The singular Euclidean structure we construct will have theadded feature
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that it comes equipped with an orthonormal frame field, well-defined up to
sign. Thus, given any affine map onS, its derivative can be described by a
2 × 2 matrix, well-defined up to sign. The representationρ will assign to
each affine map in〈TA, TB〉 its differential:ρ(h) = Dh.

Assume that the components ofA andB are in minimal position. Since
A andB fill S, each complementary component ofA ∪ B is a disk, each
with at most one marked point. As in Section 11.2, the unionA ∪ B gives
a cell decomposition ofS, and the dual cell complexC is another cell de-
composition ofS (if a 2–cell of the first cell decomposition has a marked
point in its interior, then that marked point is taken to be a vertex of the dual
decompositionC). Each 2–cell ofC is a square, corresponding to a point
of intersection of an element ofA with an element ofB.

In order to go from the cell decompositionC of S to a singular Euclidean
structure onS, we simply need to assign a length to each 1–cell ofC. We
can do this by assigning a “width” to each curve ofA and to each curve of
B. Then the length of a 1–cell ofC is declared to be the width of the unique
curve ofA ∪B that intersects it.

Consider the case whereA andB are single curves. If we take the length
and width of each square ofC to be 1, thenTA andTB act affinely on the
resulting Euclidean structure. In the general case it is a more delicate matter
to find a singular Euclidean structure on whichTA andTB act affinely. We
now explain how to do this.

Say thatA = {α1, . . . , αm} andB = {β1, . . . , βn}. LetN be the matrix
with (j, k) entry

Nj,k = i(αj , βk).

GivenN , letG be the abstract bipartite graph withm red vertices andn blue
vertices, andNj,k edges between thejth red vertex and thekth blue vertex.
Then the(j, k) entry of thedth power(NN t)d is equal to the number of
paths inG of length2d between thejth andkth red vertices inG.

We claim thatNN t is irreducible. Indeed, this is equivalent to the statement
that the graphG is connected. IfG were not connected, that would mean
thatA ∪B is not connected, and so the pair{A,B} does not fillS.

We can thus apply the Perron–Frobenius theorem (Theorem 14.2). Denote
the Perron–Frobenius eigenvalue and eigenvector forNN t by µ andV , re-
spectively. So

NN tV = µV.
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Interchanging the roles ofA andB, the Perron–Frobenius eigenvalue for
N tN is still µ:

N tNV ′ = µV ′.

HereV ′ is chosen to beµ−1/2N tV . In this case we have the formulaV =
µ−1/2NV ′.

The singular Euclidean structure on whichTA andTB act affinely can now
be given: assign a width ofVi to αi and a width ofV ′j to βj . The union of
rectangles ofC intersectingαi is an annulus of widthVi and circumference
µ1/2Vi. Similarly the annulus alongβj has widthV ′j and circumference

µ1/2V ′j .

After orientingA andB the singular Euclidean structure has an obvious
choice of orthogonal frame field, well defined up to multiplication by±1.
Specifically, we choose a positively-oriented basis so thatthe first vector is
parallel toA and the second vector is parallel toB. To see that the ambiguity
of ±1 is really an issue, consider a situation where two curves ofA and
B intersect twice with opposite sign, and follow the frame field along the
corresponding loop.

In this singular Euclidean structure the multitwistsTA andTB can be chosen
to be affine. These affine maps fix the 1–cells ofC parallel toA andB, re-
spectively. The actions ofTA andTB on equivalence classes of frame fields
is then given exactly by the classes of the matrices given in the statement of
Theorem 14.1. This action can be verified by checking on the generators.

What we have just described is indeed a well-defined map from〈TA, TB〉
to the group of affine automorphisms ofS. The reason for this is that if an
affine map ofS is isotopic to the identity then it is the identity.

We now finish the proof of the theorem. Letf ∈ 〈TA, TB〉. The classifi-
cation of elements ofSL(2,R) induces a classification forSL(2,R), and so
ρ(f) is either elliptic, parabolic, or hyperbolic.

If ρ(f) is elliptic thenf has a power that fixes the orthonormal frame field
of S (up to sign) at every point. Also, by construction,f fixes each singular
point of the metric. Thus,f has a power that acts as the identity in the
neighborhood of some singular point. Sincef is affine, it follows thatf is
periodic.

If ρ(f) is parabolic then its eigenspace is one–dimensional and induces a
foliation onS. Consider a leaf of this foliation starting from a singular point
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of the metric. If this leaf has an accumulation point, then itfollows that
f fixes a neighborhood of this accumulation point, and so, as above, f is
the identity. Thus, we may assume that all the collection of leaves starting
from singular points is a collection of closed curves. As these closed curves
are geodesics in the singular Euclidean metric they are all homotopically
nontrivial. Sincef fixes this collection, it follows thatf is reducible. What
is more, if we cutS along the reducing curves we obtain a foliation without
singularities. By the Euler–Poincaré formula (Proposition 11.4), the cut
surface must be a collection of annuli. In particular,f is a multitwist about
the reducing curves.

Finally, if ρ(f) is hyperbolic then the eigenspaces ofρ(f) define two trans-
verse measured foliations,f multiplies the measure of one foliation by the
larger eigenvalue ofρ(f), andf multiplies the measure of the other folia-
tion by the smaller eigenvalue ofρ(f) (the foliations have singularities at
the singular points of the Euclidean structure). Thusf is pseudo-Anosov
and its stretch factor is given by the larger eigenvalue ofρ(f). 2

Pseudo-Anosov mapping classes in the Torelli group.Nielsen conjec-
tured that there are no pseudo-Anosov elements of the Torelli groupI(Sg)
[163]. That is, he conjectured there are no homeomorphismsφ of a surface
S with the property that for every simple closed curveα and everyn 6= 0
the curvesφn(α) andα are homologous but not homotopic.

One application of Thurston’s construction (Theorem 14.1), which accom-
panied the announcement of his proof of the classification [202], is that it
makes it easy to see that Nielsen’s conjecture is false: one just takes each
curve in the construction to be separating.

Corollary 14.3 Let g ≥ 2. The Torelli subgroup ofMod(Sg) contains
pseudo-Anosov elements.

The example of a product of twists of separating curves actually lies in the
infinite index subgroupK(Sg) of I(Sg) (recall from Section 6.5 thatK(Sg)
is defined to be the subgroup ofMod(Sg) generated by twists about sepa-
rating curves). It is also possible to use the Thurston construction to find a
pseudo-Anosov element ofI(Sg)−K(Sg). This is tricky because, in order
to use a bounding pair map, the two curves of the bounding pairmust belong
to different multicurves of the construction.

Consider the mapping classT−1
a2 T

−1
a1 Tb2Tb1 , where the curves are as shown
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in Figure 14.1. This mapping class is pseudo-Anosov by Theorem 14.1, it is
in I(Sg) since it is the product of a bounding pair map with a pair of Dehn
twists about separating curves, and it is not inK(Sg) since it is not in the
kernel of the Johnson homomorphism (see Section 6.5).

a1

a2b1

b2

Figure 14.1 A multicurve that yields a pseudo-Anosov element of I(S3) − K(S3) via the
Thurston construction.

Penner’s construction. Penner gives the following very general construc-
tion of pseudo-Anosov mapping classes.

Theorem 14.4 (Penner’s construction)LetA = {α1, . . . , αn} andB =
{β1, . . . , βm} be multicurves in a surfaceS that together fillS. Any product
of positive powers of theTαi and negative powers of theTβi

, where eachαi
and eachβi appears at least once, is pseudo-Anosov.

In the statement of Theorem 14.4 the twists can appear in any order, for
exampleTα1

T−3
β1
T 2
α2

.

Penner has conjectured that every pseudo-Anosov element ofthe mapping
class group has a power that is given by this construction [172, p. 195]. This
is a difficult conjecture to disprove. For instance, one can use the Thurston
construction to find pseudo-Anosov mapping classes that arenot a priori
given by Theorem 14.4. However, how can one tell if there is oris not
another way to write the same element as a product of Dehn twists so that,
in that form, it is given by the Penner construction?

The idea of Penner’s proof of Theorem 14.4 is that one can explicitly find
the train track (see Chapter 15) associated to the square of any such element.
The train track is obtained by “smoothing” out the subsetA ∪ B of S; see
[172].
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14.1.3 HOMOLOGICAL CRITERION

Let S = Sg or S = Sg,1 with g ≥ 2. We now explain how to detect
pseudo-Anosov maps via the symplectic representation ofMod(S), given
in Section 6.5. The original version of this criterion is dueto Casson–Bleiler
[43].

We say that an polynomial issymplectically irreducibleoverZ if it cannot be
written as a product of two polynomials, each of which is the characteristic
polynomial of a matrix inSp(2g,Z). In particular, irreducible polynomials
are symplectically irreducible.

As noted in Section 6.1, the roots of the characteristic polynomial of a sym-
plectic matrix come in pairsλ, λ−1. Since the coefficients of a polynomial
are symmetric functions of its roots, and since the roots arepaired, an easy
argument gives that the characteristic polynomialf(x) = xn+an−1x

n−1 +
· · · + a1x + 1 of any integral symplectic matrix is monic andpalindromic,
which means thatak = an−k for eachk. Thus it is much easier to be sym-
plectically irreducible than to be irreducible.

Theorem 14.5 Let f ∈ Mod(S) and letΨ(f) be its image inSp(2g,Z)
under the standard symplectic representation. LetPf (x) denote the charac-
teristic polynomial of the matrixΨ(f). Suppose that each of the following
conditions holds:

1. Pf (x) is symplectically irreducible overZ.

2. Pf (x) is not a cyclotomic polynomial.

3. Pf (x) is not a polynomial inxk for anyk > 1.

Thenf ∈ Mod(S) is pseudo-Anosov.

Note that iff satisfies the criteria of Theorem 14.5 then every element of
the cosetfI(S) satisfies the criteria, hence is pseudo-Anosov. Of course, in
consideration of Corollary 14.3, there is no hope for any kind of converse to
Theorem 14.5.

Proof. We show that iff is not pseudo-Anosov, thenPf (x) fails to sat-
isfy one of the given conditions. By the Nielsen–Thurston classification
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(Theorem 13.2), iff is not pseudo-Anosov then eitherf is periodic orf is
reducible (or both). We deal with each in turn.

If f is periodic of ordern thenΨ(f)n is the identity matrix, and so each root
of Pf (x) is annth root of unity. Letζ be one such root. The cyclotomic
polynomial associated toζ dividesPf (x). Since cyclotomic polynomials
are monic, palindromic, and of even degree, they are characteristic polyno-
mials of symplectic matrices. It follows thatPf (x) is either symplectically
reducible overZ or is a cyclotomic polynomial, and so we are done in this
case.

If f is reducible then we have two (again, overlapping) subcases: either
some power off fixes the isotopy class of a nonseparating reducing curve
in S, or f permutes a collection of nontrivial isotopy classes of disjoint
separating curves.

For the first subcase, sayfn(c) = c for some isotopy classc of nonsep-
arating simple closed curves inS. Sincec represents a nontrivial element
of H1(S; Z) it follows thatΨ(f)n has an eigenvalue of1 and soΨ(f) has
an eigenvalue that is annth root of unity. As in the periodic case, this im-
plies thatPf (x) is either symplectically reducible or is cyclotomic, and this
completes the proof in this subcase.

For the second subcase, suppose thatf permutes the isotopy classes of some
collection of disjoint, essential, separating simple closed curves. Letγ be a
simple closed curve in this collection, and assume that the other curves in
this collection all lie on one side ofγ, that is,γ is an “innermost” curve in
the collection. LetR be a closed subsurface ofS that hasγ as its boundary
and that does not contain any other curves of the collection.It follows that
the subsurfaces{f i(R)} are mutually disjoint (there may be only one of
them); see Figure 14.2. Suppose thatfn fixes the isotopy class ofγ and let
T be the complement of the∪f i(R). By the Mayer–Vietoris sequence for
homology we have

H1(S; Z) = V0 ⊕ · · · ⊕ Vn−1 ⊕ Vn

whereVi is the image ofH1(f
i(R); Z) in H1(S; Z) under the map induced

by inclusionf i(R)→ S for 0 ≤ i ≤ n−1, andVn is similarly the image of
H1(T ; Z). This decomposition gives rise to a choice of basis forH1(S; Z);
namely, the first set of basis elements is an arbitrary basis for V0, the next
set of basis elements is the image of the first basis underf∗, and so on for
the firstn− 1 factors. Finally we add an arbitrary basis forVn. Under such
a basisΨ(f) is of the form
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c = f4(c)

R = f4(R)

f(c)

f(R)

f2(c)

f2(R)

f3(c)

f3(R)

T

Figure 14.2 A mapping classf that fixes a union of disjoint separating curves.




0 0 0 B 0

I 0 0 0 0

0 I 0 0 0

0 0 I 0 0

0 0 0 0 C




whereC is the induced action off onH1(T ; Z). In this case

Pf (x) = det(Ψ(f)− xI) = det(B − xnI) det(C − xI).

If T has genus 0 thenC is a0 × 0 matrix (meaning it is not really there),
andPf (x) is a polynomial inxn with n > 1. If T has positive genus thenC
is anm×m matrix withm ≥ 1, and soPf (x) is symplectically reducible
overZ. This completes the proof. 2

Explicit examples satisfying the homological criterion. It is not always
easy to tell detect when a specific product of Dehn twists is pseudo-Anosov.
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The homological criterion of Theorem 14.5 can sometimes be useful for
doing this. For example we now give an infinite list of products of Dehn
twists and we use Theorem 14.5 to verify that each element in the list is
pseudo-Anosov.

Let ([a1], [b1], [a2], [b2]) be the usual homology basis forS2 (cf. Figure 6.1).
We consider the product

fk = Ta1Tb1Ta1+a2Tb2T
1−k
a2

where for exampleTa1+a2 denotes the Dehn twist about any simple closed
curve in the homology class[a1] + [a2]. Note thatfk does not fall under
either Thurston’s construction or Penner’s construction of pseudo-Anosov
mapping classes.

We compute thatΨ(fk) is equal to:
(

1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)(
1 0 0 0
−1 1 0 0

0 0 1 0
0 0 0 1

)(
1 1 0 1
0 1 0 0
0 1 1 1
0 0 0 1

)(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1 1

)(
1 0 0 0
0 1 0 0
0 0 1 1−k
0 0 0 1

)
=

( 0 1 0 0
−1 0 1 −k

0 1 0 1
0 0 −1 k

)

Thus the characteristic polynomial forΨ(fk) is

Pk(t) = t4 − kt3 + t2 − kt+ 1.

We now check thatPk(t) satisfies the hypotheses of Theorem 14.5 for|k| >
1. First of all, it is obvious thatPk(t) is not a polynomial intm for any
m > 1. If Pk(t) is a nontrivial product of characteristic polynomials of
symplectic matrices, then it factors into two integral quadratic polynomials,
each of the form

Pk,i(t) = t2 − (λi + λ−1
i )t+ 1 = (t− λi)(t− λ−1

i ).

whereλi + λ−1
i is an integer. To check that this is not the case, we consider

the polynomialQk(x) obtained fromPk(t) by dividing byt2 and substitut-
ing x+ x−1 for t:

Qk(x) = x2 − kx− 1.

The polynomialsPk,i(t) have integral coefficients if and only if the roots of
Qk(x) are integers. It is easy to check that this is not the case whenk 6= 0.
It remains to check thatPk(t) is not a cyclotomic polynomial. Since the
degree of thenth cyclotomic polynomial is Euler’s totientφ(n), and since
φ(mn) = φ(m)φ(n) gcd(m,n)/φ(gcd(m,n)), we see that the only degree
4 cyclotomic polynomials are the 5th, 8th, 10th, and 12th:t4+t3+t2+t+1,
t4 + 1, t4 − t3 + t2 − t+ 1, andt4 − t2 + 1. Thus, if|k| 6= 1, thenPk(t) is
not cyclotomic.
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14.1.4 KRA’ S CONSTRUCTION

Let S be a compact surface of negative Euler characteristic, perhaps with
finitely many punctures. LetMod(S, p) denote the mapping class group
of S with one marked pointp. Recall from Section 4.2 the Birman exact
sequence:

1→π1(S, p)
Push→ Mod(S, p)→ Mod(S)→ 1.

We say that an elementγ of π1(S, p) fills S if every closed curve inS that
representsγ intersects every essential simple closed curve inS.

Theorem 14.6 (Kra’s construction) LetS = Sg,n, and assume thatχ(S) <
0. Letγ ∈ π1(S, p). The mapping classPush(γ) ∈ Mod(S, p) is pseudo-
Anosov if and only ifγ fills S.

Since eachPush(γ) ∈ Mod(S, p) acts trivially onH1(S; Z), Theorem 14.6
gives examples of pseudo-Anosov elements of the Torelli groupI(S, p), and
hence also provides counterexamples to the conjecture of Nielsen mentioned
earlier in this section.

Kra’s original proof is Teichmüller theoretic: he shows directly that ifγ fills
then the translation distance of the action ofPush(γ) on Teichmüller space
is realized [123]. We now give an elementary proof of Theorem14.6. This
proof is apparently new, but it was inspired by an algebraic proof due to
Kent–Leininger–Schleimer [117].

Proof. One direction of the theorem is obvious: ifγ does not fill, then we
can find an isotopy class of simple closed curves that is fixed by Push(γ).

Now assume thatγ fills S. We will show thatPush(γ) is not reducible.
Note that wheneverγ fills S, thenγn fills S for everyn 6= 0. It then follows
by the same argument thatPush(γ)n = Push(γn) is not reducible for any
n 6= 0. By the Niesen–Thurston classification, if an element ofMod(S, p)
has no nontrivial power that is reducible, then it is pseudo-Anosov. We will
thus be able to conclude thatPush(γ) is pseudo-Anosov.

Now let δ be any simple closed curve inS − p and let δ̃ denote the full

preimage ofδ in the universal cover̃(S, p), by which we meanH2 with an
infinite collection of marked points (the lifts ofp). Any representative of
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the mapping classPush(γ) can be lifted tõ(S, p). It is possible to choose
the representative homeomorphism so that its lift toH2 “pushes” each of
the marked points inH2 along a path lifting ofγ. We denote the resulting

relative homeomorphism of̃(S, p) by P̃ush.

Sinceγ intersectsδ essentially, it follows that for any componentδ̃i of δ̃
there is a path lifting ofγ that connects marked points on different sides

of δ̃i. Therefore, there are marked points iñ(S, p) that lie betweeñδi and

P̃ush(δ̃i)

Any isotopy betweenPush(γ)(δ) andδ relative top would lift to an equiv-

ariant relative isotopy of̃Push(γ)(δ̃i) to δ̃i sinceP̃ush(γ)(δ̃i) is the only
lift of Push(γ)(δ) with the same endpoints at infinity as̃δi. However, be-

cause there are marked points betweenδ̃i andP̃ush(γ)(δ̃i), no such isotopy
exists. This proves the theorem. 2

14.1.5 ACONSTRUCTION FOR BRAID GROUPS

The following gives a construction of pseudo-Anosov homeomorphisms for
Mod(S0,n) whereS0,n denotes the sphere withn punctures.

Theorem 14.7 Letn be a prime number. Iff is an infinite order element of
Mod(S0,n) that permutes the punctures cyclically, thenf is pseudo-Anosov.

Proof. Suppose thatf is reducible. Sincen is prime the partition of the
punctures induced by the reducing curves must have sets of different size.
Note thatf does not preserve this partition because it may permute the re-
ducing curves. However, there is another nontrivial partition of the punc-
tures where we group together punctures that lie in subsets of the same size
in the first partition. The mapping classf preserves this partition, and hence
does not permute the punctures cyclically, contradicting the assumption.
Sincef ∈ Mod(S0,n) is also assumed to have infinite order, the Nielsen–
Thurston classification implies thatf is pseudo-Anosov. 2

In Section 7.1.1 we completely classified the finite order elements ofMod(S0,n).
Since such elements are easy to avoid, it is not hard to write down explicit
elements ofMod(S0,n) that satisfy the criteria of Theorem 14.7 . The con-
struction in the theorem can be easily modified to work for braid groups: for
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n prime, if an element ofBn ≈ Mod(Dn) permutes then marked points
of Dn cyclically, and is not a root of a central element, then it is pseudo-
Anosov.

14.2 PSEUDO-ANOSOV STRETCH FACTORS

To each pseudo-Anosovf ∈ Mod(Sg) we have attached a real number
λ > 1, namely the stretch factor off . The set of real numbers that occur
as the stretch factor of some pseudo-Anosov is quite restricted. It is still
not known precisely whichλ can occur; indeed this and related problems
are currently an active area of research. The purpose of thissection is to
prove a few fundamental facts concerning stretch factors ofpseudo-Anosov
homeomorphisms.

14.2.1 PSEUDO-ANOSOV STRETCH FACTORS ARE ALGEBRAIC INTEGERS

The following theorem appears in Thurston’s announcement of his proof of
the Nielsen–Thurston classification [202].

Theorem 14.8 Let g ≥ 2. If λ is the stretch factor of a pseudo-Anosov
f ∈ Mod(Sg) thenλ is an algebraic integer whose degree is bounded above
by6g − 6.

In his paper Thurston states that the examples of Theorem 14.1 show that
the bound of Theorem 14.8 is sharp [202]. Franks and Rykken showed that
the stretch factor of a pseudo-Anosov mapping class is a quadratic integer if
and only if it is obtained by lifting through ann–fold branched cover over
T 2, as explained in Section 14.1.1 [64].

Theorem 14.8 can be generalized to punctured surfacesSg,n. We leave the
computation of the maximal degree in this case as an exercise.

In order to prove Theorem 14.8 we will need the notion of an orientation
cover for a foliation.

Orientation covers for foliations. Let (F , µ) be a measured foliation of
a surfaceS, and letP be the set of singularities ofF . Pick a basepoint
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z ∈ S − P . We can useF to define a homomorphism

τ : π1(S − P, z)→ Z/2Z

as follows. Pick one of the two unit vectorsvz ∈ TSz that is tangent to
the leaf ofF containingz. Given[γ] ∈ π1(S − P, z), pick a representative
loop γ : [0, 1] → S − P with γ(0) = γ(1) = z. SinceF is defined via
local charts, it makes sense to continue choosing unit vectors vγ(t) to obtain
a continuous vector field alongγ, with eachvγ(t) being tangent to the leaf
of F throughγ(t). Now vγ(1) is tangent to the leaf ofF throughz, so
it is equal to eithervz or −vz. In the first case defineτ([γ]) = 0; in the
latter case defineτ([γ]) = 1. The mapτ is a well-defined homomorphism
because any homotopy of loops inS−P gives a continuous deformation of
the corresponding vector fieldsvγ(t).

The homomorphismτ is called theorientation homomorphismassociated
to F . This terminology comes from the fact thatτ is precisely the obstruc-
tion to orienting the leaves ofF in a consistent way. A measured foliation
is orientable in the sense of Section 11.2 if and only if its orientation homo-
morphism is trivial.

Recall that a measured foliation is locally orientable if and only if each sin-
gularity has an even number of prongs. In agreement with this, if γ bounds
a disk inS containing one singularity thenτ([γ]) = 0 if and only if that
singularity has an even number of prongs.

If F is not orientable then, by extending over the singularities, the orienta-
tion homomorphism gives rise to a connected two-fold branched cover

p : S̃ → S

called theorientation coverof S for F . What is more, there is an induced
measured foliation(F̃ , µ̃) on S̃ that is orientable, and so thatp maps leaves
of F̃ to leaves ofF and p∗µ̃ = µ. The branch points of the cover are
exactly the preimages underp of the singularities ofF with an odd number
of prongs.

An alternate construction. It is possible to construct the orientation cover
S̃ for a foliationF in a way that is similar to the standard construction of
the orientation double cover of a nonorientable manifold. Thus one lets̃S
be the set of pairs(z, v) wherez ∈ S − P andv is tangent to the leaf ofF
throughz. Then one must also define the cover overP .

We will now use orientation covers to prove that stretch factors are algebraic
integers.
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Proof of Theorem 14.8.Let φ be a pseudo-Anosov representative off and
let (Fu, µ) be its unstable foliation. We first prove the theorem in the special
case thatFu is an orientable foliation. As explained in Section 11.2, this
means that there is a closed1–formω onSg so that

φ∗ω = λω

where hereφ∗ denotes the pullback of a differential form.

We claim that the cohomology class[ω] ∈ H1(Sg; R) is nonzero. Indeed,
suppose thatω = dF , whereF : Sg → R is a smooth nonzero function.
The formulaφ∗ω = λω implies thatφ∗F = λF +C, whereC is a constant.
However, sinceSg is compact this is impossible (for instance, the differ-
ence between the maximum and minimum values ofF is invariant under
pullback). The claim is thus proven.

Sinceφ∗ω = λω, we in particular have

φ∗([ω]) = λ[ω]

whereφ∗ : H1(Sg; R) → H1(Sg; R) now denotes the induced action of
φ on cohomology. That is,λ is a nontrivial eigenvalue forφ∗. But φ∗

preserves the integer latticeH1(Sg; Z), so the matrix forφ∗ in the standard
basis has integer entries. The characteristic polynomial for this matrix is
thus a2g × 2g matrix with integer entries, and it hasλ as an eigenvalue.
Thusλ is an algebraic integer of degree at most2g. Note that the assumption
g ≥ 2 implies that2g < 6g − 6.

We now prove the theorem in the case whenFu is nonorientable. The idea is
to pass to the orientation double cover ofFu and then to quote the argument
above.

Let S̃ be the orientation cover for the unstable foliationFu for φ. The
induced foliation oñS is orientable, and so it is given by a 1–formω, which
represents a nontrivial element ofH1(S̃; R). Now let φ̃ be a lift to S̃ of φ;
this is possible since the cover is two-fold. Sinceφ̃∗ω = ±λω, it follows
that±λ is an eigenvalue of the map induced byφ̃ onH1(S̃; R). Thusλ is
an algebraic integer. We now prove the claimed bound on the degree of this
algebraic integer.

Say the singularities ofFu are s1, · · · , sk. By the Euler–Poincaré for-
mula (§11.2) each singularity contributes at least−1/2 to χ(S), so that
k ≤ −2χ(S). By the Riemann–Hurwitz formula (Section 7.2) we have

χ(S̃) ≥ 2χ(S)− k ≥ 8− 8g.
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and so the dimension ofH1(S̃; R) is at most8g − 6. Let τ be the deck
transformation for̃S overS. Sinceτ has order 2 its action onH1(S̃; R) has
eigenvalues of1 and−1, with eigenspacesV+ andV−, respectively.

Now V+ is isomorphic toH1(S; R) ≈ R2g, the isomorphism being given
by τ . Thus the dimension ofV− is at most6g − 6. We have thatω is an
element ofV− (at a singular point, for example,τ rotates byπ, and this
reverses all orientations). Sincẽφ commutes withτ we have thatV− is an
integral subspace invariant underφ̃∗. Sinceλ is a root of the characteristic
polynomial for the action of̃φ∗ onV−, the theorem follows. 2

Perron numbers. Theorem 14.8 can be strengthened further: each pseudo-
Anosov stretch factor is a special kind of algebraic integercalled a Perron
number. APerron numberis an algebraic integer that is real, that is greater
than 1, and that is larger than the absolute value of each of its Galois conju-
gates. The reason this is true is that every pseudo-Anosov stretch factor is
the Perron–Frobenius eigenvalue of a Perron–Frobenius matrix (the matrix
is the transition matrix for a Markov partition; see below),and all Perron–
Frobenius eigenvalues are Perron numbers.

It has been conjectured that a real numberλ > 1 is a pseudo-Anosov stretch
factor if and only ifλ is an algebraic unit and all conjugates ofλ except1/λ
have absolute value lying in(1/λ, λ) [148].

A consequence of the fact that every pseudo-Anosov stretch factor is a Per-
ron number is that pseudo-Anosov stretch factors are completely determined
by their minimal polynomials. This was pointed out to us by Joan Birman.

14.2.2 THE SPECTRUM OF PSEUDO-ANOSOV STRETCH FACTORS

If a pseudo-Anosovf ∈ Mod(Sg) has stretch factorλ, then anyh ∈
Mod(S) conjugate tof is pseudo-Anosov with stretch factorλ. Thus we
can associate to any conjugacy class of pseudo-Anosov mapping classes in
Mod(S) a stretch factorλ.

A conjugacy class inMod(S) corresponds to a free homotopy class of loops
in moduli spaceM(S).Here we should recall that we need to consider ho-
motopies in the orbifold sense, or to lift to a finite manifoldcover ofM(S).

Any pseudo-Anosovf ∈ Mod(S) acts onTeich(S) by translating along an
axis by a Teichmüller distance of12 log(λ2) = log(λ). Since the axis for
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f is a Teichmüller line, the free homotopy class inM(S) corresponding to
the conjugacy class off in Mod(S) contains a closed geodesic. It turns out
that the axis forf is unique, so that this closed geodesic is unique.

Conversely, considering the isometry types (elliptic, parabolic, hyperbolic)
as in the proof of the Nielsen–Thurston classification, we see that the only
homotopy classes of loops inM(S) that contain a geodesic are those corre-
sponding to conjugacy classes of pseudo-Anosov mapping classes.

Thus the set

Spec(M(S)) = {log(λ) :λ is the stretch factor of some

pseudo-Anosovf ∈ Mod(S)}
can be thought of as the “Teichmüller length spectrum of moduli space
M(S).” Of course knowing Spec(M(S)) is equivalent to knowing the set
of possible stretch factorsλ themselves. In analogy with the case of hyper-
bolic surfaces, we have the following theorem of Arnoux–Yoccoz [5] and
Ivanov [100].

THEOREM 14.9 Let g, n ≥ 0. For anyD ≥ 1 there exists only finitely
many conjugacy classes of pseudo-Anosov elements ofMod(Sg,n) with stretch
factor at mostD. In particular Spec(M(Sg,n)) is a closed, discrete subset
of R.

Proof. Let S = Sg,n. LetD ≥ 1 be given. Chooseǫ < δ/D3g−3+n, where
δ has the property that any two distinct geodesics of length less thanδ in
any hyperbolic surface homeomorphic toS are disjoint; such aδ exists by
Corollary 13.7.

We claim that if a pseudo-Anosovf ∈ Mod(S) has stretch factor at most
D, thenf has an axis inTeich(S) whose projection toM(S) lies entirely
in the ǫ–thick partMǫ(S) (cf. Section 12.4). If this were not true then
the projection of an axisA(f) for f has some pointX lying in M(S) −
Mǫ(S). In other words there is a marked hyperbolic surfaceX ∈ A(f)
whose shortest simple closed curveα has lengthℓX(α) < ǫ. Consider
the simple closed curvesα, f(α), f2(α), . . . , f3g−3+n(α). By Wolpert’s
lemma (Lemma 12.5) each of these curves has length at most

ℓX(f i(α)) ≤ D3g−3+n · ℓX(α) < δ for i = 1, . . . , 3g − 3 + n.

Since there are at most3g− 3+n distinct disjoint isotopy classes of simple
closed curves onS, it must be that two of the curves on the list are isotopic,
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which implies thatf j(α) is isotopic toα for somej > 0, contradicting the
fact thatf is pseudo-Anosov. This proves the claim.

Let K be a compact subset ofTeich(S) with the property thatK surjects
ontoMǫ(S). By the previous paragraph, each conjugacy class inMod(S)
with pseudo-Anosov stretch factor less than or equal toD has a represen-
tative with an axis that intersectsK. Denote this list of representatives
by {fi}. Let K ′ be the set of points inTeich(S) with distance at most
log(D)/2 fromK. Since the Teichmüller metric is proper,K ′ is again com-
pact. Eachfi clearly satisfies(fi ·K ′) ∩K ′ 6= ∅. Since theMod(S) action
on Teich(S) is properly discontinuous (Theorem 12.2), it follows that{fi}
is finite, which is what we wanted to show. 2

It follows from Theorem 14.9 that, if we fixg, there is a smallest num-
berλg that appears as the stretch factor of any pseudo-Anosov element of
Mod(Sg). Penner proved the following beautiful theorem aboutλg [170]
(see also [147]). In the statement, we writef(x) ≍ g(x) for real-valued
functionsf andg with f(x)/g(x) ∈ [1/C,C] for someC > 1.

THEOREM 14.10 The functionλg : N→ R satisfies

log λg ≍ 1/g.

It follows from Theorem 14.10 that
⋃∞
g=1 Spec(M(Sg)) has elements arbi-

trarily close to 0. Further, since a multiple of a loop inM(Sg) is another
loop inM(Sg), we see that∪Spec(M(Sg)) is dense in(0,∞).

14.3 PROPERTIES OF THE STABLE AND UNSTABLE FOLIATIONS

In this section we will explore special properties of those measured foli-
ations that are the stable (or unstable) foliations of some pseudo-Anosov
homeomorphism. Much of our treatment follows that of [59]. We will be
forced to consider measured foliations on compact surfaceswith boundary;
we refer the reader to Section 11.2 for the definitions. Recall that every
boundary component is required to be a singular leaf; we callthese leaves
peripheral.

The statements in this section are given for compact surfaces. Recall, though,
that a pseudo-Anosov homeomorphism on a surface with boundary gives a
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pseudo-Anosov homeomorphism on the surface obtained by collapsing each
boundary component to a marked point. Thus, all of the results in this sec-
tion hold for marked surfacesSg,n as well.

14.3.1 FIRST PROPERTIES

Since a pseudo-Anosov mapping class contracts the leaves ofits stable foli-
ation (with respect to the measure of the unstable foliation), we immediately
obtain the following.

Lemma 14.11 LetF be the stable or unstable foliation of a pseudo-Anosov
homeomorphism on a compact surfaceS. LetL be any leaf ofF that is not
peripheral. ThenL is not closed. Also,L does not connect two singularities
of F , two boundary components ofS, or a singularity ofF to a boundary
component ofS.

Let (F , µ) be a measured foliation on a surfaceS. Any simple closed curve
in S that is not completely contained in a finite union of leaves ofF must
have nonzeroµ–measure. Lemma 14.11 therefore implies the following.

Corollary 14.12 Let (F , µ) be the stable or unstable measured foliation of
a pseudo-Anosov homeomorphism on a compact surfaceS. Thenµ(α) > 0
for every essential simple closed curveα in S.

In Section 11.2 we explained that any foliation that has a singularity with
an odd number of prongs is not orientable. This leaves open the question
of whether the stable foliation for a pseudo-Anosov homeomorphism can
fail to be orientable. In the proof of Theorem 14.8 we saw thatif a pseudo-
Anosovf ∈ Mod(Sg) has an orientable stable foliation, then its action on
H1(Sg; R) has an eigenvalueλ > 1. We thus have the following fact.

Corollary 14.13 The stable and unstable foliations for any pseudo-Anosov
element of the Torelli groupI(Sg) are not orientable.

Combined with Corollary 14.3, Corollary 14.13 in particular shows that
there do exist pseudo-Anosov mapping classes with nonorientable stable
foliations. The converse to Corollary 14.13 is not true: onecan use the
Thurston construction to find counterexamples.
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14.3.2 POINCAR É RECURRENCE FOR FOLIATIONS

A measured foliationF on a surfaceS can be viewed as a dynamical system.
Fix a point p ∈ S and follow the leafL of F passing throughp in one
direction. What does the resulting path look like? Does it always return
to points nearp? What does the distribution of return times look like? If
F is the stable foliation of a pseudo-Anosov homeomorphismf , how do
these answers relate to dynamical properties off? One can phrase these
and more subtle questions in the language of dynamical systems. In this
book we will concern ourselves with only a few fundamental properties.
We begin with a version of Poincaré recurrence. This gives an answer to the
first two questions above.

Theorem 14.14 (Poincaŕe recurrence for foliations) Let(F , µ) be a mea-
sured foliation on a compact surfaceS. LetL be an infinite half-leaf. Then
any arcα transverse toF and intersectingL at least once must intersectL
infinitely many times.

We emphasize that the measureµ in the hypothesis of Theorem 14.14 is
necessary. One can build a (singular) foliationF on S with non-closed
leaves that can limit to a closed leaf by spiraling about it, in particular never
returning near their starting points. It is not hard to provethat such spiraling
behavior cannot occur if in additionF is equipped with a transverse measure
µ: one simply uses the spiraling leaves and the isotopy invariance ofµ build
an arc with infinite measure.

We can replace the hypotheses of Theorem 14.14 with the single hypothesis
that (F , µ) is the stable (or unstable) foliation for a pseudo-Anosov home-
omorphism. Indeed, by Lemma 14.11, every nonsingular interior point of
such a foliation is the starting point for a half-leaf that isnot closed and that
does not run into a singularity or the boundary.

Good atlases. Our proof of Theorem 14.14 uses the notion of a good atlas,
which we now define.

We call a subsetP ⊂ S is apolygonwith respect to a foliationF if each of
the following holds:

1. P is a closed, simply connected region inS.

2. P contains at most one singularity ofF .
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3. ∂P is the union of finitely many arcs that alternate between being
subarcs of leavesF and being arcs transverse toF .

We call the transverse arcs in∂P the facesof the polygon, and call the
other arcs of∂P thesides. A polygonP is standardif it contains at most
one singularity ofF in its interior, and if there is one face ofP for each
prong of the singularity (two faces total if there are no singularities); see
Figure 14.3.

Figure 14.3 Standard polygons: charts for a good atlas.

Following [59], agood atlasfor a foliationF of S consists of two collec-
tions of standard polygons,{Ui} and{Vi}, with the following properties.

1. S is the union of the interiors of theUi.

2. For eachi the polygonUi is contained inVi, and the faces ofUi are
contained in the faces ofVi.

3. For eachi the measure of any transverse arc that connects a side ofUi
to a side ofVi is at leastǫ0, whereǫ0 is some fixed number.

4. Each singular point belongs to exactly oneUi.

5. Wheneveri 6= j the intersectionUi∩Uj is either empty or a rectangle;
see Figure 14.4.

We leave it as an exercise to show that any measured foliationon a compact
surface has a good atlas.

The proof. We now give the proof of Poincaré recurrence for foliations.
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Figure 14.4 The intersections of two charts of a good atlas.

Proof of Theorem 14.14.It is enough to show thatα ∩ L can never be a
single endpoint ofα since we can apply this statement to any subinterval of
α. For the sake of contradiction assume thatα∩L is a single endpoint ofα.
CutS alongα. The result is a surfaceS′ with one new boundary component,
which we callα′. The surfaceS′ is equipped with an induced measured
foliation that has two singular points on the boundary, corresponding to the
endpoints of the arcα; see Figure 14.5. Note that the boundary component
α′ is transverse toF ′.

cut

Figure 14.5 Cutting along a transverse arc.

Denote byL′ the leaf ofF ′ corresponding toL. The leafL′ starts from one
of these singular points ofF ′ on the boundary componentα′, says. We see
thatL′ does not return tos, for that would mean thatL is closed, and hence
not infinite. Our assumptions onL onα ∩ L translate now to the statement
thatL′ does not return to∂S′.

Choose a good atlas forF ′, with constantǫ0. Letβ be an arc of the boundary
componentα′ that hass as one of its endpoints, and whoseµ′–length isǫ <
ǫ0. Further assume that any leaf ofF ′ starting fromβ avoids the singularities
of F ′; this is possible because each leaf starting from a singularity can hit
∂S′ at most once.

In order to obtain a contradiction we will prove that we can pushβ along
the foliationF ′ for infinite time, that is, we can create a strip of(F ′, µ′) of
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width ǫ and of infinite height. To make this formal we define a map

P : β × R≥0 → S′

by the rule thatP (x× R≥0) is the entire leaf ofF ′ starting fromx.

LetLs be the leaf ofF ′ emanating from the singularitys on∂S′. Given any
particular point ofLs, there is a chartUi of the good atlas containing that
point. By the properties of a good atlas we obtain an entire strip of width ǫ in
the interior of the correspondingVi. It follows thatP is an immersion. Since
P never hits a singularity (by the assumption onβ) and sinceP−1(β) =
β × {0}, we see that in factP is injective.

Any two of the strips of the image ofP are disjoint. SinceF ′ has no closed
leaves there are infinitely many strips. As there are finitelymanyVi, this is
a contradiction. 2

Poincaré recurrence shows us that the imposition of a transverse measure
on a foliation greatly constrains what the foliation can look like. It pre-
cludes for example the possibility that a leaf spirals towards a singularity,
or spirals towards a curve, or that the foliation has a “Reeb component”
(a closed annulus foliated by its two boundary curves and infinitely many
leaves homeomorphic toR). The existence of the good atlas is indeed a very
strong condition.

14.3.3 EACH LEAF OF THE (UN)STABLE FOLIATION IS DENSE

Our next goal is to prove the basic fact that each nonperipheral leaf of the
(un)stable foliation for a pseudo-Anosov homeomorphism ofa surfaceS is
dense inS. In order to prove this we first give a combinatorial method for
dealing with foliations.

A combinatorial description of the (un)stable foliation. In Chapter 11
we made the claim that every measured foliation of a surface could be ob-
tained by decomposing the surface into polygons and foliating each polygon
by horizontal lines. We now explain how to do this in the case thatF is the
stable or unstable foliation for a pseudo-Anosov homeomorphism. In this
construction all of the polygons will be rectangles.

Let τ be a small arc transverse toF . If τ contains any singularities ofF
then we assume that it contains exactly one, at an endpoint. Subdivideτ by



PSEUDO-ANOSOV THEORY 437

placing finitely many extra vertices at the points found by the following two
procedures.

1. From each endpoint ofτ , and for each of the two directions alongF ,
follow F to the point of first return onτ .

2. From each singularity ofF , follow each half-leaf ofF to the first
point of intersection withτ .

Denote the closed segments of the resulting subdivision ofτ by τi.

By Poincaré recurrence for foliations (Theorem 14.14), any leaf starting
at a point ofτ eventually returns toτ . By the assumptions onτ , we can
“push” eachτi alongF until it “hits” someτj . The result of this process is
a union of rectangles inS, each foliated horizontally by subarcs of leaves
of F . What is more, the union of these rectangles coverS, for otherwise
the boundary of the union of rectangles would be a cycle of leaves ofF ,
which does not exist by Lemma 14.11. Thus we have obtained thedesired
rectangle decomposition.

An example of such a rectangle decomposition on the torus is given by the
left side (and also the right side) of Figure 15.16.

Leaves are dense.The following consequence of Poincaré recurrence for
foliations will be used to show that every pseudo-Anosov homeomorphism
has a dense orbit (Theorem 14.17 below).

Corollary 14.15 Let S be a compact surface, and letF be the stable or
unstable foliation for a pseudo-Anosov homeomorphism ofS. Then any
nonperipheral leaf ofF is dense inS.

Since the stable and unstable foliations for an Anosov map ofT 2 have irra-
tional slope, Corollary 14.15 is well-known in the case of Anosov maps of
the torus.

Proof of Corollary 14.15.Let τ be an arbitrary arc inS that is transverse to
F . It suffices to show thatL intersectsτ . Using Poincaré recurrence we can
construct a rectangle decomposition ofS from τ as in the previous subsec-
tion. SinceL is (half-)infinite (Lemma 14.11), and sinceL is contained in
the horizontal foliations of the rectangles, it follows that Lmust hit one face
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of at least one rectangle. But this face is contained inτ by construction, so
we are done. 2

The following theorem is much stronger than Corollary 14.15. A measured
foliation is uniquely ergodicif it admits only one transverse measure, up to
scale.

Theorem 14.16 Let (Fs, µs) and(Fu, µu) be the stable and unstable foli-
ations for a pseudo-Anosov mapping class on a compact surface. ThenFs
andFu are uniquely ergodic.

The proof of Theorem 14.16 relies on the theory of Markov partitions. It
can be found in [59, Exposé 12, Théorème I].

14.4 THE ORBITS OF A PSEUDO-ANOSOV HOMEOMORPHISM

A basic feature of any dynamical system is its set of orbits. For example,
does a transformation have dense orbits? How many periodic points does it
have? Does the system exhibit extremal properties? In this section we give
answers to these questions for pseudo-Anosov homeomorphisms acting on
surfaces.

Existence of a dense orbit.The following theorem can be viewed as a first
indication thatf has a kind of “mixing” behavior.

Theorem 14.17 Letf ∈ Homeo+(S) be a pseudo-Anosov homeomorphism
on a compact surfaceS. Thenf has a dense orbit inS.

We remind the reader that not every orbit off is dense, for examplef fixes
the singularities of its stable foliation. Indeed, we show in Theorem 14.19
below that the set of periodic points off is dense inS. Both proofs are
taken from [59, Exposé 9].

Proof. We first show that ifU is a nonempty open set that is invariant under
f thenU is dense inS. By taking a power off , we may assume without
loss of generality thatf fixes the singular points of the stable and unstable
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foliationsFs andFu of f . LetL be a nonperipheral leaf ofFs containing
a singularitys. By Corollary 14.15,L is dense, and soU contains a pointx
of L. We may choose a segmentJ ⊂ U of a leaf ofFu so thatx ∈ J . Since
x ∈ L it follows that

lim
n→∞

fn(x) = s.

Further, for eachn, the segmentfn(J) is a subset of a leaf ofFu and
is also contained inU . Sincef is stretching alongFu it follows that, as
n→∞, thefn(J) approach the union of the singular leaves ofFu bound-
ing the “sector” containing{fn(x)}. At least one of these singular leaves
is nonperipheral. As the nonperipheral leaves ofFu are dense inS (Corol-
lary 14.15), it follows thatU is dense inS.

Now let{Ui} be a countable basis forS. Each set

Vi =
⋃

n∈Z

fn(Ui)

is a nonempty open set that is invariant underf , and hence is dense inS. By
the Baire category theorem the set

⋂
i Vi is dense, in particular nonempty.

Let x be any point in this intersection. Then for eachi there is anni so that
x ∈ fni(Ui) or f−ni(x) ∈ Ui. Since each basis elementUi contains a point
in the orbit ofx it follows that the orbit ofx is dense inS. 2

Density of periodic points. We will need the following standard tool from
the theory of dynamical systems; see, e.g., [191, Page 7].

Theorem 14.18 (Poincaŕe recurrence) LetM be a finite measure space,
and letT : M → M be measure-preserving. For everyA ⊆ M with
positive measure, and for almost everyx ∈ A, there is an infinite increasing
sequence of integers{ni} so thatT ni(x) ∈ A for everyi.

Theorem 14.18 is a more general principle than Poincaré recurrence for fo-
liations (Theorem 14.14), and its proof is much more simple.The two the-
orems are related in that they both address the question: given a dynamical
system, under what conditions can we expect a point to returnclose to its
starting point?

The following theorem gives another property that pseudo-Anosov homeo-
morphisms share with chaotic dynamical systems.
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Theorem 14.19 For any pseudo-Anosov homeomorphismφ of a compact
surfaceS, the periodic points ofφ are dense inS.

For an a standard linear Anosov homeomorphismA ∈ SL(2,Z) of T 2 =
R2/Z2 the set of periodic points ofA is precisely the image ofQ2 ⊂ R2

under the projectionR2 → T 2; in particular the set of periodic points ofA
is dense inT 2.
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φn(x1)

φn(x2)

φn(J)

Figure 14.6 The diagram for the proof of Theorem 14.19.

Proof. LetFs andFu denote the stable and unstable foliation forφ. Choose
a good atlas with respect to these foliations, as explained on page 434. Let
U be a standard square in the interior ofS with respect to the chosen good
atlas. By assumptionU does not contain a singularity ofFu (or of course
of Fs). It clearly suffices to show thatU contains a periodic point forφ.

Let V be a standard square contained strictly insideU . Consider the area
measure which is locally the product of the transverse measures associated
to (Fs andFu. Asφ leaves this measure invariant, we can apply the princi-
ple of Poincaré recurrence (Theorem 14.18). This gives that for anyN there
is ann > N so thatφn(V ) ∩ V 6= ∅.

Choose a pointx1 ∈ V so thatφn(x1) ∈ V . Let J be a nontrivial closed
subarc inFs crossingU atx1. Sinceφ multiplies the unstable measure by
a factor less than1, we can (retroactively) chooseN large enough so that
φn(J) ⊂ U . Pushing points along the leaves ofFu gives a map fromφn(J)
to J . Composing this map withφn gives a mapJ → J . By the Brouwer
fixed point theorem this map has a fixed pointx2 ∈ J .
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LetL be a nontrivial closed subarc ofFu that crossesU throughx2. Increas-
ing N if necessary (again, retroactively), we can assume thatφn(L) ⊃ L.
To see thatφn has a fixed point inU , it suffices to apply the following fact
to φn.

Let I be an interval ofR. If f : I → R is a continuous function with
f(I) ⊇ I, thenf has a fixed point.

Thusφ has a periodic point of ordern. This completes the proof. 2

A minimality property. Nielsen’s original approach to the classification of
surface homeomorphisms involved an extensive analysis of the action of a
homeomorphism on the closed diskH2 ∪ ∂H2. In his announcement [202],
Thurston states that this type of analysis can be used to derive the following
theorem. It states that while the periodic points of a pseudo-Anosov homeo-
morphismφ are prevalent enough to be dense inS, their number is as small
as possible, in the sense stated in the following theorem. Recall that the
period of an periodic pointx for φ ∈ Homeo(S) is the smallestn ≥ 1 for
whichφn(x) = x.

Theorem 14.20 Let g ≥ 2 and letφ be a pseudo-Anosov homeomorphism
ofS = Sg. For eachn > 0 the homeomorphismφ has the minimum number
of periodic points of periodn among all homeomorphisms in its homotopy
class.

Our proof of Theorem 14.20 follows Handel [78].

Proof. Suppose thatψ ∈ Homeo+(S) is homotopic toφ. Then there is a
canonical bijection

{lifts φ̃ of φ to S̃} ↔ {lifts ψ̃ of ψ to S̃}

whereφ̃ is identified withψ̃ if and only if they induce the same homeomor-
phism of∂H2. We say that̃φ andψ̃ agreeon∂H2.

We first prove that|Fix(φ)| ≤ |Fix(ψ)|. Forx ∈ Fix(φ) andy ∈ Fix(psi),
definex to beNielsen equivalentto y if there exist liftsφ̃, ψ̃ that agree on
∂H2 and liftsx̃, ỹ, such that̃x ∈ Fix(φ̃) andỹ ∈ Fix(ψ̃). We define Nielsen
equivalence between fixed points ofφ in a similar way, so that the Nielsen
equivalence classes forφ are precisely the projections toS of sets of the
form Fix(φ̃) for different lifts φ̃ of φ.
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We first claim that every fixed point ofφ is Nielsen equivalent to some
fixed point ofψ. To see this, choose a fixed point ofφ and letφ̃ be the
unique lift whose fixed set projects to the given fixed point ofφ. Extend
φ̃ to a homeomorphism of the closed diskH2 ∪ ∂H2 (cf. Corollary 8.7).
Thinking of H2 ∪ ∂H2 as embedded inS2 as a hemisphere, extend̃φ to
Φ ∈ Homeo+(S2) by reflecting across the equator. LetL(Φ) denote the
Lefschetz number ofΦ, that is, the sum of the indices of the fixed points of
Φ. Then (see Section 6.3)

L(Φ) = 2L(φ̃) + L∞(φ̃),

whereL∞(φ̃) is the sum of the indices of the fixed points ofφ̃ on the
equator. Letψ̃ be the unique lift that agrees with with̃φ on ∂H2, and let
Ψ ∈ Homeo+(S2) be the corresponding “doubled” homeomorphism as
constructed above. BothL andL∞ are homotopy invariants. Further, our
choice of lifts implies that̃φ and ψ̃ induce the same homeomorphism on
∂H2. Thus

2L(φ̃) + L∞(φ̃) = 2L(ψ̃) + L∞(ψ̃) = 2L(ψ̃) + L∞(φ̃)

(actually, by the formula in Section 6.3, all terms are equalto 2, but we
don’t need this). Sinceφ is pseudo-Anosov, each of its fixed points must
have nonzero index. It follows thatL(ψ̃) 6= 0, and in particularψ̃ has a
fixed point. This proves the claim.

We now claim that each Nielsen equivalence class of fixed points forφ has
at most one element. Indeed, if some Nielsen class of fixed points forφ had
at least two elements, we would have some liftφ̃ fixing two points. But the
singular Euclidean metric onS coming fromFs andFu lifts to a singular
Euclidean metric onH2. In this metric there is a unique geodesic between
any two points, and̃φ acts affinely on this metric. Thus if̃φ fixes two points,
it would have to fix pointwise the unique geodesic between these two points.
This contradicts the fact that̃φ acts by expansion byλ 6= 1, proving the
claim.

Since every fixed point ofφ is Nielsen equivalent to some fixed point ofψ,
and since each Nielsen class of fixed points forφ has at most one element,
it follows immediately that|Fix(φ)| ≤ |Fix(ψ)|.

Letk ≥ 1. Sinceφk andψk are homotopic, and sinceφk is a pseudo-Anosov
homeomorphism, what we just proved gives that|Fix(φk)| ≤ |Fix(ψk)|.
Unfortunately this does not prove the theorem since some points ofFix(ψk)
might have period strictly less thank.



PSEUDO-ANOSOV THEORY 443

So suppose thatx is a periodic point ofφ with periodk. We have proved
thatψk has at least one fixed pointy that is Nielsen equivalent tox. We
need to show thaty has periodk as a periodic point ofψ. So suppose that

ψj(y) = y with j|k. Let φ̃k andψ̃k be equivariantly homotopic lifts ofφk

andψk fixing lifts x̃ andỹ of x andy. Such a lift exists sinceψ is homotopic

to φ. If ψ̃j is a lift of ψj fixing ỹ then(ψ̃j)k/j is a lift of ψk fixing ỹ. By the

uniqueness of lifts fixing a given point it follows that(ψ̃j)k/j = ψ̃k.

Sinceφ is homotopic toψ there is a liftφ̃j of φj that is equivariantly homo-

topic toψ̃j . Taking powers gives that(φ̃j)k/j is equivariantly homotopic to

(ψ̃j)k/j = ψ̃k. But φ̃k is also equivariantly homotopic tõψk, and so it must

be that(φ̃j)k/j = φ̃k. In particularφ̃j commutes with̃φk. It now follows

that φ̃k fixes each point of thẽφj–orbit of x̃ since

φ̃k
((

φ̃j
)i

(x̃)

)
=
(
φ̃j
)i (

φ̃k(x̃)
)

=
(
φ̃j
)i

(x̃).

As above, a lift of a pseudo-Anosov homeomorphism can only fixone point
of H2. Thus theφ̃j–orbit of x̃ is a single point. Sincex has periodk it must
be thatj = k. 2

Ergodicity. Pseudo-Anosov homeomorphisms satisfy another strong mix-
ing property. LetM be a measure space andT : M → M a measure-
preserving transformation. We say thatT is ergodic if the only measurable
sets inM that are invariant underT either have full measure or zero mea-
sure.

A pseudo-Anosov homeomorphism ofSg is itself a measure-preserving
transformation ofSg, as it preserves the area measure induced by its sta-
ble and unstable foliations. Thus, it makes sense to ask if pseudo-Anosov
homeomorphisms are ergodic.

Theorem 14.21 Letg ≥ 2 and letφ : Sg → Sg be a pseudo-Anosov home-
omorphism. Thenφ is ergodic with respect to the area measure induced by
its stable and unstable foliations.

Pseudo-Anosov homeomorphisms satisfy an even stronger property than
ergodicity—they are Bernoulli processes. For a proof of this stronger prop-
erty, see FLP [59, Exposé 10,§VI].
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14.5 LENGTHS AND INTERSECTION NUMBERS UNDER ITERATION

Let A ∈ SL(2,Z) has two distinct real eigenvaluesλ > 1 andλ−1, and
let v ∈ R2 be any vector that does not lie in the eigenspace forλ−1. As
discussed above, we have

lim
n→∞

n
√
|An(v)| = λ.

We say that|An(v)| “grows like” λn. It follows that the length of any simple
closed curve inT 2 grows likeλn under iteration of an Anosov homeomor-
phism. Here, we have used the fact that the eigenspaces for a hyperbolic
element ofSL(2,Z) have irrational slope, whereas the lines inR2 that are
lifts of simple closed curves inT 2 have rational slope.

We also know that, ifvu denotes one of the two unit vectors in the eigenspace
for λ, then

lim
n→∞

An(v)

|An(v)| = ±vu

On the torus, this means that ifφ is an Anosov map ofT 2 andα is a geodesic
simple closed curve inT 2, then the slopes of the simple closed curvesφn(α)
approach the slope of the unstable foliation forφ.

Our goal in this section is to prove that analogous results hold for pseudo-
Anosov homeomorphisms of higher genus surfaces. In the general case,
eigenvalues will be replaced by stretch factors, and eigendirections by mea-
sured foliations.

For both theorems we need a definition. Leta be an isotopy class of simple
closed curves inS and let(F , µ) be a measured foliation onS. We define

I((F , µ), a) = inf{µ(α) : α is in the homotopy classa}
where the closed curvesα in the infimum are not assumed to be simple.

L EMMA 14.22 Let φ be a pseudo-Anosov homeomorphism of a compact
surfaceS. If (F , µ) is either the stable foliation forφ, anda is any isotopy
class of essential simple closed curves inS, thenI((F , µ), a) > 0.

Note that Lemma 14.22 does not follow immediately from Corollary 14.12,
since the definition ofI((F , µ), a) involves an infimum. However, Lemma 14.22
can be deduced from part (2) of Proposition II.6 in Exposé 5 of FLP [59].
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Lengths under iteration. We are ready to give the first theorem, about
lengths of curves. Ifρ is a Riemannian metric on a compact surfaceS, and
a is a homotopy class of simple closed curves inS, then we denote byℓρ(a)
the length of a shortest representative in the homotopy class.

Theorem 14.23 Let g ≥ 2. Suppose thatf ∈ Mod(Sg) is pseudo-Anosov
with stretch factorλ. Let ρ be any Riemannian metric onSg. If a is any
isotopy class of simple closed curves inSg then

lim
n→∞

n

√
ℓρ(fn(a)) = λ.

Proof. Let µs andµu be the measures associated to the stable and unstable
foliations forf , and let

dµ =
√

(dµs)2 + (dµu)2

be the corresponding singular Euclidean metric.

We first prove the analogue of the theorem for the metricµ. Let ℓµ denote
the length function with respect toµ. For an isotopy classb the number
ℓµ(b) is defined in the same way as for a Riemannian metric.

Let α be a representative simple closed curve for the isotopy class a, and
let φ be a pseudo-Anosov homeomorphism representingf . From the defi-
nitions we have

ℓµ(f
n(a)) ≤

∫

φn(α)
dµs +

∫

φn(α)
dµu = λn

∫

α
dµs + λ−n

∫

α
dµu

and

ℓµ(f
n(a)) ≥ I((Fs, µs), φn(a)) = λnI((Fs, µs), a).

Lemma 14.22 gives thatI((Fs, µs), a) > 0. We thus have

lim
n→∞

n

√
ℓµ(φn(α)) = λ.

To complete the proof of the theorem we need to relate the metric µ to the
given metricρ. First, any two norms on a vector space are comparable, by
which we mean there is a constantM so that the length of a vector with
respect to the two different norms differ by a multiplicative factor of at most
M . It follows that if we prove the theorem for any one Riemannian metric
ρ0, then we have proven it for the given Riemannian metricρ.
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Unfortunately, the metric for which we have proven the theorem, namely,
µ, is not Riemannian. However, we would like to apply to same kind of
reasoning to say thatρ is comparable toµ. More precisely, the theorem will
follow once we prove that there exist constantsm andM so that

m ≤ ℓρ(c)

ℓµ(c)
≤M.

for every isotopy class of simple closed curvesc in Sg.

Let {si} be the set of singularities of the foliationFs. Choose a radius
r small enough so that the closed ballsB(si, r) are embedded, pairwise
disjoint, and small enough so that the geodesic (in either the ρ or µ metric)
between two points on∂B(si, r) lies entirely inB(si, r).

Since norms on a vector space are comparable in the above sense, there
are constantsm′ andM ′ so that ifβ is any rectifiable curve, then, in the
complementC of the union of theB(si, r/2) we have

m′ ≤ ℓρ(β ∩ C)

ℓµ(β ∩C)
≤M ′. (14.1)

Note that in (14.1) we are usingℓρ and ℓµ to denote the length of actual
paths, as opposed to infima.

Now we must estimate lengths of paths lying near the singularities. We
claim that there exist constantsm′′ andM ′′ so that ifx andy are any distinct
points in the same∂B(si, r) then

m′′ ≤ dρ(x, y)

dµ(x, y)
≤M ′′. (14.2)

If x andy are sufficiently close then the inequalities (14.1) apply. For (x, y)
outside an open neighborhood of the diagonal of∂B(si, r) × ∂B(si, r),
the fraction in the middle of (14.2) is a well-defined, continuous, positive
function on a compact set. The claim follows.

Setm = min{m′,m′′} andM = max{M ′,M ′′}.

Let γ be aρ–geodesic representative forc and letγ′ be the curve obtained
from γ by replacing each segment of the intersection∪B(si, r)∩ γ with the
correspondingµ–geodesic segment. Combining the two inequalities (14.1)
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and (14.2) gives

m ≤ ℓρ(γ)

ℓµ(γ′)
≤M.

This gives

ℓρ(c) = ℓρ(γ) ≥ mℓµ(γ′) ≥ mℓµ(c).
For the other direction, chooseγ to be aµ–geodesic forc, and letγ′ be
the curve obtained by substitutingρ–geodesics inside theB(si, r). We then
have

ℓρ(c) ≤ ℓρ(γ′) ≤Mℓµ(γ) = Mℓµ(c).

This completes the proof of the theorem. 2

Intersection numbers under iteration. We now explain what it means
for a pseudo-Anosov homeomorphism to pull a simple closed curve in the
direction of its unstable foliation. We will come back to this idea in Sec-
tion 15.1.

Theorem 14.24 Let g ≥ 2. Let f ∈ Mod(Sg) be a pseudo-Anosov map-
ping class. Denote the stable and unstable foliations off by (Fs, µs) and
(Fu, µu). Normalize so that the area ofS with respect to the area form in-
duced byµu andµs is equal to 1. Then for any two isotopy classes of curves
a andb in Sg we have

lim
n→∞

i(fn(a), b)

λn
= I((Fs, µs), a) I((Fu, µu), b).

In particular

lim
n→∞

n
√
i(fn(a), b) = λ.

For a proof of Theorem 14.24 see [59, Exposé 12,§IV]

LetMF denote the set of equivalence classes of measured foliations on a
surfaceS, where the equivalence relation is generated isotopy and White-
head moves (see Figure 15.11 in Chapter 15).

LetS denote the set of isotopy classes of simple closed curves in the surface
S. Since Whitehead moves and isotopy do not affect the function I, we can
think of I as giving a map

I :MF → RS ,
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The geometric intersection numberi also gives a map

S → RS

wherea maps toi(a, ·).

With this setup the notion of “convergence to a measured foliation” hinted
at above can be formalized to give the following immediate corollary of
Theorem 14.24. In the statementP (RS) is the space of projective classes in
RS , where two functionsS → R are defined to be projectively equivalent if
they differ by a constant multiple. We use brackets to denotethe projective
class of an element ofRS .

Corollary 14.25 Let g ≥ 2. Let f ∈ Mod(Sg) be a pseudo-Anosov map-
ping class. Denote the unstable foliation forf by (Fu, µu). Then for any
isotopy classa of simple closed curves inSg we have

lim
n→∞

[fn(a)] = [(Fu, µu)]

in P (RS).



Chapter Fifteen

Thurston’s proof

In this chapter we give some indication of how Thurston originally discov-
ered the Nielsen–Thurston classification theorem. We beginwith a concrete,
accessible example that illustrates much of the general theory. We then pro-
vide a sketch of how that general theory works. Our goal is notto give a
formal treatment as per the rest of the text. Rather, we hope to convey to the
reader part of the beautiful circle of ideas surrounding theNielsen–Thurston
classification, including Teichmüller’s theorems, Markov partitions, train
tracks, foliations, laminations, and more.

15.1 A FUNDAMENTAL EXAMPLE

σ2σ−1
1

Figure 15.1 The mapping classf is σ−1

1 σ2.

We start by giving an in-depth analysis of a fundamental and beautiful exam-
ple that has gained a certain amount of fame in the world of low-dimensional
topology and dynamical systems.

Let S0,4 denote the sphere with four punctures. Taking one of the punc-
tures to lie at infinity, we can regardS0,4 as the thrice-punctured plane. The
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surfaceS0,4 is the simplest surface that admits a pseudo-Anosov homeo-
morphism. There is a particularly simple pseudo-Anosov mapping class
f ∈ Mod(S0,4) given by

f = σ−1
1 σ2

whereσ2 andσ−1
1 are the half-twists indicated in Figure 15.1. One sense in

which f is simple is that its conjugacy class uniquely realizes the smallest
stretch factor of any pseudo-Anosov mapping class inMod(S0,4).

15.1.1 ITERATION , SIMPLE CLOSED CURVES , AND TRAIN TRACKS

Thurston’s first main idea is to understand homeomorphisms by iterating
them on simple closed curves. We now do this forf , keeping track of what
happens to a chosen isotopy classc of simple closed curves inS0,4 asf
is iterated. Such an isotopy classc is shown in Figure 15.2, along with its
imagesf(c) andf2(c).

σ2

σ2 σ−1
1

σ−1
1f(c)

c

f2(c)

Figure 15.2 The first two iterates ofc underf .

At this point the pictures become harder to draw as the numberof “strands”
is increasing quite rapidly as we iteratef . The number of horizontal strands
in the picture forf2(c) is 10 (count them!). The number of horizontal
strands forf5(c) is 188, forf10(c) is 21,892, and forf100(c) is

907947388330615906394593939394821238467652.

One concrete way to measure the complexity of the curvesfn(c) is to draw
horizontal rays from the left- and right-hand punctures that travel outwards,
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and to count the number of times these rays intersectfn(c). When we do
this we see thatfn(c) intersects the left-hand and right-hand raysF2n+1 and
F2n times, respectively, whereF0 = 0, F1 = 1, andFi = Fi−1 + Fi−2 is
the ith Fibonacci number. In particular the number of strands in apicture
of fn(c) grows exponentially. What is worse, this is just one isotopyclass,
but we would like to understand howf acts on all isotopy classes of simple
closed curves inS0,4.

Thurston discovered a simple but powerful combinatorial device that com-
pletely solves the problem. The first observation is that theisotopy class
f2(c), as shown in Figure 15.2, can be represented by the data in Fig-
ure 15.3, as follows. Replacen “parallel strands” off2(c) by a single strand
labelledn; we can think of this as pinching down (or homotoping) parallel
strands into one strand, and labeling this strand with an integer that records
how many strands are pinched together. Sometimes this process is called
zippingstrands together. If this is to be done in a continuous mannerso as
not to cross the punctures, then at four points it will be necessary for the
pinched-together strands to split into two strands, as shown in Figure 15.3.
We emphasize that this process is not canonical, for instance by drawing the
picture differently, different parts of the curve might look parallel.

After performing this process of homotoping together parallel strands we
obtain a finite graphτ embedded inS0,4 with the following properties:

1. Each edge ofτ is the smooth image of an interval.

2. At each vertex ofτ there is a well-defined tangent line; the data of a
vertex with its tangent line is called aswitch. The (half-)edges meet-
ing each switch are divided into two sets, one on each side of the
switch.

3. Each edge ofτ is labelled with a nonnegative integer, called aweight.
We denote the set of weights byν, and we sometimes refer toν as a
measure.

4. The weights satisfy theswitch conditionat each switch: the sums of
the weights on each side of the switch are equal to each other.

The pair(τ, ν) is called ameasured train trackfor f2(c). The graphτ itself
is called simply atrain track. We also say thatτ “carries” the isotopy class
f2(c). In general we say that a multicurveb is carried by the train trackτ if
τ can be obtained by performing the above zipping procedure onb.
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If a measured train trackτ carries an isotopy class of a multicurveb with
weightsν then we can reconstructb from the pair(τ, ν) as follows. Replace
each edge ofτ of weightn with n parallel line segments. After doing this
we see that the switch condition ensures that there is a well-defined way to
glue the endpoints of all segments coming from the edges incident to that
particular switch. The result is clearly a finite union of simple closed curves,
which one can check lies in the isotopy classb. We encourage the reader to
perform this process for the curvef2(c), carried by the train track(τ, ν)
given in Figure 15.3.

2 3

4

5

610

Figure 15.3 Convertingf2(c) into a train track.

We also note that four of the weights on the edges of the measured train
track(τ, ν) for f2(c) are redundant. Indeed, given the edges with weights 6
and 4, the weights of all the other edges are completely determined by the
switch conditions.

15.1.2 THE LINEAR ALGEBRA OF TRAIN TRACKS

The power of the above setup is that it is easy to keep track of the isotopy
class of any simple closed curve carried byτ under any number of iterations
of f . To see how to do this consider the train trackτ endowed with an
arbitrary measureν. Such a measure is given by two weightsx andy, as
shown in Figure 15.4. In these(x, y) coordinates the curvesc, f(c), and
f2(c) are given by(0, 2), (2, 2), and(6, 4), respectively.

We now applyf to the measured train track(τ, ν) directly. To the im-
agef(τ, ν) we then perform the pinching (or zipping) process as described
above: homotope parallel edges off(τ, ν) together keeping track of the sum
of the weights of the edges that are homotoped to each single edge. This
process is illustrated in Figure 15.4. The result will clearly be another train
track. In this case something very special happens: the resulting measured
train track has the same underlying train trackτ but with different weights!
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x

x

x

x y

y

y

2x+ y

x+ y

x+ y

σ−1
1σ2

Figure 15.4 Applying the mapf directly to the train track.

See Figure 15.4.

We describe this situation by saying thatf(τ, ν) iscarried byτ . The weights
transform as follows: the edge of(τ, ν) with weightx has weight2x+ y in
f(τ, ν), while the edge with weighty has weightx+ y in f(τ, ν). As noted
above the weights on all other edges are determined by the weights on these
two edges. Thus the homeomorphismf acts on the original measured train
track (τ, ν) by changing the edge weights in a linear way. This action can
therefore be completely described by thetrain track matrixfor f :

M =




2 1

1 1




This already gives us a quick and simple way to encode the action of iterates
of f not only onc but also on any isotopy class of simple closed curves that
is carried byτ , as follows. Ifb is an isotopy class that corresponds to the
train trackτ with weights(x, y) = (x0, y0), thenfn(b) is the isotopy class
of simple closed curves corresponding toτ with weights(xn, yn) given by




xn

yn


 =




2 1

1 1




n


x0

y0




The weights(xn, yn) then determine a measured train track(τ, νn) via the
switch conditions onτ . From(τ, νn) we can directly build the simple closed
curve fn(b), as above. The imagefn(c) is the special case obtained by
plugging in(x0, y0) = (0, 2).
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The train track matrixM has eigenvalues

λ =
3 +
√

5

2
and λ−1 =

3−
√

5

2

with eigenvectors

vλ =




1+
√

5
2

1


 and vλ−1 =




1−
√

5
2

1




Since1−
√

5
2 is negative the eigenvectorvλ−1 does not correspond to a mea-

sured train track. The eigenvalueλ > 1 with its eigenvectorvλ is the ge-
ometrically meaningful eigenvector for us. It tells us for example that the
norm of the vector(xn, yn) grows likeλn asn tends to infinity.

Since any essential simple closed curve inS0,4 intersectsτ , we can see
for example that the geometric intersection number of any isotopy class of
simple closed curvesb with fn(c) grows likeλni(b, c), as promised by The-
orem 14.24. Indeed our discussion here suggests a proof of that theorem.
Note that it is in fact the case thatλ = 3+

√
5

2 is the dilatation off ; in fact f
is the image of the( 2 1

1 1 ) map ofT 2 under the hyperelliptic involution, as in
Section 9.4.

15.1.3 FOUR TRAIN TRACKS SUFFICE

We now have a detailed picture of howf acts on every isotopy class of
simple closed curves carried byτ . However not every isotopy class of sim-
ple closed curves inS0,4 is carried byτ , even varying(x, y) arbitrarily.
Consider for example the isotopy class of a convex simple closed curve sur-
rounding the second and third punctures in the plane. How canwe analyze
the action off on such curves?

The answer is simple: every simple closed curve inS0,4 is clearly carried by
some train track. What is more, we claim that there exist fourtrain tracks
τ1, τ2, τ3, τ4 in S0,4 with the property that every simple closed curve inS0,4

is carried by one of theτi. We now prove this claim.

Up to isotopy any simple closed curveγ in S0,4 can be drawn inside the
union of the three squares shown in the picture at the top of Figure 15.5. Up
to further isotopy we can assume thatγ does not form any bigons with the
vertical edges of the three squares. At this point, a connected component
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Figure 15.5 Any simple closed curve inS0,4 can be broken up into canonical pieces.

of the intersection ofγ with one of the squares is one of the six types of
arcs shown in the bottom picture of Figure 15.5. Sinceγ is essential it
cannot use both types of dashed arcs, for otherwiseγ would be isotopic to
the nonessential curve that surrounds all three punctures.Since the other
two types of arcs in the middle square intersect,γ can use at most one of
those.

We therefore see that there are four types of simple closed curves inS0,4,
depending on which of each of the two pairs of arcs they use in the mid-
dle square. This information is exactly the same as saying that any sim-
ple closed curve inS0,4 is carried by one of the train tracks shown in Fig-
ure 15.6.

The four train tracksτ1, τ2, τ3, τ4 in Figure 15.6 give four “coordinate charts”
on the set of isotopy classes of simple closed curves inS0,4. Each coordinate
patch corresponding to a trackτi is given by the weights(x, y) of two chosen
edges ofτi. If we allow the coordinatesx andy to be arbitrary nonnegative
real numbers then we obtain for eachτi a closed quadrant inR2. Arbitrary
points in this quadrant are measured train tracks. Notice that in some cases
we can put weights on two different train tracks and (after deleting train
track edges with weight zero) obtain equivalent measured train tracks. By
identifying these measured train tracks we obtain an identification of the
four quadrants along their edges. The resulting space is homeomorphic to
R2; see Figure 15.6. The integral points in thisR2 correspond to isotopy
classes of multicurves inS0,4.
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x
x

x x
y

y

y

y

a = (0, 2)

b = (2, 0)

c = (0, 2)

d = (2, 0)

Figure 15.6PMF for S0,4.

15.1.4 THE ACTION ON PMF

The action off on the isotopy classes of simple closed curves inS0,4 in-
duces an action on the integer points ofR2. This action extends to a homeo-
morphism ofR2; indeed, just as every simple closed curve inS0,4 is carried
by one of theτi, every measured train track is equivalent to another mea-
sured train track that is carried by one of theτi (see below). Since this
homeomorphism commutes with the multiplicative action ofR+ on R2 it
induces a homeomorphism of the space of rays inR2, endowed with the ap-
propriate topology. This space of rays is homeomorphic to a circle, which
we denote byPMF (the notation will be explained in the next section); see
Figure 15.6. Note that the “rational points” ofPMF represented by pairs
of integers(p, q) correspond to isotopy classes of multicurves inS0,4.

Figure 15.7 gives a partial depiction of the action off onPMF using the
coordinates and notation established in Figure 15.6. It turns out thatf acts
on PMF with source–sink dynamics, with the two fixed points off in
PMF corresponding to the stable and unstable foliations for thepseudo-
Anosovf onS0,4. Let us explain how this works for the fixed point which
is a sink, corresponding to the unstable foliationFu for f .

We saw in the last section thatf fixes the train trackτ corresponding to the
upper-right quadrant ofPMF . We also saw thatf acts on the weights of
τ by the matrixM and that the unique (up to scale) positive eigenvector
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source= Fs source= Fs
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a

b

c

d

u = (1
2 ,

1
2)

v = (3
4 ,

1
4)

f(a)

f(b)f(u)

f(v)

f(c) = (1
2 ,

1
2)

f(d) = (2
3 ,

1
3)

Figure 15.7 The action off onPMF for S0,4.

for this action is(1+
√

5
2 , 1), with eigenvalue3+

√
5

2 . What this means for
the action off on PMF is thatf leaves the upper-right quadrant ofR2

invariant and acts on it viaM . The eigenvector(1+
√

5
2 , 1) gives a fixed point

for the action off onPMF . The fixed point is represented by the measured
train track(τ, νu) with measureνu given by the weights(x, y) = (1+

√
5

2 , 1),
and

f(τ, νu) = (τ, λνu).

What is more, the fixed point represented by(τ, νu) corresponds to a pro-
jective class of measured foliations onS0,4, invariant under the action of
the pseudo-Anosov homeomorphism in the homotopy class off . To con-
struct the foliation, one first uses the weights(x, y) = (1+

√
5

2 , 1) to find
the weights on all other branches ofτ . For each edge of weightr > 0
build a rectangle of width1 and heightr with measured foliations given
by the 1–formsdx anddy. The switch conditions imply that these rectan-
gles can be glued together in a consistent way to give a foliation of S0,4

minus four once-marked disks; see Figure 15.8. Collapsing each disk to its
marked point gives a measured foliation onS0,4. Sincef(τ, νu) = (τ, λνu)
this measured foliation is indeed the unstable foliationFu for the pseudo-
Anosov homeomorphism representingf .

The fixed point off in PMF corresponding to the source can be described
in a similar way. It is the projective train track given by(1+

√
5

2 , 1) in the co-
ordinates of the bottom-left quadrant in Figure 15.6. If we allow the (x, y)–
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Figure 15.8 The first step in converting a train track into a foliation.

coordinates in this quadrant to vary in such a way that1 < x/y < 2 then we
obtain an open interval that is sent byf into the bottom-left quadrant. On
this coordinate patch one can check thatf acts by the transition matrix




1 −1

−1 2




One of the two eigenvectors for this matrix is positive; its corresponding
eigenvalue isλ−1 = 3−

√
5

2 . The(x, y) coordinates of this positive eigenvec-
tor determine a measured train track invariant byf . This in turn determines
a measured foliation whose measure is multiplied byλ−1 underf . This
foliation is nothing but the stable foliationFs for f .

The reason we call the fixed pointFu ∈ PMF a “source” forf and
Fs ∈ PMF a “sink” for f is that for any pointz ∈ PMF − Fs and
any neighborhoodU of Fu, we have thatfn(z) ∈ U for large enoughn.
As a result, every point ofPMF −Fs is repelled from the sourceFs. We
remark that, while a sink is considered to be a stable point ina dynamical
system, the reason that the sink is the unstable foliation isdue to the nature
of the action off on the surface; see Section 13.2.

WhilePMF has a seemingly natural structure as a simplicial complex with
four edges,f does not act simplicially onPMF . Indeed the source–sink
dynamics off on PMF precludes this. Consider for example the action
of f on the edge inPMF corresponding to the lower-left quadrant inR2.
In the notation of Figure 15.7 we have thatf(u) = a and thatf fixes the
source pointFs. Thus, using the projective coordinates of this quadrant,
the pointf(1, 1 + ǫ) for ǫ small enough lies in the upper-left quadrant and
f(1 + ǫ, 1) remains in the lower-left quadrant.

It may seem counterintuitive that different weights on the same train track
can lead to combinatorially different tracks after applying f , but the se-
quences of pictures in Figure 15.9 and Figure 15.10 explain this phenomenon.



THURSTON’S PROOF 459

ǫ

unzip

f

1 + ǫ

1 + ǫ
2 + ǫ

1

1

1

Figure 15.9 Finding the image of the point(1, 1 + ǫ) from the bottom-left quadrant.

In the calculation off(1, 1 + ǫ) andf(1 + ǫ, 1) we are forced to use an
“unzipping” procedure. If we read the arrows backwards we see that this is
just the opposite of the zipping procedure used earlier. Thekey point as to
why we get different combinatorial train tracks in Figures 15.9 and 15.10 is
that, when we unzip, we are forced to “peel off” the track of smaller weight.
There is not enough track to peel off the one of larger weight,and so we
get different unzipping sequences and hence different combinatorial types
of tracks at the end.

ǫ

ǫ
unzip

unzip

f

1 + ǫ

1 + ǫ 1 + ǫ

1− ǫ

2 + ǫ

1

1

1

Figure 15.10 Finding the image of the point(1 + ǫ, 1) from the bottom-left quadrant. We
warn the reader that it requires a clever isotopy to realize the second arrow.

The above description gives us a fairly thorough understanding of f and
its action on all isotopy classes of simple closed curves inS0,4 as well as
on all measured foliations onS0,4. Continuing this line of reasoning, one
can prove that the source–sink dynamics do actually hold. Inparticular one
can check that for any isotopy classc of simple closed curves, the curves
fn(c) converge projectively to the projective class of the unstable measured
foliation Fu.
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15.2 A SKETCH OF THE GENERAL THEORY

There are several big ideas to take away from the example in Section 15.1.
The first idea is that one can understand what a homeomorphism“does” to
a surface by looking at what it does to a single simple closed curve under it-
eration. This is analogous to the fact that one can approximate the eigenvec-
tor for a Perron–Frobenius matrixM by iteratingM on almost any vector
v; indeedMn(v) converges exponentially quickly to the Perron–Frobenius
eigenspace ofM .

Thurston’s remarkable discovery is that this analogy can bemade into a re-
ality. For any pseudo-Anosovf ∈ Mod(S) one can find an invariant train
track τ for f . One can then compute the associated train track matrixM .
The matrixM is Perron–Frobenius, and so has a unique largest eigenvalue
λ > 1 with positive eigenvectorv. The eigenvalueλ is precisely the stretch
factor off . The eigenvectorv specifies a measure onτ from which the un-
stable foliation forf can be built directly, just as explained in Section 15.1.
The invariant train trackτ for f is thus a combinatorial tool that converts
an a priori nonlinear problem, where for example iteration is difficult to un-
derstand, into a linear problem about which we have essentially complete
knowledge.

What is more, the analysis carried out in Section 15.1 can be used to give
a proof of the Nielsen–Thurston classification. Thurston’soriginal proof of
the Nielsen–Thurston classification was actually phrased in terms of mea-
sured foliations, not train tracks. Train tracks are a technological innovation
of Thurston that appeared after his original proof. Since train tracks are
combinatorial objects they are easier to work with in practice than the more
abstract measured foliations. On the other hand, some aspects of the general
theory are more easily dealt with in the context of measured foliations. As
such, we will present Thurston’s original approach, which uses measured
foliations.

We already explained how to convert a measured train track into a measured
foliation, and it is not too hard to see that any measured foliation can be
“pinched down” to a measured train track. Thus in some sense the two
theories are equivalent. Indeed, it is possible to present the entire proof of
the Nielsen–Thurston classification in the language of measured train tracks;
see the book of Penner and Harer for the details [171].
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15.2.1 THURSTON’ S ORIGINAL PROOF

In this subsection we present an outline of Thurston’s original proof of
the Nielsen–Thurston classification (Theorem 13.2). We start with a broad
overview, then proceed to explain more of the details. The full details of this
approach are given in the book “FLP” [59].

Figure 15.11 Whitehead moves on measured foliations (left)and measured train tracks
(right). The action on measures is the natural one.

Let g ≥ 2 and letS = Sg. One space associated toS is the Teichmüller
spaceTeich(S). Another important space associated toS is themeasured
foliation spaceMF(S), which is the space of equivalence classes of mea-
sured foliations, where the equivalence is generated by isotopy and by White-
head moves; see Figure 15.11.

Let S denote the set of isotopy classes of essential simple closedcurves
in S. One key idea in the approach we are describing is that, by taking
lengths/measures of curves, bothTeich(S) andMF(S) map disjointly and
injectively intoRS≥0 − 0, the space of nonzero functionsS → R≥0.

There is an obvious action ofR+ onRS≥0−0. Taking the quotient ofRS≥0−0

by this action gives a projective spaceP (RS). The image ofMF(S) in
P (RS) is denoted byPMF(S). It is homeomorphic to a sphere of di-
mension6g − 7. We will also see that the projectivization map restricted
to Teich(S) is a homeomorphism onto its image; we will also denote this
image inP (RS) by Teich(S).

What is more, the subspacesTeich(S) andPMF(S) of P (RS) are disjoint
and their unionTeich(S) ∪ PMF(S) is naturally endowed with the topol-
ogy of a closed ball of dimension6g − 6. Each element ofMod(S) acts
continuously on this ball, and so the Brouwer fixed point theorem implies
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the existence of a fixed point. The Nielsen–Thurston classification is then
obtained by analyzing the various possibilities for this fixed point.

We now explain more of the details of this idea. As much as possible, we
give references to the appropriate points in FLP.

Figure 15.12 Two types of good measured foliations on a pair of pants. On the left-hand side
the measures of the three boundary components satisfy the triangle inequality.
On the right-hand side the measure of the outer curve is greater than the sum
of the other two measures.

Step 1 (Measured foliations on a pair of pants). Just as we showed
Teich(P ) ≈ R3, we now explain that there is a certain subset ofMF(P )
that is homeomorphic toR3

≥0 − 0. Let MF0(P ) denote the subset of
MF(P ) represented by foliationsF where no boundary component ofP
is a nonsingular leaf. We claim that

MF0(P ) ≈ R3
≥0 − 0

(see [59, Exposé 6, Théorème II.4]). Indeed, given any nonzero(s, t, u) ∈
R3
≥0 we can find a unique element ofMF0(P ) where the measures of the

three boundary components ofP ares, t, andu. Up to Whitehead equiva-
lence and isotopy there are two different pictures, corresponding to whether
or not the triple(s, t, u) satisfies the triangle inequality. See Figure 15.12.
In both pictures we see that the foliation is obtained by gluing together
three horizontally foliated rectangles. To obtain pictures of all elements
ofMF0(P ) from these two, one must allow for permutations of the bound-
ary components ofP and also allow the transverse measures of one or more
rectangles to degenerate to zero.

In order to describe all ofMF(P ) we need to consider foliations where
one or more boundary component ofP is a nonsingular leaf. One way to
obtain such a foliation is to start with a foliation inMF0(P ) and adjoin an
annulus foliated by parallel circles to any of the boundary components ofP
that are closed singular leaves (left-hand side of Figure 15.13). Or we can
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Figure 15.13 Two measured foliations on a pair of pants. The foliation on the left-hand side
is obtained from the foliation on the left-hand side of Figure 15.12 by allow-
ing two of the rectangles there to degenerate, and then adjoining a smoothly
foliated annulus to one of the boundary components ofP . The foliation on the
right-hand side is obtained by enlarging two boundary components ofP .

start with the empty foliation ofP and then enlarge one or more boundary
components in the sense of Section 11.2 (right-hand side of Figure 15.13).
It turns out that these two constructions account for all ofMF(P ) [59,
Exposé 6, Proposition II.5].

Step 2 (Global coordinates forMF(S)). The Fenchel–Nielsen coor-
dinates onTeich(S) involve two sets of parameters: the length parameters
determine the isometry type of each pair of pants; the twist parameters deter-
mine how the pants are glued together. We employ an analogousapproach
here. In Step 1 we described parameters forMF(P ), and so now we need
to give “twist parameters” to encode how foliated pairs of pants can be glued
together.

Fix a pants decomposition{γi} of S. For eachγi choose an annulusAi in
S with γi as one of its boundary components. Cut each annulusAi into two
triangles using arcsδi andǫi; see Figure 15.14. The endpoints ofδi (which
are the same as the endpoint ofǫi) cutγi into two arcs. Letγ′i denote one of
these arcs, so one of the triangles ofAi is bounded byγ′i, δi, andǫi.

Let [(F , µ)] ∈MF(S). We can put(F , µ) into “normal form” with respect
to theγi, δi, andǫi [59, Exposé 6,§IV]. The idea of a normal form is that
on each pair of pants the normal form should restrict to one ofthe elements
ofMF(P ) that we already understand.

Once we have the normal form we can define a map

Θ :MF(S)→ R9g−9
≥0 − 0
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γ′i

δi ǫi

Figure 15.14 The arcsγ′
i, δi, andǫi used to define coordinates onMF(S).

that records the measures(ℓi, θi, θ
′
i) of eachγ′i, δi, andǫi with respect to

the normal form of any given[(F , µ)] ∈ MF(S). Theℓi are thought of as
“length parameters” and theθi andθ′i as “twist parameters.” The mapΘ is
a homeomorphism onto its image, which is described in Step 4.

One subtlety is that, in order to obtain the normal form of a foliation, we may
have to modify (“unglue”) our foliation so that it does not cover the whole
surface any more. As a simple example, if(F , µ) is a measured foliation
obtained by enlarging one of theγi, then the normal form of(F , µ) will be
supported on an annular neighborhood ofγi and will consist of nonsingular
leaves parallel toγi. As such, all of the length parameters of this(F , µ) are
zero and all of the twist parameters except theith are zero.

Step 3 (PMF(S) is a sphere). We have just parameterizedMF(S) with
9g − 9 numbers. So how do we end up withPMF(S) ≈ S6g−7? Well,
since for eachi the arcsγ′i, δi, andǫi bound a (null-homotopic) triangleTi
in S, the parameters(ℓi, θi, θ′i) satisfy a degenerate triangle inequality. That
is, one of the three numbers is the sum of the other two. This isbecause any
leaf of a foliation enteringTi along one edge must exitTi along some other
edge.

The points(s1, t1, u1, . . . , s3g−3, t3g−3, u3g−3) in R9g−9
≥0 where each triple

(si, ti, ui) satisfies a degenerate triangle inequality is a coneB that is home-
omorphic toR6g−6. Note for instance that the set of points inR3

≥0 that
satisfy a degenerate triangle inequality is a cone homeomorphic toR2.

We claim that the image ofΘ is the entire punctured coneB − 0. Indeed,
given a point ofB − 0 we can directly construct a measured foliation with
the specified length and twist parameters, uniquely up to equivalence. For
example, suppose we are given a point ofB − 0 where each of the length
coordinates is nonzero. In this case we can foliate each pairof pants with
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the corresponding element ofMF0(S). The twist parameters then tell us
how to glue the foliations along the curves of the pants decomposition. For
details see [59, Exposé 6,§V].

We thus haveMF(S) ≈ B − 0 and soPMF(S) ≈ S6g−7.

Step 4 (Teich(S) ∪ PMF(S) is a closed ball). We now explain how
bothTeich(S) andPMF(S) naturally embed inP (RS). Define a map

ℓ : Teich(S)→ P (RS)

as the composition of the mapTeich(S) → (RS − 0) given byX 7→ ℓX(·)
with the projectivization map. The9g − 9 theorem (Theorem 10.7) implies
that the mapX 7→ ℓX(·) is injective. No two points inTeich(S) can have
length functions that differ by a multiplicative factor [59, Exposé 7, Propo-
sition 6]. Thus the image ofTeich(S)) in (RS−0) intersects eachR+–orbit
in a single point. This proves thatℓ is injective.

Recall the notion of the geometric intersection numberI((F , µ), c) of a
measured foliation with an isotopy class of simple closed curves (see§14.5).
This gives a well-defined mapMF(S) → RS via [(F , µ)] 7→ I((F , µ), ·).
This map is injective by the above description ofMF(S) as the punctured
coneB − 0, so that the induced map

I : PMF(S)→ P (RS)

is injective.

By tracing through the definitions one can check that the injective mapsℓ
and I are in fact continuous and are homeomorphisms onto their images.
We will henceforth identifyTeich(S) andPMF(S) with their images in
P (RS).

We claim thatTeich(S) andPMF(S) are disjoint inP (RS). By discrete-
ness of the raw length spectrum of a hyperbolic surface (Lemma 12.4), ev-
ery point inTeich(S) has a shortest simple closed curve. On the other hand,
given any measured foliation onS, one can use Poincaré recurrence for foli-
ations (Theorem 14.14) to construct simple closed curves that have arbitrar-
ily small measure with respect to that foliation [59, Expos´e 8, Proposition
I.1]. In other words, the “length spectrum” for a measured foliation, is not
bounded away from zero. This is enough to distinguish pointsof Teich(S)
from points ofPMF(S) in P (RS).

We now claim that the unionTeich(S) ∪ PMF(S) in P (RS) can be nat-
urally topologized so that it is homeomorphic to a closed ball of dimension
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6g − 6. Letπ : RS≥0 → P (RS≥0) denote the projectivization map. The open
sets of the unionTeich(S)∪PMF(S) as a subspace ofP (RS) are the open
sets ofTeich(S) together with sets of the form

(Teich(S) ∩ π−1(U)) ∪ (PMF(S) ∩ U)

whereU is an open set ofP (RS≥0); see [59, Exposé 8, Théorème III.3]. The
key for showing thatTeich(S) ∪ PMF(S) is a closed ball is to show that
it is a manifold with boundary, and then to apply the generalized Schönflies
theorem. The closed ballTeich(S)∪PMF(S) is called theThurston com-
pactificationof Teich(S).

As a demonstration of the topology on the Thurston compactification of
Teich(S), consider a sequence of pointsXn in Teich(S) whereℓXn(α)→ 0
for some simple closed curveα in S. ThenXn limits to a point ofPMF(S)
corresponding to a (projective class of) measured foliation of S containing
α as a closed leaf.

Step 5 (Applying Brouwer). In Section 12.1 we explained the properly
discontinuous action ofMod(S) onTeich(S). The groupMod(S) also acts
by homeomorphisms onMF(S): the action ofHomeo+(S) onMF(S)
given by

φ · [(F , µ)] = [(φ(F), φ∗(µ))]

factors through an action ofMod(S). In contrast to its action onTeich(S)
the action ofMod(S) onMF(S) is not properly discontinuous. This action
does commute with the action ofR+ onMF(S) by scaling measures, and
so it induces an action ofMod(S) onPMF(S) by homeomorphisms. This
action is also far from properly discontinuous; indeed it has dense orbits.

One can check that for eachf ∈ Mod(S) the homeomorphisms just dis-
cussed are compatible in the sense that the map of the closed ball Teich(S)∪
PMF(S) to itself induced byf is a homeomorphism, giving us an action
of Mod(S) on Teich(S) ∪ PMF(S) by homeomorphisms. One should
think of this action in analogy with a discrete group of isometries acting by
homeomorphisms on the visual compactification ofn–dimensional hyper-
bolic space: the action on the interior is properly discontinuous while the
action on the boundary has dense orbits.

We now have that anyf ∈ Mod(S) induces a self–homeomorphism (which
we also callf ) of the closed ballTeich(S)∪PMF(S) of dimension6g−6.
We can thus apply the Brouwer fixed point theorem to conclude thatf has
a fixed point inTeich(S) ∪ PMF(S). This means that eitherf fixes a
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point of Teich(S) or there exists[(F , µ)] ∈ MF(S) so thatf · [(F , µ)] =
[(F , λµ)] for someλ ∈ R+ (here, brackets denote the equivalence generated
by isotopy and by Whitehead moves, but not by theR+–action).

Step 6 (Analyzing the fixed point). We call a measured foliation isara-
tional if it does not contain any closed leaves. We have the following cases
for the fixed point off :

1. f · X = X whereX ∈ Teich(S)

2. f · [(F , µ)] = [(F , λµ)], where(F , µ) is not arational

3. f · [(F , µ)] = [(F , λµ)], where(F , µ) is arational andλ = 1

4. f · [(F , µ)] = [(F , λµ)], where(F , µ) is arational andλ > 1

We have already seen in Chapter 13 that in Case 1 the mapping classf
is periodic. In Case 3 we deduce thatf permutes the finite collection of
rectangles in some rectangle decomposition ofS induced byF , and sof
must again be periodic. In Case 2 the finite number of homotopyclasses of
closed leaves ofF must be permuted byf , and sof is reducible. In Case
4 one can build a Markov partition (see below) forf and use it to find a
unique measured foliation that is transverse toF and that is also projectively
invariant byf . This proves thatf is pseudo-Anosov. This last step is the
most technically involved part of Thurston’s proof. See [59, Exposé 9] for
the details.

The Thurston compactification for the torus. The Thurston compactifi-
cation ofTeich(T 2) can be described quite explicitly, as follows. Letα, β,
andγ denote the(1, 0), (0, 1) and(1, 1) curves inT 2. Recording the lengths
of α, β, andγ gives an injective mapTeich(T 2) → R3

≥0. Each point of
P (R3

≥0) can be represented by a unique point in the planex + y + z = 1.
For any flat metric onT 2 there are representatives ofα, β, andγ that form a
Euclidean triangle, and so their lengths satisfy the triangle inequality. Thus
the image ofTeich(T 2) in the planex + y + z = 1 is the open triangular
regionT consisting of positive points that satisfy the triangle inequality.

Taking the measures ofα, β, andγ gives an injective mapMF(T 2) →
R3
≥0. As in Step 3, the image of this map is the set of points inR3

≥0 that
satisfy a degenerate triangle inequality. This set is precisely the cone on
∂T , punctured at the origin. By projectivizing, we can see concretely how
PMF(T 2)∪Teich(T 2) is homeomorphic to a closed disk; see Figure 15.15
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(and [59, Exposé 1]). We remark that, as we move towards the boundary of
T , the corresponding points ofTeich(T 2) (before projectivization) move
further and further from the origin.
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Figure 15.15 The closed ballTeich(T 2) ∪ PMF(T 2) sitting inR3
≥0.

15.3 MARKOV PARTITIONS

It was already mentioned that part of Thurston’s analysis isthe construction
of a Markov partition for a pseudo-Anosov mapping class. As we explained
above, the example in Section 15.1 is the image of

A =




2 1

1 1


 ∈ SL(2,Z) ≈ Mod(T 2)

under the homomorphismMod(T 2) → Mod(S0,4) induced by the two-
fold branched coverT 2 → S0,4. In this section we illustrate the idea by
constructing the Markov partition for this simple example.

Again, the unstable and stable foliationsFu andFs forA are the projections
to T 2 of the foliations ofR2 by lines parallel to the (irrational) eigenspaces
for the eigenvaluesλ > 1 andλ−1 of A. Choose a small subarcτ of a leaf
of Fs. Similar to the construction in Section 14.3 we can useτ ,Fu, andFs
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to construct a rectangle decomposition ofT 2 adapted toFu andFs. The
situation here is slightly simpler sinceFu is orientable and nonsingular.

First, we subdivideτ along allbackwardsimages of endpoints ofτ . Then,
each segment of the subdivision gives a rectangle inT 2, obtained by push-
ing that segment forward alongFu. For one such example of a rectangle
decomposition, see the left hand side of Figure 15.16. In that figure we can
locate the arcτ by taking the union of the vertical sides of the rectangles.

Figure 15.16 An Anosov map of the torus.

The linear mapA ∈ Homeo+(T 2) takes the picture on the left hand side of
Figure 15.16 to the picture on the right hand side. We see thata lot of the
structure is preserved. In particularA takes rectangles to subrectangles,A
preserves the horizontal and vertical directions, andA takes sides of rectan-
gles lying inFs to other such sides.

DecomposingT 2 into its constituent rectangles gives a picture as in the top
of Figure 15.17 (note the identifications).

Figure 15.17 taken all at once gives another view of the linear homeomor-
phismA. Here we can see how the combinatorial structure forFu given
by the rectangles translates into a purely combinatorial description ofA: it
stretches the red rectangle twice over itself and once over the blue rectangle,
and it stretches the blue rectangle once over each. Turning this information
into a matrix in the obvious way gives atransition matrix:




2 1

1 1




Much of (in this case, all) the original information about the mapping class
[A] ∈ Mod(T 2) is contained in the transition matrix. In general we should
not expect the transition matrix to bear any resemblance to the original



470 CHAPTER 15

a

c

d

be

f

e

f

b

d

ca

Figure 15.17 An Anosov map demystified(?).

Anosov map. In fact we could have chosen a rectangle decomposition with
more rectangles and gotten a larger matrix.

We remark that the two rectangles of the above Markov partition are similar.
This is related to the fact that in this case the transition matrix is equal to its
transpose; in general the lengths and widths of the rectangles come from the
transition matrix and its transpose, respectively.

As discussed above, one ingredient in Thurston’s approach to the Nielsen–
Thurston classification is that such a scheme as above is always possible.
That is, given a pseudo-Anosovf ∈ Mod(Sg), there is onSg a partic-
ular rectangle decomposition, called aMarkov partition, so thatf has a
combinatorial description as above. Instead of cutting along a single sta-
ble arc, however, one typically needs to cut along several. The construction
of Markov partitions is much more technically involved for pseudo-Anosov
homeomorphisms than for linear Anosov homeomorphisms. Butonce a
Markov partition is constructed it is a powerful tool.

For example, from the transition matrix of a Markov partition for f one can
determine various properties off . In particular the stretch factor off is
the largest real eigenvalue of the transition matrix. This approach can be
used quite easily to give proofs of Theorem 14.8, Theorem 14.9, and one
direction of Theorem 14.10. The point is to show that any pseudo-Anosov
mapping class of a fixed surface has a transition matrix whosesize (number
of rows) is uniformly bounded from above, and use the fact that the set of
eigenvalues of integraln × n matrices is discrete. The other direction of
Theorem 14.10 is by explicit construction.
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In addition to the above, Theorem 14.16, Theorem 14.24, and Corollary 14.25
can all be proved using the theory of Markov partitions. The idea for the lat-
ter two is that, as we iterate a pseudo-Anosov mapping class,any curve gets
closer and closer to the horizontal foliation in each rectangle, and the num-
ber of horizontal components in each rectangle grows likeλn, where here
we are thinking ofλ as the largest eigenvalue of the transition matrix. We
refer the reader to [59] for the details.

The theory of Markov partitions is closely related to the theory of train
tracks. We encourage the reader to find the train track hiddenin Figure 15.17.

15.4 OTHER POINTS OF VIEW

There are other approaches to proving the Nielsen–Thurstonclassification.
One aspect we have not touched on is the theory of measured laminations.
A geodesic laminationin a hyperbolic surfaceS is a nonempty closed sub-
set ofS that is a disjoint union of simple (possibly infinite) geodesics inS.
It is also possible to endow a geodesic lamination with a transverse mea-
sure. The dictionary relating train tracks to foliations can be extended to
relate both of these objects to geodesic laminations. For instance, to obtain
a geodesic lamination from a foliation, we simply replace each leaf with its
corresponding geodesic (as determined by the endpoints of the lift of a leaf
to H2).

One can prove the Nielsen–Thurston classification using geodesic lamina-
tions. The Hausdorff metric gives a metric on the set of geodesic laminations
in Sg. SinceSg is compact the resulting topological spaceL(Sg) is com-
pact. As with the other approaches, for a givenf ∈ Mod(S) we consider
the sequencefn(c) wherec is an isotopy class of simple closed curves in
S. Eachfn(c) has a unique geodesic representative inSg, which can be
regarded as a point inL(S). SinceL(S) is compact the sequence(fn(c))
has a convergent subsequence. The limitL is theunstable laminationfor
f . If L has closed “leaves” thenf is reducible or finite order. Otherwise
f is pseudo-Anosov. This point of view is discussed in the bookby Cas-
son and Bleiler [43] and in the book by Calegari [42]. While this method
finds quickly an invariant lamination, one now needs to do some work in
order to find an invariant foliation. It is the finer structureof a projectively
invariant measured foliation that allowed us to prove most of the properties
of pseudo-Anosov homeomorphisms.
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Nielsen’s original point of view was to look directly at the action of a map-
ping class on∂H2. A streamlined version of his approach can be found in
the paper by Handel and Thurston [79]. Bestvina and Handel introduced a
combinatorial algorithm for finding a train track for a mapping class, and in
particular for determining the Nielsen–Thurston type of a mapping class
[16]. Also, the Markov partition for a pseudo-Anosov homeomorphism
yields a great amount of dynamical information [59, Exposé10]. Ivanov
proved a number of structural theorems aboutMod(S) using the dynamics
of the action on the Thurston boundary [102].

The Nielsen–Thurston classification is the starting point for a number of ac-
tive research directions. This is analogous to the fact thatthe Jordan canoni-
cal form for a matrix is one basic fact used in the vast study ofLie groups and
other groups of matrices. Some places to find open problems inthese and
many related directions are: Kirby’s problem list [119], Bestvina’s problem
list [17], Mosher’s problem list [158], and the bookProblems on Mapping
Class Groups and Related Topics[56].
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zweseitigen Flächen.Acta Math., 50:189–358, 1927.

[164] Jakob Nielsen. Untersuchungen zur Topologie der geschlossenen
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(−1, 1)–form, 350
4g + 2 theorem, 214

proof, 222
84(g − 1) theorem, 213

proof, 221
9g − 9 theorem, 301, 465
G–invariants of a group action, 383
Sg–bundle overS1, 400
Sg–tile, 286
I(Sg)–equivalent, 195
ǫ–thick part, 372
kth Torelli group, 208
1–pronged singularity, 320
2–chain relation, 112

affine transformation, 415
Alexander lemma, 50
Alexander method, 61, 62

proof, 65
statement, 62

Alexander trick, 50
algebraic intersection number, 172

on the torus, 30
algebraic topology onTeich(Sg), 284
algebraic topology on Teichmüller space,

281
ambient isotopy, 36
Anosov, 389
Anosov package, 388, 412
arational, 467
arc, 37

simple, 37
arc complex, 139
area of a lattice, 278
Artin group, 133
aspherical orbifold, 367
axis for a pseudo-Anosov mapping class,

411
axis of a hyperbolic isometry, 21

belt trick, 258
Beltrami differential, 350
Beltrami differentials

versus quadratic differentials, 353
Beltrami equation, 351
Bers’ constant, 374
big diagonal, 254
bigon, 31
bigon criterion, 31

first proof, 33
second proof, 34

biholomorphic, 311
Birman Exact Sequence

point pushing map, 102
Birman exact sequence, 101, 246

for the Torelli group, 194
forgetful map, 101
generalized, 257
non-splitting of, 159
statement, 102

Birman–Craggs–Johnson homomorphisms,
208

Birman–Hilden theorem, 265, 266
for closed surfaces, 269

Borel construction, 142
boundary components, 18
bounding pair, 42, 193
bounding pair map, 193
braid, 251
braid diagram, 252
braid group, 252

abelianization, 259
as a mapping class group, 255
center, 259
is torsion free, 259
low complexity cases, 259
modulo center, 260
presentation, 258
pure, 261
roots of central elements, 260
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standard generators, 253
braid group on 3 strands, 92
braid groups, 251
braid relation, 81, 268

converse, 83
branch points, 413
branched cover, 322, 413

degree of ramification at a point of, 332
of a Riemann surface, 331
of a topological surface, 322
ramification point of, 332

bundle isomorphism, 160
Burkhardt generators, 171

canonical form for a mapping class, 397
canonical reduction system, 394
capping, 89
capping boundary components, 106
capping the boundary

in the Torelli group, 194
carried, 453
carried (by a train track), 451
Cayley graph, 233
center, 79

of the mapping class group, 79
central extension of a group, 153
chain, 112
chain of simple closed curves, 42, 242

nonseparating, 42
chain relation, 112, 268
change of coordinates principle, 38, 40

examples, 41
characteristic classes, 162
characteristic subgroup, 189, 208
classification of mapping classes

proof, 405
restatement, 397

classification of simple closed curves, 39
classification of surfaces, 18
classifying map, 161
classifying space, 381
click, 214
click homeomorphism, 48
closed curve, 23

essential, 23
multiple, 24

collar lemma, 402
complex derivatives, 310
complex dilatation, 280, 349

complex hyperplane arrangement, 255
complex of curves, 96, 378

connectedness, 97
sporadic cases, 98

complex of nonseparating curves, 99
complex of spaces, 142
complex structures vs. hyperbolic struc-

tures, 309
configuration space, 254
conformal map, 311
conformal structures, 309
congruence subgroup

of the mapping class group, 186
of the symplectic group, 184

congruence subgroups
of Sp(2g, Z), 184

conjugacy classes of finite subgroups of
Mod(S), 226

conjugacy separable, 188
conjugate representations, 161
coordinate system of curves, 293
curve, 23

lift of, 24
separating, 39
simple closed, 26

curves
isotopic, 35

cut system complex, 133
cut systems, 133
cutting a surface, 38
cylinder decomposition, 298

degenerate star relation, 137
degree at a point

of an orbifold covering, 218
Dehn twists, 68

action on homology, 176
action on simple closed curves, 69
and free groups, 84
and intersection number, 72
basic properties, 76
conjugates, 77
definition, 67
groups generated by, 86
have infinite order, 72
left versus right, 69
nontriviality, 70
on the torus, 68
powers, 78
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relations between, 81
roots, 113
via cutting and gluing, 69

Dehn–Lickorish Theorem, 93
Dehn–Lickorish theorem

proof, 110
Dehn–Nielsen–Baer theorem, 232

analytical proof, 250
for punctured surfaces, 233, 245
quasi-isometry proof, 242
topological proof, 249

dilatation, 311
dilatation at a point, 310
do-si-do, 124
double

of a surface, 71

Earle-Eells Theorem, 163
earthquake map, 304
ellipse field, 349
elliptic isometry, 404
enlarging a curve, 322
equivalent geodesic rays, 20
ergodic, 443
essential arc, 37
Euclidean algorithm, 173
Euclidean algorithm for simple closed curves,

173
Euclidean metric, 21
Euclidean surface, 22
Euler characteristic, 18
Euler class, 154, 155

classical version, 153
for the mapping class group, 154
via lifted mapping classes, 154

Euler–Poincaré formula, 317
for quadratic differentials, 327

exhaustion ofM(Sg), 372
extended mapping class group, 6

of the four-times punctured sphere, 231
of the punctured torus, 231
of the sphere, 231
of the thrice-punctured sphere, 231
of the torus, 231

factor mix, 172
factor rotation, 171
factor set, 153
factor swap, 172

fake bounding pair maps, 193
Farey complex, 98, 136, 140, 226
Fenchel–Nielsen coordinates, 296

for non-closed surfaces, 297
for the torus, 298

Fibonacci number, 451
filling, 75
filling curves, 40
fills, 62, 414
filtration, 209
first homology group, 125
first variation principle, 291
flag complex, 96
flat metric, 21
flat surface, 22
FLP, 399, 461
foliation

measured, 318
singular, 316

foliations
action by homeomorphisms, 319
from a pair of filling curves, 323
from a polygon, 321
on the torus, 314
via branched covers, 322

forgetful map, 101
frame, 211
free homotopy, 22
Fricke’s theorem, 292, 367

proof, 370
Fundamental observation of geometric group

theory, 235

Gauss–Bonnet theorem
for orbifolds, 219

generating sets
for non-closed surfaces, 119

generating sets forMod(S0,n), 106
genus, 18

of a bounding pair map, 198
geodesic

in a metric space, 235
geodesic lamination, 471
geodesic laminations, 400
geodesic metric space, 235
geometric intersection number

on the torus, 30
geometric symplectic basis, 172
Gervais presentation, 136



494 INDEX

good atlas, 434
Grötsch’s extremal problem, 313
Grötzsch’s problem, 341, 370
Grassmann manifolds, 161
group action

without rotations, 141
grows like, 444

half-bigon, 37
half-twist, 256, 267
half-twists, 119
handle mix, 179
handle pushes, 194
handle rotation, 178
handle swap, 179
harmonic map, 250
Hatcher flow, 140
hexagonal torus, 212, 365
holomorphic, 311
holomorphic 1–forms, 326
holomorphic cotangent bundle, 324
holomorphic quadratic differential, 324
homological criterion, 420
homology 3–spheres, 191
homothety ofR2, 278
homotopy colimit, 142
homotopy relative to the boundary, 37
Hopf formula, 146
horizontal foliation, 325
horizontal stretch factor, 337
Humphries generators, 93, 117

minimality, 182
hyperbolicSg–tile, 287
hyperbolic distance onπ1(S), 234
hyperbolic isometry, 404
hyperbolic metric, 21
hyperbolic orbifold, 216

minimal volume, 220
hyperbolic plane, 19

boundary at infinity, 20
classification of isometries, 20
compactification of, 20
curvature, 19
elliptic isometries, 20
geodesics, 19
hyperbolic isometries, 21
loxodromic isometries, 21
parabolic isometries, 20
Poincaré disk model, 19

upper half-plane model, 19
hyperbolic structures vs. complex struc-

tures, 309
hyperbolic surface, 22
hyperelliptic involution, 48, 227

of the four-times punctured sphere, 59
special cases, 80
uniqueness of, 227

hyperelliptic relations, 127, 129, 131

ideal triangle, 292
inclusion homomorphism, 69
incompressible torus, 401
initial differential, 337
injectivity radius, 371

of a lattice inRn, 372
inner automorphism, 231
inner automorphism group, 231
innermost disk, 32
integral symplectic group, 170
intersection number

algebraic, 29, 172
geometric, 29

invariance of domain, 348
involution, 228
irreducible matrix, 415
isometries of a closed hyperbolic surface,

214
isometries of punctured spheres, 212
isometries of the torus, 211
isometry

action on first homology, 186
of a hyperbolic orbifold, 217

isomorphic Riemann surfaces, 309
isospectral surfaces, 376
isothermal coordinates, 309
isotopy

extension from curves to surfaces, 36
for curves, 35
of a surface, 36

isotopy relative to the boundary, 37

jacobian, 310
Johnson filtration, 208
Johnson homomorphism, 200, 419

computations, 203
for closed surfaces, 201
kernel, 207
surjectivity, 206
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via mapping tori, 202

k–chain relation, 112
Klein quartic surface, 226
Kra’s construction, 424

lantern relation, 121, 122
via the push map, 124

lattice, 278
injectivity radius of, 372
volume of, 372

lattice inRn, 372
lattices

moduli space of, 373
leaf-preserving isotopy, 317
leaves

of a foliation, 316
Lefschetz fixed point theorem, 213
Lefschetz number, 213, 442
length function, 277
length functions

continuity, 284
convexity with respect to twists, 301

length homomorphism, 259
length parameter, 293
Lickorish generators, 113
Lickorish twists, 114
lift of a curve, 24
linear group, 187
linear symplectic group, 170

elementary matrices, 171
linked at infinity, 238
locally orientable

foliation, 316
lower central series, 208

Mahler’s compactness criterion, 373
mapping class, 47
mapping class group

action on first homology, 176
action on Teichmüller space, 360
action on the fundamental class, 232
definition, 46
exceptional surfaces, 48
extended, 230
finite index torsion free subgroup, 186
finite solvable subgroups, 392
first examples of elements, 48
first homology of, 125

generating by involutions, 229
generating with torsion, 228
generators, 93
of a pair of pants, 92
of a torus minus an open disk, 92
of the annulus, 53
of the disk, 50
of the four-times punctured sphere, 57
of the once-punctured disk, 51
of the once-punctured sphere, 51
of the once-punctured torus, 57
of the pair of pants, 53
of the plane, 51
of the sphere, 51
of the thrice-punctured sphere, 51
of the torus, 55
of the twice-punctured sphere, 53
other notations, 47
presentation, 129
proof of finite presentability, 139, 143
punctures versus boundary, 47
punctures versus marked points, 47
residual finiteness, 186
second homology of, 146
surjectivity ontoSp(2g, Z), 177
the word problem for, 95
torsion in, 210
with marked points, 47

mapping class groups of surfaces with bound-
ary are torsion free, 211

mapping classes as symplectic automor-
phisms, 175

mapping torus, 400
Margulis lemma, 403
marked hexagon, 289
marked lattice, 278, 372
marked length spectrum, 301
marked points, 18, 47
Markov partitions, 468
Matsumoto presentation, 136
maximal reduction system, 394
measruable Riemann mapping theorem,

351
measure (on a train track), 451
measured foliation, 318
measured foliation space, 461
measured foliations

action ofHomeo(S), 319
arational, 467
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as 1–forms, 319
four constructions, 320
from a pair of filling curves, 323
from a polygon, 321
length spectrum, 465
near a puncture, 320
normal form, 463
on surface with boundary, 320
on the torus, 314
via branched covers, 322

measured train track space
coordinate charts, 455

Meyer signature cocycle, 160
definition, 163

Milnor–Švarc lemma, 235
minimal position, 31
modular group, 47
modular surface, 363
moduli space, 359, 360

ends, 379
fundamental group at infinity, 380
length spectrum, 430
manifold cover, 367
simple connectivity, 379

monodromy
of a surface bundle, 400

multicurve, 35
multiple

of a closed curve, 24
multitwist, 88, 414
Mumford’s compactness criterion, 372

proof, 375

natural coordinates
for a measured foliation, 319
for quadratic differentials, 326

naturality property
for the Johnson homomorphism, 201

neighborhood of a puncture, 22
Nielsen equivalent, 441
Nielsen realization theorem, 211

for cyclic groups, 211
proof, cyclic case, 391

Nielsen–Thurston classification, 397
for the torus, 389
proof, 405

nonnegative matrix, 415
nonseparating simple closed curve, 39
Novikov additivity, 164

one end, 378
orbifold, 216

cone point, 216
Gauss–Bonnet theorem for, 219
homotopy in, 380
regular point, 216
signature, 216
volume, 220

orbifold covering map, 217
orbifold fundamental group, 216, 380
ordinary cusp singularity, 92
orientable

foliation, 316
orientation cover, 427
orientation homomorphism, 427
outer automorphism group, 231

pair of pants, 53, 91, 248
hyperbolic structures on, 288
mapping class group of, 92
Teichmüller space of, 288

pair of pants decomposition, 248
palindromic polynomial, 420
pants decomposition, 248, 288
parabolic isometry, 404
path metric, 234
Penner’s construction, 419
perfect group, 125
period, 441
periodic

for the torus, 388
periodic mapping classes, 390
peripheral leaf, 431
Perron number, 429
Perron–Frobenius eigenvalue, 415
Perron–Frobenius eigenvector, 415
Perron–Frobenius theorem, 415
Ping pong lemma, 84
Poincaré recurrence, 439, 465
Poincaré recurrence for foliations, 433
point pushing map, 102

in terms of Dehn twists, 103
polygon

for a foliation, 433
positive matrix, 415
primitive, 23, 173
profinite completion, 187
proper metric space, 235
properly discontinuous, 235, 367
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pseudo-Anosov mapping classes, 395
pseudo-Anosov homeomorphism, 395

dense orbits of, 438
density of periodic points, 440
for non-closed surfaces, 396
intersection numbers under iteration, 447
lengths of curves under iteration, 445
number of periodic points, 441

pseudo-Anosov homeomorphisms
ergodicity, 443

pseudo-Anosov mapping class, 395
pseudo-Anosov mapping classes

construction for braid groups, 425
construction via branched covers, 413
construction via point pushing, 424
construction via the homology action,

420
constructions via Dehn twists, 414
in the Torelli group, 418

pseudo-Anosov stretch factor, 395
pseudo-Anosov stretch factors

discreteness inR, 429
pseudo-Anosov, in braid group, 425
punctures, 18
pure braid group, 261

abelianization, 264
as iterated extension, 264
center, 262
generators, 261
presentation, 263
splitting over center, 264

push map, 102
naturality, 104

quadratic differential, 324
quadratic differentials

areas and lengths, 327
as tangent vectors, 340
constructions, 329
dimension count, 334
foliations of, 325
on the torus, 328
versus 1–forms, 326
versus Beltrami differentials, 353
via branched covers, 331

quadratic integer, 412
quasi-isometric embedding, 234
quasi-isometry, 234
quasiconformal map, 311

raw length spectrum, 368
raw length specturm

discreteness of, 368
rays

equivalence of, 20
real symplectic vector space, 170
realizing finite groups, 224
reducible

for the torus, 388
reducible mapping classes, 393

examples, 393
reduction system, 393
Reeb component, 436
Reidemeister move, 259
representation

discrete, 281
faithful, 281

representations
conjugate, 161

residual finiteness of the mapping class
group, 186

residually finite
group, 186
ring, 189

Riemann surface, 309
Riemann’s theorem, 333
Riemann–Hurwitz formula, 218
Riemann–Roch theorem, 334
right-angled hexagons, 289
right-angled pentagon formula, 402
Rochlin invariant, 208
Royden’s theorem, 362

Schraubungen, 68
screw map, 68
seams, 293
separating simple closed curve, 39

genus, 40
side

of an element ofπ1(S), 240
signature, 163

of an orbifold, 216
simple arc, 37
simple closed curve, 26

nonseparating, 39
simple closed curves

on the torus, 27
simplicial star, 140
singular Euclidean structure, 415
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singular points
of a foliation, 316

sink, 456, 458
source, 458
source–sink dyanamics, 456
spherical braid group, 257
spin map, 102
splitting ofH1(Sg; Z), 195
square complex, 323
square torus, 212
stable foliation, 395

on the torus, 388
stable foliations

density of leaves, 436
unique ergodicity, 438

standard handlebody, 191
standard symplectic form, 170
star relation, 136
strand, 251
strange fact, 129
stretch factor, 395
stretch factors

are algebraic integers, 426
surface, 18

cut, 38
surface braid group, 256
surface bundles, 160
Swiss cross, 329
switch, 451
switch condition, 451
symetrically isotopic, 269
symmetric homeomorphism, 265
symmetric mapping class group, 265
symplectic representation ofMod(Sg), 5,

169, 176
symplectic structure onH1(Sg; Z), 172
symplectic vector space, 170
symplectically irreducible polynomial, 420

Teichmüller disks, 355
Teichmüller distance, 353
Teichmüller geodesics, 355
Teichmüller line, 339
Teichmüller map, 313
Teichmüller mapping, 336
Teichmüller metric, 309, 314, 354

for the torus, 356
is completely geodesic, 355
on moduli space, 367

Teichmüller Navigator, 288
Teichmüller space, 276

dimension counts, 285
for S0,4, 298
for S1,1, 298
for the torus, 277
in terms of representations, 282
in terms of tilings, 286
of S0,3, 291
of a pair of pants, 288
the algebraic topology on, 281

Teichmüller theory
for non-closed surfaces, 340

Teichmüller’s existence theorem, 337
Teichmüller’s extremal problem, 313
Teichmüller’s theorems

for 1–manifolds, 338
Teichmüller’s uniqueness theorem, 338
terminal differential, 337
Thurston compactification, 466

for the torus, 467
Thurston’s construction, 414
topological type (of a simple closed curve),

39
Torelli group, 6, 190

abelianization, 207
action on curves, 195
finite generation, 198
generators, 197
genus two, 199

Torelli groups
are torsion free, 192

torsion
and the symplectic representation, 212

torus
classification of homeomorphisms, 387
Fenchel–Nielsen coordinates for, 298
mapping class group of, 55
moduli space of, 363
Teichmüller space for, 277
transverse measured foliation on, 315

train track, 419, 451
measured, 451
measure on, 451

train track matrix, 453
transition matrix, 469
translation length, 404
transpositions, 119
transvection, 171, 182
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in Sp(2g, Z/mZ), 182
transverse arc

to a foliation, 317
transverse foliations, 318
transverse measure

for the torus, 315
of a foliation, 318

trefoil knot complement, 92
twist map of the annulus, 68
twist parameter

well-definedness, 295
twisting number, 294

uniformization theorem, 309
unique ergodicity, 438
universal bundle, 161
universal central extension ofSL(2, Z),

92
unstable foliation, 395

on the torus, 388
unstable lamination, 471
unzipping, 459
upper half-plane model, 19

vertical foliation, 325

Wajnryb presentation, 130
weight

on a train track, 451
Weil–Petersson form, 300
Whitehead moves, 447
without rotations, 141
Wolpert’s formula, 300
Wolpert’s lemma, 369
word length, 234
word metric, 234
word problem, 95

zipping, 451


